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INTRODUCTION 
 

Breast cancer (BC) is the most common invasive 

malignancy among women worldwide, accounting for 

31% of all female cancer types [1]. Over the past two 

decades, the incidence of BC has nearly doubled [2]. 

Currently, effective therapeutic strategies for BC 

patients include surgery, chemotherapy, hormonal 

manipulation, targeted treatment, radiotherapy, or a 

combination thereof [3]. However, statistical evidence 

has revealed that the five-year survival rate of patients 

with BC is still relatively low, although advancements 

in early diagnosis and therapy have been made during 

the past decades [4]. Thus, it is urgent to investigate 

new treatments for BC.  

Although the initial treatment has been demonstrated 

to be effective for most patients with BC, eventually, 

more aggressive tumors develop due to the resistance 

of tumor cells from radiotherapy or chemotherapy 

[5, 6]. Thus, metastasized recurrence causing a poor 

prognosis has become the major challenge and 

obstacle for developing BC therapeutics. On the other 

hand, tamoxifen, an antagonist of the estrogen 

receptor (ER), is widely applied to treat ER-positive 

BC [7]. In spite of advances in diagnosis and 

treatment of BC, it has been reported that BC patients 

treated with tamoxifen relapse [8, 9]. This suggests 

that the mechanism of tamoxifen resistance is still  

not fully understood. As such, understanding the 

molecular pathways behind tamoxifen resistance 
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causing increased expression of miRNA-205 in BCCs. Coculturing with M/T-Exo promoted tamoxifen 
resistance, proliferation, migration, and invasion while suppressed apoptosis in recipient BCCs, which were 
associated with activating the caspase pathway and phosphorylating Akt. Luciferase reporter assays showed 
that miRNA-205 directly targeted E2F Transcription Factor 1 (E2F1) in BCCs. Furthermore, knockdown of 
miRNA-205 or overexpression of E2F1 reversed the roles of M/T-Exo in BCCs. In vivo experiments showed that 
the intratumoral injection of M/T-Exo caused greater tamoxifen resistance and larger tumor size relative to 
mice treated with miRNA-205-knockdown or E2F1-overexpressing BCCs. Together, the results suggest that 
exosomal miRNA-205 may promote tamoxifen resistance and tumorigenesis in BC through targeting E2F1 
in vivo and in vitro. 

mailto:zhangxiaoyu9321@163.com
https://orcid.org/0000-0002-0240-5867
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 18499 AGING 

would greatly contribute to the development of high-

sensitivity therapies for BC.  

 

Exosomes are a group of extracellular vesicles (30–

150 nm in size) [10, 11]. Growing studies reported that 

exosomes are capable of transferring functional 

molecules, including mRNAs, miRNAs, enzymes, and 

lipids, to neighboring or distant cells, eventually 

influencing their cellular activities [12]. Thus, 

exosomes have been regarded as an ideal molecule-

shuttle in intercellular communication. Similar to other 

cell types [12], cancer cells can also secrete exosomes 

containing functioning molecules that are associated 

with various cancer-related activities, such as 

angiogenesis [13, 14], metastasis [15, 16], progression 

[17] and chemoresistance [18]. 

 

MicroRNAs (miRNAs) are a class of small (21–24 

nucleotides in length) non-coding RNAs [19]. The 

miRNAs function as an essential regulatory mechanism 

of gene expression, primarily through binding target 

mRNAs and eventually silencing mRNAs or promoting 

mRNA degradation [20]. Given such important roles, 

miRNAs are a critical regulator in various physiological 

and pathological processes [21], such as chemo-

resistance [22, 23]. As a multifunctional factor, 

miRNA-205 is essential for BC cell metastasis, 

stemness, and epithelial-mesenchymal transition (EMT) 

[24] and is a potential diagnostic marker for the early 

detection of BC [25]. Also, the involvement of miRNA-

205 in chemoresistance has been reported in several 

cancers, such as BC [26], pancreatic cancer [27], 

hepatocellular carcinoma [28], and non-small cell lung 

cancer [29]. However, the effect of exosomal miRNA-

205 on tamoxifen chemoresistance in BC remains to be 

elucidated.  

 

E2F Transcription Factor 1 (E2F1), a transcription 

activator, can bind to DNA with dimerization partner 

(DP) proteins through the recognition site of E2 [30]. 

It has been demonstrated that the dissociation of E2F1 

from retinoblastoma protein can restore the 

transcriptional function of E2F1, which is a major 

driving force for the cell cycle [31]. Given its critical 

roles in cellular activities, numerous studies report that 

E2F1 participates in chemoresistance, metastasis, and 

progression in several cancers [32, 33]. For BC, 

Hollern et al. report that E2F1 promotes BC metastasis 

through gene fibroblast growth factor 13 (Fgf13) [34]. 

Also, miRNA-93-induced chemosensitivity to 

paclitaxel is mediated by E2F1 and Cyclin D1 in BC 

[35]. 

 
Therefore, this study aimed to determine whether 

miRNA-205 can be transmitted via exosomes derived 

from chemoresistant breast cancer cells (BCCs) and the 

roles of exosomal miRNA-205 in the regulation of 

tamoxifen chemoresistance and tumorigenesis in BC in 

vitro and in vivo. 
 

RESULTS 
 

Isolation and identification of exosomes derived 

from BCCs and M/T cells 

 

Exosomes were first isolated from BCCs and M/T cells. 

The morphology of exosomes was identified by the 

transmission electron microscope which showed round-

shape exosomes with bilayer membranes (Figure 1A). 

Also, the exosome size distribution revealed that the 

diameter ranged from 40 to 140 nm and the 

predominant size of exosomes was 120 nm (Figure 1A). 

Next, both exosomes derived from BCCs and M/T cells 

positively expressed the exosomal markers, CD63, 

CD81, and HSP70, while β-tubulin was positively 

expressed in the BCCs and M/T cell lysates (Figure 

1B). Together, these results suggest that the exosomes 

isolated from BCCs and M/T cells displayed typical 

features of exosomes, which were then used in 

subsequent experiments. 

 

Upregulation of miRNA-205 in M/T cells and 

exosomes enhances tamoxifen resistance 

 

The microarray assay was used to determine the 

miRNA expression profile in M/T cells. As shown in 

Figure 2A, a group of miRNAs was found to be 

upregulated in M/T cells, compared with BCCs. Among 

these upregulated miRNAs, including miR-181a-5p, 

miR-21-3p, miR‐125b, miR‐200c, miR‐205, and miR-

99a, we next performed qRT-PCR to verify their 

expression. The results showed that miRNA-205 

displayed the greatest increased trend in M/T cells than 

those of BCCs (Figure 2B). Therefore, we focused our 

attention on the role of miRNA-205 during BC 

chemoresistance. In this study, the expression of 

miRNA-205 was significantly higher in exosomes 

derived from M/T cells than those of BCCs (Figure 2C), 

indicating the potential role of miRNA-205 in 

chemoresistance of BC. Therefore, the hypothesis was 

that exosomal miRNA-205 from M/T cells may 

influence tamoxifen resistance of BCCs. To test this 

hypothesis, a coculture system was applied to deliver 

exosomes derived from M/T cells (M/T-Exo) to BCCs 

(Figure 2D). To visualize the exosomal transfer, 

PKH26, a fluorescent tracer, was applied to label 

M/T-Exo. After incubation, the red fluorescence in the 

cytoplasm of BCCs through confocal microscope was 

detected (Figure 2E). Meanwhile, the expression of 
miRNA-205 was increased in BCCs cocultured with 

M/T-Exo than those treated with PBS (Figure 2F), 

suggesting that the upregulation of miRNA-205 may be 
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Figure 1. Features of exosomes isolated from breast cancer cells (BCCs) and MCF-7/TAMR-1(M/T) cells. (A) Representative 

images of exosomes isolated from BCCs and M/T cells, as photographed using the transmission electron microscope and the range of 
exosome diameter (right column). Scale bar = 500 nm (left column) and 200 nm (middle column). (B) The expressions of exosome markers in 
BCCs and M/T cells and their exosomes, as detected with western blots.  

 

 
 

Figure 2. Upregulation of miRNA-205 is associated with the tamoxifen resistance of breast cancer cells (BCCs). (A) Volcano 
plot of miRNA profile in BCCs and M/T cells, as determined by microarray analysis. (B) The expressions of miRNAs in BCCs and M/T cells, as 
shown through the heat map. (C) The expression of miRNA-205 in exosomes isolated from BCCs and M/T cells. (D) Graphic illustration of 
the coculture system. The M/T cells (upper chamber) and BCCs (lower chamber) were separated by a 0.4 μm pore membrane, which only 
allows the passage of exosomes, but not large molecules. (E) PKH26-labeled (red fluorescence) M/T exosomes were taken up by DAPI-
stained BCCs (blue fluorescence), as photographed using the confocal microscopy. Scale bar = 25 μm. (F) The expression of miRNA-205 in 
BCCs treated with PBS or M/T-Exo. (G) Cell viability of BCCs treated with PBS or M/T-Exo. Values are means ± SD. *P < 0.05; **P < 0.01, ***P < 
0.001. At least three replicates were available for analysis in each treatment group.  
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transferred from M/T cells to BCCs via M/T-Exo. 

Next, to investigate the role of M/T-Exo in tamoxifen 

resistance of BCCs, tamoxifen was applied to treat 

BCCs cocultured with M/T-Exo. The results assessed 

by CCK-8 revealed that the cell viability of BCCs 

cocultured with M/T-Exo was higher than those 

cocultured with PBS (Figure 2G), indicating that M/T-

Exo may promote tamoxifen resistance in BCCs, 

which may be associated with exosomal miRNA-205 

transfer. 

 

E2F1 is a direct target of miRNA-205 and involved 

in M/T-Exo-induced tamoxifen resistance in BCCs 

 

Thus, to further investigate the molecular mechanism 

underlying exosomal miRNA-205-associated tamoxifen 

resistance in BCCs, bioinformatics tools, TargetScan 

[36] and Starbase [37], were employed to predict the 

target gene of miRNA-205 in BCCs. The results 

showed that E2F1 contained a putative binding site in 

3′UTR of miRNA-205 (Figure 3A). The luciferase 

reporter assays were performed to verify this 

prediction and showed the M/T-Exo reduced the 

relative luciferase activity in BCCs transfected with 

the wild-type E2F1 3′UTR, whereas no impact on 

luciferase activity was found in BCCs treated with  

the mutant E2F1 3′UTR (Figure 3B). To verify 

whether miRNA-205 is transferred through exosomes, 

GW4869 was applied to block the secretion of 

exosomes from M/T cells in the coculture system. 

After incubation, the expression level of miRNA-205 

was significantly reduced in the BCCs cocultured with 

M/T cells and GW4869 compared with those 

cocultured with M/T cells without the GW4869 

treatment (Figure 3C), indicating M/T-Exo may be an 

important shuttle to transfer miRNA-205 from M/T 

cells to BCCs. 

 

E2F1 participates in miRNA-205-associated 

tamoxifen resistance in BCCs 

 

To investigate the functional correlation between 

miRNA-205 and E2F1 in tamoxifen resistance of 

BCCs, the BCCs were transfected with the miRNA-

205 negative control inhibitor (NCi), miRNA-205 

inhibitor (205i), or the combination of 205i and E2F1-

expressing vector (E2F1). Next, the M/T-Exo with 

their respective treatments were added into the BCCs 

medium. The results showed that the mRNA and 

protein expressions of E2F1 decreased in M/T-Exo-

treated BCCs transfected with NCi but was not 

affected in the other treatment groups (Figure 3D and 

3E). Meanwhile, the cell viability of BCCs treated 
with NCi and M/T-Exo were higher than those in all 

other treatment groups, which suggests an increase in 

tamoxifen resistance (Figure 3F). These results 

indicate that M/T-Exo could inhibit the expression of 

E2F1 through upregulating miRNA-205. Moreover, to 

further determine the roles of M/T-Exo in the 

inhibitory effect of E2F1 in BCCs, GW4869 was 

applied to block the secretion of exosomes from M/T 

cells in the coculture system. The mRNA and protein 

expressions of E2F1 were evaluated, which showed 

that E2F1 expression was higher in BCCs cocultured 

with M/T cells that were treated with GW4869 

compared to the control group (Figure 3G and 3H). 

Accordingly, BCCs cocultured with GW4869-treated 

M/T cells displayed reduced cell viability when 

exposed to tamoxifen (Figure 3I). Furthermore, to 

determine the role of miRNA-205 in the inhibitory 

effect of M/T-Exo on E2F1, either NCi, 205i, or the 

combination of 205i and E2F1 siRNA (siE2F1) were 

applied to treat M/T cells in the upper chamber of the 

coculture system. After incubation, the BCCs in the 

lower chamber had significantly higher mRNA and 

protein expressions of E2F1 in the 205i-treated group 

compared to the other two BCCs treatment groups 

(Figure 3J and 3K). Similarly, BCCs expressed higher 

levels of E2F1 and showed lower cell viability when 

exposed to tamoxifen compared to those treated with 

NCi or the combination of 205i and E2F2 siRNA 

(Figure 3L). Collectively, the results suggest that the 

inhibitory effect of M/T-Exo on E2F1 may be 

mediated by exosomal miRNA-205.  
 

Exosomal miRNA-205 inhibits apoptosis in BCCs via 

the caspase signaling pathway  
 

Next, M/T-Exo was applied to treat BCCs that were 

treated with NCi, 205i, or the combination of 205i 

and E2F1. Next, the apoptotic level was assessed by 

flow cytometry assays which demonstrated that BCCs 

treated with NCi and M/T-Exo exhibited lower 

apoptotic levels compared to the other groups (Figure 

4A), along with decreased protein expressions of 

cleaved caspase-9 and caspase-3 (Figure 4B). Also, 

BCCs cocultured with M/T cells and GW4869 

displayed higher levels of apoptosis than BCCs in the 

control group (Figure 4C), with enhanced protein 

expressions of cleaved caspase-9 and caspase-3 

(Figure 4D). Moreover, the combination of M/T-Exo 

and 205i caused more apoptotic BCCs than those 

treated with the combination of M/T-Exo and NCi or 

the combination of M/T-Exo, 205i and siE2F1, with 

elevated levels of cleaved caspase-9 and caspase-3 

(Figure 4E and 4F). Accordingly, the levels of 

cleaved caspase-9 and caspase-3 were also elevated 

using the combination of M/T-Exo plus 205i in 

BCCs. Together, exosomal miR-205 may promote 

tamoxifen resistance in BCCs via suppressing 

apoptosis through dampening the caspase signaling 

pathway. 
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Exosomal miRNA-205 promotes cell proliferation, 

migration, and invasion in BCCs via the Akt 

signaling pathway 

 

BCCs treated with NCi and M/T-Exo showed higher 

levels of proliferation, migration, and invasion (Figure 

5A, 5B and 5C), in which the phosphorylation of Akt 

was elevated (Figure 5D). Additionally, BCCs 

cocultured with M/T cells and GW4869 showed 

inhibited proliferation, migration, and invasion abilities 

compared to the control group (Figure 6A, 6B and 6C). 

Meanwhile, the phosphorylation of Akt was decreased 

in BCCs treated with M/T cells and GW4869 (Figure 

6D). Furthermore, the combination of M/T-Exo and 

205i led to reduced levels of cell proliferation, 

migration, and invasion in BCCs (Figure 6E, 6F and 

6G), accompanied with inhibited phosphorylation of 

Akt (Figure 6H). Together, exosomal miRNA-205 may 

enhance cell proliferation, migration, and invasion in 

BCCs via inhibiting Akt phosphorylation. 

 

 
 

Figure 3. M/T-Exo miRNA-205 enhances the tamoxifen resistance of breast cancer cells (BCCs) via targeting E2F1. (A) The 

putative sequence of miRNA-205 binding sites in the 3′UTR of E2F1. (B) Relative luciferase activity. (C) The expression of miRNA-205 in 
M/T-Exo-cocultured BCCs treated with DMSO or GW4869. (D–E) The mRNA and protein expressions of E2F1 in M/T-Exo-cocultured BCCs 
treated with the negative control miRNA-205 inhibitor (NCi), miRNA-205 inhibitor (205i), or the combination of 205i and lentiviral vector 
carrying E2F1 (E2F1). (F) Cell viability of M/T-Exo-cocultured BCCs treated with the negative control miRNA-205 inhibitor (NCi), miRNA-205 
inhibitor (205i), or the combination of 205i and lentiviral vector carrying E2F1 (E2F1). (G–H) The mRNA and protein expressions of E2F1 in 
M/T-Exo-cocultured BCCs treated with DMSO or GW4869. (I) Cell viability of M/T-Exo-cocultured BCCs treated with DMSO or GW4869. (J–
K) The mRNA and protein expressions of E2F1 in M/T-Exo-cocultured BCCs treated with the negative control miRNA-205 inhibitor (NCi), 
miRNA-205 inhibitor (205i), or the combination of 205i and E2F1 siRNA (siE2F1). (L) Cell viability of M/T-Exo-cocultured BCCs treated with 
the negative control miRNA-205 inhibitor (NCi), miRNA-205 inhibitor (205i), or the combination of 205i and E2F1 siRNA (siE2F1). Values are 
means ± SD. *P < 0.05, **P < 0.01, ***P < 0.001. At least three replicates were available for analysis in each treatment group.  
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Exosomal miRNA-205 promotes tamoxifen resistance 

and tumorigenesis of BC in vivo 

 

To further investigate the effect of exosomal miRNA-

205 in vivo, nude mice were subcutaneously injected by 

BCCs treated with NCi, 205i, and E2F1, respectively. 

The results showed that the tumor of mice treated with 

NCi grew larger and faster than those of mice treated 

with 205i and E2F1, respectively (Figure 7A). Next, the 

NCi-treated mice were intratumorally treated with M/T-

Exo where the tumors grew faster than those treated 

with PBS (Figure 7B). Furthermore, the tamoxifen 

treatment was applied to each group and the results 

showed that the mice treated with NCi and M/T-Exo 

exhibited greater tumor growth than those in the other 

groups (Figure 7C and 7D). These results suggest that 

M/T-Exo may promote tamoxifen resistance and 

tumorigenesis of BC in vivo. When testing whether the 

mechanism underlying exosomal miRNA-205 in vivo is  

same as those in vitro, the results indicated that the mice 

treated with the combination of NCi, M/T-Exo, and 

tamoxifen displayed higher expressions of miRNA-205 

and lower mRNA and protein levels of E2F1 (Figure 

7E, 7F and 7G). Correspondingly, the expressions  

of cleaved caspase-9 and caspase-3 and the 

phosphorylation of Akt was decreased and increased, 

respectively, in tumors of mice treated with the 

combination of NCi, M/T-Exo, and tamoxifen (Figure 

7H). Therefore, these results suggest that exosomal 

miRNA-205 may promote tamoxifen resistance and 

tumorigenesis of BC in vivo via the caspase 9/3 and Akt 

signaling pathways.  
 

DISCUSSION 
 

One common malignancy, BC, is also the second 

leading cause of tumor-associated mortality among 

females world-wide [38]. Although considerable 

 

 
 

Figure 4. M/T-Exo miRNA-205 inhibits breast cancer cells (BCCs) apoptosis via targeting E2F1. (A) The apoptotic level of M/T-
Exo-cocultured BCCs treated with the negative control miRNA-205 inhibitor (NCi), miRNA-205 inhibitor (205i), or the combination of 205i 
and lentiviral vector carrying E2F1 (E2F1). (B) The protein expressions of cleaved caspase-9 and caspase-3 in M/T-Exo-cocultured BCCs 
treated with the negative control miRNA-205 inhibitor (NCi), miRNA-205 inhibitor (205i), or the combination of 205i and lentiviral vector 
carrying E2F1 (E2F1). (C) The apoptotic level of M/T-Exo-cocultured BCCs treated with DMSO or GW4869. (D) The protein expressions of 
cleaved caspase-9 and caspase-3 in M/T-Exo-cocultured BCCs treated with DMSO or GW4869. (E) The apoptotic level of M/T-Exo-
cocultured BCCs treated with the negative control miRNA-205 inhibitor (NCi), miRNA-205 inhibitor (205i), or the combination of 205i and 
E2F1 siRNA (siE2F1). (F) The protein expressions of cleaved caspase-9 and caspase-3 in M/T-Exo-cocultured BCCs treated with the negative 
control miRNA-205 inhibitor (NCi), miRNA-205 inhibitor (205i), or the combination of 205i and E2F1 siRNA (siE2F1). Values are means ± SD. 
*P < 0.05, **P < 0.01, ***P < 0.001. At least three replicates were available for analysis in each treatment group.  
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progress and advances have been made in the diagnosis 

and treatment of BC, chemoresistance-induced 

metastatic recurrence is still a challenge for researchers 

in both basic and clinical settings [39]. Thus, 

overcoming chemoresistance-associated issues would 

significantly improve the therapeutic efficacy and 

survival of patients with BC. In the present study, we 

demonstrated that exosomal miRNA-205 could be 

 

 
 

Figure 5. M/T-Exo miRNA-205 affects breast cancer cells (BCCs) proliferation, migration, and invasion via targeting E2F1. 
(A–C) The abilities of colony formation, migration, and invasion in M/T-Exo-cocultured BCCs treated with the negative control miRNA-205 
inhibitor (NCi), miRNA-205 inhibitor (205i), or the combination of 205i and lentiviral vector carrying E2F1 (E2F1). (D) The protein 
expression of Akt and the phosphorylation of Akt at Ser 473 (p-Akt Ser 473) in M/T-Exo-cocultured BCCs treated with the negative control 
miRNA-205 inhibitor (NCi), miRNA-205 inhibitor (205i), or the combination of 205i and lentiviral vector carrying E2F1 (E2F1). Values are 
means ± SD. *P < 0.05, **P < 0.01, ***P < 0.001. At least three replicates were available for analysis in each treatment group.  
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transferred from chemoresistant M/T cells to BCCs to 

promote tamoxifen resistance through silencing E2F1 

(Figure 8). Also, exosomal miRNA-205 derived from 

M/T cells was found to enhance proliferation, 

migration, and invasion abilities in BCCs. Furthermore, 

in vivo experiments also verified the effect of exosomal 

miRNA-205 in chemoresistance and tumorigenesis. 

Hence, we demonstrated that donor-originated exo-

somal miRNA-205 could be internalized by recipient 

cells, thus regulating its cellular activities in both in 

vitro and in vivo.  

 

In this study, exosomes secreted from tamoxifen 

resistance M/T cells expressed higher levels of miRNA-

205. Exosomes are extracellular vesicles (30 to 100 nm 

in diameter) and are secreted by various cell types 

through fusion of vesicular bodies with plasma 

membranes [40]. Exosomes can transfer functioning 

molecules, including miRNAs, mRNAs, proteins, and 

membrane components, between donor and recipient 

cells, which is regarded as a potential targeted delivery 

carrier of molecules to impact cellular activities [41]. 

Moreover, this study also found that BCCs cocultured 

with M/T-Exo exhibited more miRNA-205 expression 

and elevated tamoxifen resistance, indicating the 

essential roles of exosomal miRNA-205 in the 

modulation of chemoresistance in BCCs. Recently, 

exosomes also have been reported to exert key roles in 

the regulation of chemoresistance in various cancer 

types, especially miRNAs-loading exosomes. Yeung et 

al. reported that exosomal miRNA-21 derived from the 

omental stromal cells promote paclitaxel resistance in 

 

 

 
Figure 6. M/T-Exo miRNA-205 affects breast cancer cells (BCCs) proliferation, migration, and invasion via targeting E2F1. 
(A–C) The abilities of colony formation, migration, and invasion in M/T-Exo-cocultured BCCs treated with DMSO or GW4869. (D) The 
protein expression of Akt and the phosphorylation of Akt at Ser 473 (p-Akt Ser 473) in M/T-Exo-cocultured BCCs treated with DMSO or 
GW4869. (E–G) The abilities of colony formation, migration, and invasion in M/T-Exo-cocultured BCCs treated with the negative control 
miRNA-205 inhibitor (NCi), miRNA-205 inhibitor (205i), or the combination of 205i and E2F1 siRNA (siE2F1). (H) The protein expression of 
Akt and the phosphorylation of Akt at Ser 473 (p-Akt Ser 473) in M/T-Exo-cocultured BCCs treated with the negative control miRNA-205 
inhibitor (NCi), miRNA-205 inhibitor (205i), or the combination of 205i and E2F1 siRNA (siE2F1). Values are means ± SD. *P < 0.05, **P < 0.01, 
***P < 0.001. At least three replicates were available for analysis in each treatment group.  
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Figure 7. M/T-Exo miRNA-205 enhances the tamoxifen resistance in vivo. (A) Tumor growth curves of mice injected with the 

negative control miRNA-205 inhibitor (NCi), miRNA-205 inhibitor (205i), or lentiviral vector carrying E2F1 (E2F1). (B) Tumor growth curves 
of mice injected with M/T-Exo when the tumor size was around 50 mm3. (C) Tumor growth curves of mice injected with tamoxifen when 
the tumor size was around 100 mm3. (D). Representative images of the tumor. (E) After all treatments, the expression of miRNA-205 in 
tumors of mice on day 9 post-tamoxifen treatment. (F–G). The mRNA and protein expressions of E2F1 in tumors of mice on day 9 post-
tamoxifen treatment. (H). The protein expressions of cleaved caspase-9 and caspase-3, Akt, and the phosphorylation of Akt at Ser 473 
(p-Akt Ser 473) in tumors of mice on day 9 post-tamoxifen treatment. Values are means ± SD. *P < 0.05, **P < 0.01, ***P < 0.001. At least 
three replicates were available for analysis in each treatment group.  
 

 
 

Figure 8. Graphical summary. 
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ovarian cancer [42]. Zheng et al. demonstrated  

that exosomal-carrying tumor-related macrophages, 

miRNA-21, confers cisplatin refractoriness in gastric 

cancer through upregulating the PI3K/Akt pathway via 

the inhibition of phosphatase and tensin homolog 

(PTEN) [43]. Thus, exosome-mediated intercellular 

communication may be a potential novel strategy for 

treating chemoresistance in cancers.  

 

In addition to chemoresistance, exosomes-based 

communications have been demonstrated to be an 

effective way to regulate cancer development and 

progression. Exosomal miRNA-1246 enhances cell 

proliferation and invasion in BC through cyclin-G2 

(CCNG2) signaling [44]. Long non-coding RNA 

MALAT1 delivered via exosomes facilitates BCCs 

proliferation and progression in BC [45]. Furthermore, 

circulating exosomal miRNA-96 enhances cell migration 

and proliferation in lung cancer through the LIM‐domain 

only protein 7 (LMO7) pathway. In the present study, 

exosomal miRNA-205 promoted BCCs proliferation, 

migration, and invasion in BCCs via the Akt signaling 

pathway, suggesting an essential regulatory role of 

exosomal miRNAs in tumor cell activities. Collectively, 

exosome-carrying functioning molecules may be a 

promising strategy to manipulate the tumor progression, 

opening novel avenues to overcome cancers. 

 

As a multifunctional factor, miRNA-205 has been 

reported to be involved in a variety of physiological 

and pathological processes, such as cell proliferation 

[46], angiogenesis [47], epithelial to mesenchymal 

transition [48], and the cellular oxidative stress 

response [49]. In the present study, the expression of 

miRNA-205 was observed to be upregulated in 

tamoxifen resistance M/T cells, which is consistent 

with the observations that upregulation of miRNA-205 

is associated with drug-resistance in multiple cancer 

cells, including hepatocellular carcinoma [28], 

esophageal squamous cell carcinoma [50], and ovarian 

cancer [51]. Notably, the downregulation of miRNA-

205 is also uncovered in several chemoresistance 

tumor cell types, such as BC [52], pancreatic cancer 

[27], as well as cholangiocarcinoma [53]. This 

opposite expression profile of miRNA-205 in chemo-

resistant tumor cells may result from the dynamic and 

aberrant miRNA expression trend and the complexity 

of the miRNA regulatory network [54]. Furthermore, 

the context-dependent regulatory mechanism in each 

tumor type or cancer cell line [55] and the complicated 

mechanism of chemoresistance [56, 57] may also 

contribute to the opposite expression pattern of 

miRNA-205. Thus, it may be worthwhile to validate 

the function of one certain molecule across various 

cancer types, even different cell lines derived from the 

same cancer. 

To further determine the mechanism underlying 

exosomal miRNA-205-induced chemoresistance in 

BCCs, both mechanical and functional experiments 

were performed to investigate the target gene of 

miRNA-205. The results revealed that miRNA-205 

directly binds to E2F1 and overexpression of E2F1 

could reverse the effect of miRNA-205 on 

chemoresistance and tumorigenesis in BCCs. In 

addition, E2F1, a cellular transcription, belongs to the 

E2F family [46]. Also, E2F1 can modulate tumor 

inhibitor p53 as well as p73, facilitating apoptosis 

through activating multiple cell-death signaling 

pathways [58]. The upregulation of E2F1 is associated 

with elevated apoptosis levels of malignant cells in 

response to genotoxic treatment, thereby suppressing 

tumorigenesis [59, 60]. Moreover, E2F1 is shown to be 

a key regulator in chemotherapy-related apoptosis [59]. 

Previous studies suggest that the interaction between 

miRNA-205 and E2F1 plays an essential role in anti-

tumor chemotherapy resistance [61, 62]. Together, 

E2F1 may be a promising biomarker to treat apoptosis-

resistant tumors. 

 

MATERIALS AND METHODS 
 

Ethics statement 
 

All subjects recruited in this study were informed before 

inclusion and written consents were given. This study 

was reviewed and approved by the Ethics Committee of 

Cangzhou Central Hospital (2017R-K1174). All animal 

involved experimental protocols and procedures were 

approved by the Institutional Animal Care and Use 

Committee of Cangzhou Central Hospital (CZ-208-

R8743) and were performed based on the guidelines and 

regulation of the Management of Laboratory Animals 

published by the Ministry of Science and Technology of 

the People’s Republic of China. 
 

Cell culture  
 

Breast tumor samples were collected from two patients 

who were diagnosed with BC and undergone BC 

surgical resection at the Cangzhou Central Hospital in 

April 2017 (35 and 46 years old). The detailed 

information of patients was summarized in Table 1. 

The diagnosis criteria were previously described [63] 

and the pathological stage, grade, and nodal status 

were evaluated by two experienced pathologists. 

Immediately after surgical resection, BCCs were 

isolated from tumor tissues according to a detailed 

protocol, as previously described [64]. Tamoxifen-

resistant breast cancer cell line MCF-7/TAMR-1 
(M/T) was purchased from MilliporeSigma (Catalog #: 

SCC101; Burlington, MA, USA). The BCCs and M/T 

cells were grown in appropriate growth mediums as 
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Table 1. Clinicopathological characteristics of 2 patients with breast cancer. 

Characteristics  Patient 1 Patient 2 

Age (year) 35 46 

Menopausal status Premenopause Premenopause 

Tumor size (mm) 23.7 26.4 

TNM stage III III 

Pathological grade III III 

Lymph node metastasis Positive Positive 

Progesterone receptor Positive Positive 

Her2 receptor Positive  Positive  

Subtype mixed mixed 

 

previously described [64] and using the manufacturer’s 

instructions, respectively. Cells were passaged every 

3 days and collected for subsequent experiments by 

trypsinization before reaching confluence.  

 

Exosome isolation and labeling  

 

Exosome-free fetal bovine serum (FBS) (Catalog #: 

A2720801; Thermo Fisher Scientific, Waltham, MA, 

USA) was collected through 120,000 × g ultra-

centrifugation at 4°C for 6 hours. The BCCs and M/T 

cells (1 × 106) were placed in the medium supplemented 

with 10% exosome-free FBS for 48 hours at 37°C in a 

humidified atmosphere with 5% CO2. Next, to collect 

the exosomes, 40 ml of conditioned mediums were 

taken from each cell line and the ExoQuick-TC Kit 

(Catalog #: EXOTC10A-1; System Bioscience, Palo 

Alto, CA, USA) was used. The morphology and 

diameter size of the exosomes were assessed by 

Morgagni 268D transmission electron microscopy 

(TEM; Philips, Bothell, WA, USA) according to a 

protocol previously described [65]. The PKH26 red 

fluorescent dye (Catalog #: PKH26GL; Sigma-Aldrich, 

St. Louis, MO, USA) was applied to label exosomes 

derived from M/T cells according to the manufacturer’s 

instructions. 

 

miRNA microarray 

 

Total RNA was extracted from BCCs and M/T cells 

using the TRIzol reagent (Catalog #: 15596026; 

Invitrogen, Carlsbad, CA, USA). The concentration 

and quality of total RNA were examined by 

NanoDrop™ 2000 (Life Technologies; Carlsbad, CA, 

USA). The miRNA microarray and data analysis were 

performed as previously described [66, 67]. Briefly, 

the raw data were processed using the Affy package 

pair package in R language, including data filtering, 

log2 transformation, and normalization [68]. The 

average of three fluorescence signal intensities of each 

miRNA was normalized to 5sRNA. Then, normalized 

data were analyzed using the significance analysis of 

microarrays (SAM) algorithm [69]. The t-test analysis 

was performed between BCCs and M/T cells. 

Differentially expressed miRNAs were screened with a 

false discovery rate (FDR) corrected p <0.05 and |log2 

fold-change (FC)|>2. 

 

Cell coculture system and GW4869 treatment 
 

The coculture system of the exosome donor and 

recipient cells were modified as previously described 

[70]. The M/T cells were placed in the upper chamber 

of the system and BCCs were placed in the lower 

chamber. A membrane with 0.4 pores was used to 

separate the upper and lower chamber. The medium 

used in the coculture system was 10% exosome-free 

FBS. The GW4869 (Catalog #: D1692; Sigma-Aldrich, 

St. Louis, MO, USA) was applied to block exosome 

formation from M/T cells [71]. 
 

Cell transfection 
 

The miRNA-205 inhibitor (205i) and the corresponding 

negative control (NCi) were obtained from GenePharma 

Co., Ltd (Shanghai, China). The BCCs (1 × 106/well) 

were transfected with 100 nM of 205i or NCi using the 

Lipofectamine™ 3000 Reagent (Catalog #: L3000015; 

Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer’s instructions. Small interfering RNA 

(siRNA) specific for E2F1 (siE2F1) (sense, 5′-

CCUGGAAACUGACCAUCAGTT-3′, antisense, 5′-

CUGAUGGUCAGUUUCCAGGTT-3′) and E2F1-

expressing plasmids (pcDNA3.1-E2F1, using the XhoI 

and EcoRI restriction sites) were obtained from 

GenePharma Co., Ltd (Shanghai, China). Co-

transfection of 50 nM 205i and 50 nM siE2F1 was 

performed according to the manufacturer’s instructions 

using the Lipofectamine™ 3000 Reagent (Catalog #: 

L3000015; Invitrogen, Carlsbad, CA, USA). After 24 

hours of transfection, transfected cells were used for 

subsequent experiments. 
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Table 2. Primer information. 

Gene name Primer sequence 

RNU6 (F) 5′-CGCTTCGGCAGCACATATACTAAAATTGGAAC-3′ 

RNU6 (R) 5′-GCTTCACGAATTTGCGTGTCATCCTTGC-3′ 

miR-181a-5p (F) 5′-GAACATTCAACGCTGTCGGTG-3′ 

miR-181a-5p (R) 5′-ATCCAGTGCAGGGTCCGAGGTA-3′ 

miR-21-3p (F) 5′-CGCGCCAACACCAGTCGATG-3′ 

miR-21-3p (R) 5′-GTGCAGGGTCCGAGGT-3′ 

miR‐125b (F) 5′-GGCAACCTTGCGACTATAACCA-3′ 

miR‐125b (R) 5′-GTTTCCTCTCCCTGAGACCCTA-3′ 

miR‐200c (F) 5′-AGCGGTAATACTGCCGGGTA-3′ 

miR‐200c (R) 5′-GTGCAGGGTCCGAGGT-3′ 

miR‐205 (F) 5′-CGTCCAACATTCCACCG-3′ 

miR‐205 (R) 5′-GTGCAGGGTCCGAGGT-3′ 

miR-99a (F) 5′-GTTGGATCCTATTAATAGGGGGCCCATGCAAGAT-3′ 

miR-99a (R) 5′-GTTGGATCCTATTAATAGGGGGCCCATGCAAGAT-3′ 

 

Luciferase reporter assays 

 

The BCCs that were treated with M/T-Exo or control-

miRNA were transfected with plasmids carrying the 

wild or mutant miRNA binding sequence in 3′UTR of 

E2F1 using the Lipofectamine™ 3000 Transfection 

Reagent (Catalog #: L3000015; Invitrogen, Waltham, 

MA, USA) according to the manufacturer’s instructions. 

After 24 hours of transfection, relative luciferase 

activities were quantified using the Luciferase Reporter 

Assay Substrate Kit (Catalog #: ab228530; Abcam, 

Cambridge, MA, USA). 

 

Quantitative real-time PCR (qRT-PCR) 

 

Total RNA was extracted from exosomes, cells, and 

tumor tissues of xenograft mice using the TRIzol 

reagent (Catalog #: 15596026; Invitrogen, Carlsbad, 

CA, USA). The qRT-PCR reactions were performed as 

previously described [72]. The relative expression of 

miRNA-205 was normalized to U6 and was calculated 

using the 2−ΔΔCT method [73]. Table 2 lists the primers 

used in this study. 

 

Western blots 

 

Total protein isolation of exosomes, cells, and tumor 

tissues of xenograft mice and western blots were 

performed as previously described [6]. The primary 

antibodies against caspase-9 (1:500; Catalog #: 

ab25758) and caspase-3 (1:500; Catalog #: ab184787) 

and cleaved caspase-9 (1:500; Catalog #: ab2324)) and 

caspase-3 (1:500; Catalog #: ab2302) were obtained 

from Abcam (Cambridge, MA, USA). The primary 

antibodies against E2F1 (1:500; Catalog #: sc-251), 

CD63 (1:500; Catalog #: sc-5275), CD81 (1:500; 

Catalog #: sc-23962), HSP70 (1:500; Catalog #: sc-

32239), Akt (1:500; Catalog #: sc-56878), p-Akt Ser 

473 (1:500; Catalog #: sc-293125), β-tubulin (1:1000; 

Catalog #: sc-166729), and GAPDH (1:1000; Catalog #: 

sc-47724) were obtained from Santa Cruz (Santa Cruz, 

Shanghai, China). Optical densities of the band were 

quantified using the Uvitec Alliance software 

(Eppendorf, Hamburg, Germany). 

 

Quantification of apoptosis  

 

The Annexin V-APC Assay Kit (Catalog #: ab236215; 

Cambridge, MA, USA) and flow cytometry assay were 

used to quantify cell apoptosis according to the 

manufacturer’s instructions. 

 

CCK-8, colony formation, migration, and invasion 

assays 

 

Evaluation for cell proliferation, colony formation, 

migration, and invasion were performed as previously 

described [74]. Cell proliferation was determined using 

Cell Counting Kit-8 (CCK-8) (Catalog #: ab228554; 

Abcam, Cambridge, MA, USA). Crystal violet used to 

stain cell colony was purchased from Santa Cruz 

(Catalog #: CAS 548-62-9; Santa Cruz, Shanghai, 

China). Migration and invasion assays were performed 

using transwell chambers (Catalog #: ECM550 and 

ECM508; Sigma-Aldrich, St. Louis, MO, USA) 

according to the manufacturer’s instructions. 
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Xenograft mouse model 

 

Twelve male BALB/c nude mice (6 weeks old) were 

obtained from Jackson Labs (Bar Harbor, ME, USA). 

Transfected BCCs (1 × 106) in 100 μl PBS and Matrigel 

were subcutaneously injected into each mouse. Mice 

were randomly divided into four groups (n = 3): mice in 

group 1 and 2 were injected with NCi-treated cells, mice 

in group 3 were injected with 205i-treated cells, and mice 

in group 4 were injected with E2F1-treated cells. Tumor 

growth was monitored daily and tumor volume (V) was 

evaluated by measuring the length (L) and width (W) 

with a caliper and calculated using the formula: V = (L × 

W2) × 0.5. When the tumor tissue volume was around 50 

mm3, the mice in group 2, 3, and 4 were intratumorally 

treated with M/T-Exo (40 μg) three times a week. Once 

the tumor tissue volume was around 100 mm3, all mice 

were treated with tamoxifen (3 mg/kg) through the tail 

vein three times a week for two weeks and then were 

sacrificed. The tumor tissues were isolated and 

immediately stored in –80°C for subsequent experiments. 

 

Statistical analysis 

 

In this study, data were presented as means ± SD from at 

least 3 independent replicates. The statistical analyses 

were completed using the SPSS 17.0 software (SPSS, 

Chicago, USA). Two-tailed Student’s t-test was applied 

to analyze statistical differences between two 

experimental groups. One-way analysis of variance 

(ANOVA) with post-hoc test was applied to analyze 

statistical differences between three or more experimental 

groups. P < 0.05 was considered statistically significant. 

 

CONCLUSIONS 
 

In conclusion, the results suggest that exosomal 

miRNA-205 could promote tamoxifen resistance and 

tumorigenesis in BC through targeting E2F1 in vivo and 

in vitro and that exosomes-mediated transfer of 

functioning molecules may provide novel insight into 

developing therapeutic strategies for BC. 
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