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INTRODUCTION 

Hepatocellular carcinoma (HCC) is the major form of 

primary liver cancer. According to authoritative 

statistics, liver cancer is the fourth most common cause 

of cancer-related death and ranks as sixth in accordance 

with incident cases worldwide [1]. The World Health 

Organization (WHO) claimed that over 1 million 

patients would die from liver cancer by the year 2030 

[2]. HCC’s occult symptoms and highly aggressive 
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ABSTRACT 
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evaluate immune components. Gene Set Enrichment Analysis (GSEA) and correlation analysis were carried out to 
determine the relationship between key DEGs and tumor-infiltrating immune cells (TICs). 
Results: The stromal score, immune score and estimate score correlated significantly with 1-year recurrence-
free survival of patients with HCC. Interleukin-2 inducible T-cell kinase (ITK) was identified as the most 
prognostic DEG for patients with HCC. GSEA revealed that genes in the high ITK subgroup were enriched in 
inflammatory-immunological terms. CIBERSORT analysis identified nine TIC subsets that correlated with ITK 
expression. 
Conclusion: We identified ITK as a novel indicator for early post-surgery tumor recurrence and 
microenvironment remodeling in HCC, providing a potential therapeutic target to treat HCC. 

mailto:zjxu@zju.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 18621 AGING 

properties mean that the majority of patients are 

diagnosed at an advanced stage, and the 5-year overall 

survival (OS) rate of patients with advanced HCC is 

only 25–39%, while the recurrence rate is nearly 80% 

[3]. Early post-operation recurrence and metastasis are 

the predominant cause of poor outcomes. Previous 

studies have reported that patients with HCC suffering 

early recurrence (within 1-year) after liver resection 

mainly had intrahepatic recurrence while patients with 

late recurrence commonly suffered from multi-

extrahepatic metastasis, also, patients with early 

recurrence showed worse outcomes [4–7]. Thus, 

clinical management options and therapeutic efficacy 

for HCC are limited. Current clinical treatments for 

early-stage HCC include surgical resection, liver 

transplantation, and locoregional therapies, while 

systemic therapies are recommended for patients who 

have intermediate and advanced disease [8]. Promoted 

by the evolvement of multi-omics detection and 

analyzation techniques, reliable predictive biomarkers 

could guide scientific and clinical decisions that are 

crucial for patients with HCC [9]. 

 

The tumor microenvironment (TME) is the “soil” in 

which a tumor grows, as well as a severe obstacle in 

understanding and treating cancer. Not only cancer 

cells, but also immune cells, stromal cells, vascular 

networks, and many other components constitute the 

TME, representing a complex ecosystem in which 

cancer cells are formatted, proliferate, and progress 

[10]. To better determine the composition and function 

of the TME, several novel technologies, such as mass 

cytometry (CyTOF), single-cell RNA sequencing 

(scRNA-seq), and single-cell assay of transposase-

accessible chromatin, have been adopted [11–15]. Most 

research has focus on tumor-infiltrating cells (TICs) 

especially tumor-infiltrating lymphocytes (TILs). A 

previous study demonstrated that the quantity of TILs in 

breast cancer is a robust prognostic factor for patient 

survival [16]. For HCC treatment, immunotherapy has 

recently become the new frontier of cancer treatment 

and the immunobiology of HCC is worthy of further 

exploration. Early in 2017, the landscape of infiltrating 

T cells was revealed by single-cell sequencing and has 

provided insights into immune modulation patterns 

[15]. Regulatory T cells (Tregs) promote tumor evasion 

via complicated mechanisms. The upregulation of TNF 

receptor superfamily member 4 (also known as OX40) 

expression on Tregs in the TME was reported to be 

associated with poor survival of patients with HCC 

[17]. Recent research reported that heterogeneity of 

exhausted T cells (Texs) in the TME is related to patient 

survival following resection in HCC. The authors stated 

that the high density of forkhead box P3 (FOXP3)
+
 

Tregs in the TME correlated strongly with early tumor 

recurrence [18]. Results derived from previous research 

have increased our understanding of TME modulation 

of HCC and provided novel immunotherapeutic targets 

for further exploration. 

 

To look deeper into the TME modulation of HCC and 

discover predictive biomarkers, as well as potential 

therapeutic targets, transcriptome-sequencing, and 

subsequent functional genomics analysis, are good 

available methods. In the current study, the ESTIMATE 

and CIBERSORT algorithms were used to determine 

the immune signatures of TICs from patients with HCC 

from The Cancer Genome Atlas (TCGA) database and 

identified interleukin-2 inducible T-cell kinase (ITK) as 

a predictive biomarker. 

 

ITK belongs to the Tec family of kinases and is a 

crucial molecule in T cell development, differentiation, 

and effector function [19]. Besides its conventional 

participation in inflammatory activities, ITK has been 

reported to correlate with oncogenesis. ITK deficiency 

can promote severe Epstein-Barr-Virus (EBV) infection 

and lead to Hodgkin and non-Hodgkin lymphoma, 

lymphoproliferative disease, mononucleosis, and other 

diseases [20]. ITK expression in the TME of solid 

tumors is involved in the modulation of the micro-

environment and is associated with prognosis. For 

instance, high ITK expression was found to predict 

better outcomes of patients with lung adenocarcinomas 

(LUAD) [21]. Controversially, it was reported that ITK 

upregulation is associated negatively with the prognosis 

of breast cancer [22]. As far as we know, there has been 

no research focusing on the correlation between ITK 

and the progression of HCC. 

 

In the present study, the ESTIMATE and CIBERSORT 

algorithms were used to describe the immune landscape 

of patients with HCC. Further analysis revealed that 

ITK might be a potential indicator for post-operation 

prognosis and TME remodeling in HCC. 

 

RESULTS 
 

The stromal score, immune score, and estimate score 

were significantly associated with the prognosis of 

patients with HCC 

 

Analysis workflow of this study was shown in Figure 1. 

To identify the correlations among the estimated 

stromal and immune scores with the RFS of patients 

with HCC, Kaplan–Meier survival analysis was used for 

the stromal score, immune score, and estimate score, 

respectively (the clinicopathological characteristics of 

the patients with HCC are shown in Supplementary 

Table 1). According to our analysis, all three scores 

showed a significant correlation with the 1-year RFS 

rate of patients with HCC who underwent liver 
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resection (stromal score, p = 0.013, Figure 2A, immune 

score, p = 0.0016, Figure 2B; estimate score p = 0.001, 

Figure 2C). We also evaluated the correlation 

between the scores and the long-term OS of patients 

with HCC; however, there was no significant 

difference between the low and high subgroups 

(Supplementary Figure 1A–1C). 

 

The immune score and estimate score were 

consistent with the clinicopathological stages of HCC 
 

To determine the correlation between the stromal  

and immune scores and the clinicopathological 

characteristics, we downloaded the clinical data of 373 

patients with HCC from the TCGA database for 

further analysis (Figure 3A–3L). The immune score 

and estimate score correlated positively with the T 

classification of tumor-node-metastasis (TNM) stages 

(Figure 3F, p = 0.033; Figure 3J, p = 0.048). While the 

stromal score did not correlate with any classification 

of HCC (Figure 3A–3D). 

 

Differentially expressed genes (DEGs) shared by the 

stromal score and immune score and their 

enrichment in immunity-related genes 
 

To verify the key components in TME remodeling, we 

carried out comparisons between high and low stromal 

 

 
 

Figure 1. Analysis workflow of this study. 
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and immune score subgroups, respectively. 601 DEGs 

were obtained from the stromal score analysis, including 

594 upregulated genes and 7 downregulated genes 

(Figure 4A). Similarly, 563 DEGs were obtained from 

the immune score when compared with the median, 

among which 557 genes were upregulated, and 6 were 

downregulated (Figure 4B). A Venn diagram showed that 

a total of 195 upregulated genes and 2 downregulated 

genes were shared by the high stromal score and high 

immune score groups (Figure 4C). These 197 DEGs were 

possibly the major components in TME remodeling. 

Gene ontology (GO) enrichment analysis showed that the 

DEGs were mainly enriched in terms that correlated with 

the immune response, such as T cell differentiation, 

lymphocyte differentiation, and T cell activation (Figure 

4D). Likewise, the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) and Reactome enrichment analysis 

showed that the DEGs were enriched in Th17 cell 

differentiation, the chemokine signaling pathway (Figure 

4E), PD–1 signaling and immunoregulatory interactions 

between a Lymphoid and a non–Lymphoid cell 

(Supplementary Figure 2). 

 

A protein-protein interaction (PPI) network and 

univariate COX regression identified two significant 

factors 
 

A PPI network was then constructed based on the 

STRING database to explore the potential mechanisms 

of the DEGs in TME modulation [23]. The interactions 

between the protein encoded by the 197 DEGs are 

shown in Figure 5A. Sixteen hub genes in the PPI 

network were identified using MCODE, a plug-in in 

Cytoscape (Supplementary Table 2). Univariate COX 

regression analysis for the OS and RFS of patients with 

HCC identified 27 and 152 DEGs respectively among 

the 197 DEGs (Figure 5B, Supplementary Figure 3). 

The intersection analysis for the PPI network hub gene 

set, the OS-related gene set, and the RFS-related gene 

set was carried out next, which identified two factors, 

ITK and HLA Class II histocompatibility antigen DRβ5 

(HLA-DRB5), as being present in the three gene sets 

(Figure 5C). 

 

ITK mRNA expression correlates with postoperative 

outcomes and TNM Stages for patients with HCC 
 

The Mann–Whitney U test showed that ITK expression 

in HCC tumors was lower than that in normal tissues (P 

< 0.001; Figure 6A). Differential analysis of 50 paired 

HCC tumor and paracarcinoma tissues also revealed 

consistent results (P < 0.001; Figure 6B). All HCC 

samples (n = 365) were divided into two subgroups 

based on the median expression level of ITK. Kaplan–

Meier survival analysis was carried out to evaluate the 

predictive capacity of ITK expression. According to the 

results, patients with HCC in the high ITK group had 

better 1-year, 3-year, and 5-year OS rates (88.4% vs. 

 

 
 

Figure 2. The correlation between estimate scores and the 1-year RFS of patients with HCC. (A) KM survival curves for the 
1-year RFS of low/high stromal score subgroups (p = 0.013). (B) KM survival curves for the 1-year RFS of low/high immune score subgroups 
(p = 0.0016). (C) KM survival curves for the 1-year RFS of low/high estimate score subgroups (p = 0.001). 
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77.4%, 73.5% vs. 52.8%, and 54.0% vs. 40.8%; p = 

0.0085, Figure 6C) and RFS (80.1% vs. 59.3%, 59.4% 

vs. 28.8%, and 46.2% vs. 21.7%; p < 0.001, Figure 6D) 

compared with those of the ITK low group. We 

subsequently analyzed the correlation between ITK 

expression and clinical characteristics. High expression 

of ITK correlated with earlier clinical stages and better 

T classification in the TNM stage system (P < 0.05, 

Figure 6E; P < 0.05, Figure 6F), while there was no 

significant difference in ITK expression for the N and 

M classifications (Figure 6G and 6H). HLA-DRB5 

expression showed no significant correlation with OS 

(p = 0.12, Supplementary Figure 4C) or RFS (p = 0.22, 

Supplementary Figure 4D) according to Kaplan–Meier 

survival analysis. HLA-DRB5 expression was not 

correlated with TNM staging either (Supplementary 

Figure 4E–4H). 

Immunohistochemistry (IHC) analysis proved that 

high ITK levels predict better postoperative 

outcomes of patients with HCC 
 

To further verify the prognostic capacity of ITK, we 

collected primary tumor samples from patients with 

HCC who underwent liver resection in our medical 

center between 2015.01.01 and 2017.12.31 (n = 176) 

and carried out IHC staining to determine ITK 

expression in the tissues. All the subjects were divided 

into a high ITK group (n = 69) and a low ITK group 

(n = 107) based on the IHC score, which was evaluated 

by two pathologists. Kaplan–Meier survival analysis 

showed that patients in the high ITK group had better 

1-year and 3-year OS rates (97.0% vs. 89.6%, 82.9% vs. 

69.0%, p < 0.001, Figure 7A) as well as RFS rates 

compared with patients in the low ITK group (63.5% 

 

 
 

Figure 3. Correlation between the estimate scores and clinicopathological staging characteristics. (A–D) Correlation of the 
stromal score with the TNM stage. (E–H) Correlation of the immune score with the TNM stage. (I–L) Correlation of the estimate score with 
the TNM stage. 
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vs. 41.2%, 57.3% vs. 15.4%, p < 0.001, Figure 7B). 

Representative immunohistochemical pictures of ITK 

expression were shown in Figure 7C. 

 

ITK potentially indicated TME modulation 

 

The ITK expression level was related to the prognosis 

and clinicopathological stages of patients with HCC; 

therefore, we applied Gene Set Enrichment Analysis 

(GSEA) analysis to determine the underlying 

mechanisms. As shown in Figure 8A, in the ITK  

high group, the genes were mainly enriched in 

inflammatory activities, including interleukin (IL)-

2/signal transducer and activator of transcription 5 

(STAT5) signaling, interferon-alpha response, and 

IL-6/Janus kinase (JAK)/STAT3 signaling pathways. 

The genes in the high ITK subgroup were enriched 

in multiple immunological gene sets according to 

the C7 collection defined by MSigDB (Figure 8B, 

the detailed information is shown in Supplementary 

Table 3). 

 

ITK correlated with the proportion of TIC subsets 
 

We subsequently analyzed the proportion of TICs using 

CIBERSORT to verify the correlation of ITK expression 

and the immune TME. As a result, the composition of 

22 kinds of immune cells in HCC tissues was calculated 

(Figure 9A). The correlations among the 22 immune 

cell subpopulations are shown in Figure 9B. The results 

of principal component analysis (PCA) of 373 patients 

with HCC are presented in Figure 9C. The difference 

 

 

 

Figure 4. Cluster analysis, intersection analysis, GO, and KEGG enrichment analysis of the DEGs. (A) Heatmap of 601 DEGs 
between the high/low stromal score subgroups. (B) Heatmap of 563 DEGs between the high/low immune score subgroups. (C) Venn 
diagram of the DEGs commonly shared by the two groups. (D) GO enrichment analysis of the common DEGs. (E) KEGG enrichment analysis 
of the common DEGs. 
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analysis screened out 10 types of TICs (Figure 10A) 

and the correlation analysis identified 13 types of TICs 

(Figure 10B, the TICs with no correlation with ITK 

expression are shown in Supplementary Figure 5). Nine 

types of TICs overlapped in the above analyses were 

shown in Figure 10C and Supplementary Table 4. 

Among the nine TIC subsets, three of them correlated 

positively with ITK mRNA expression, including 

activated CD4
+
 memory T cells, CD8

+
 T cells, and M1 

Macrophages; and six types of TICs correlated 

negatively with ITK expression, including plasma cells, 

resting natural killer (NK) cells, activated dendritic 

cells, activated NK cells, naïve CD4
+
 T cells, and 

resting mast cells. We then carried out survival analysis 

for the nine TIC subsets to predict postoperative OS 

and RFS for patients with HCC (Supplementary 

Figures 6–7). Results showed that CD8
+
T cells was 

associated with better survival, while resting NK cells, 

and plasma cells were associated with poor survival 

(P < 0.05). These results further supported the view 

that ITK is involved in immune modulation of the TME 

and probably exerted anti-tumor activities. 

DISCUSSION 
 

In the present study, we identified ITK as a prognostic 

predictor and TME remodeling indicator for patients 

with HCC through comprehensive data mining based on 

the TCGA database. The ESTIMATE algorithm was 

applied to determine the predictive value of the stromal 

and immune scores in the TME of HCC and further 

screen out crucial molecules. We also depicted the 

landscape of the HCC TME using the CIBERSORT 

algorithm and revealed a correlation between the TIC 

composition and ITK expression. Most importantly, the 

results showed that ITK expression could reflect 

alterations in the TME of HCC and predicted the 

postoperative outcomes of patients with HCC. 

 

The TME is a unique environment that emerges during 

tumor formation. It has been recognized that the TME, 

particularly its immune components, plays an important 

role in HCC progression and therapeutic management. 

Immunotherapy has been considered a novel treatment 

with great potential for patients with HCC. Nivolumab 

 

 

 

Figure 5. PPI network and univariate COX regression analysis. (A) PPI network of the nodes with combined score > 0.95. (B) Forest 
plot of the univariate COX regression analysis for OS. (C) Venn diagram of the factors commonly shared by hub genes in PPI and factors 
correlated with OS and RFS generated by univariate COX regression analysis. 
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(Opdivo) has been approved for second-line treatment 

in HCC [24]. Obstructions in detecting and analyzing 

the comprehensive immune microenvironment of each 

patient in a clinical context mean that there are still 

obstacles in therapeutic target identification and 

efficacy monitoring of immunotherapy for HCC. 

Although we have already identified several biomarkers 

to predict prognosis and evaluate the efficacy of 

treatment for HCC, such as alpha-fetoprotein (AFP) 

[25], Des-Carboxy Prothrombin (DCP) [26], osteo-

pontin (OPN) [27], vascular endothelial growth factor 

(VEGF) [28], and Golgi protein 73 (Gp-73) [29, 30], 

representative and credible biomarkers that could 

precisely reflect the immune modulation of the TME are 

highly desirable. 

 

Inspired by the above scenario, we carried out data 

mining of patients with HCC based on the TCGA 

database from an immunological point of view. The 

ESTIMATE algorithm was applied to evaluate the 

prognostic relevance of the stromal and immune 

components. Our results confirmed that the immune 

components in TME correlated significantly with 1-year 

RFS of patients with HCC. We then screened out DEGs 

generated from the low and high stromal and immune 

score subgroups. The results from GO, KEGG and 

Reactome enrichment analysis showed that the DEGs 

were mainly mapped to immune-related terms, such as 

lymphocyte differentiation, T cell activation, and T cell 

differentiation. This was consistent with our initial 

hypothesis, as well as previous research. Subsequent 

intersection analysis of the PPI network and univariate 

COX regression analysis showed that ITK and HLA-

DRB5 might be the key DEGs for HCC prognosis. 

HLA-DRB5 was subsequently filtered out because of its 

poor predictive capacity for OS of patients with HCC. 

Thus, we identified ITK as an immunological biomarker 

that performed well in evaluating the clinical stage as 

well as predicting the postoperative RFS and OS of 

patients with HCC. To further evaluate the relationship 

between ITK and the immune TME of HCC, functional 

enrichment analysis was conducted. The results of 

GSEA revealed that genes in the high ITK subgroup 

were enriched in inflammatory-immunological terms, 

including IL-2/STAT5 signaling, interferon-alpha 

response, and IL-6/JAK/STAT3 signaling pathways. 

Furthermore, we depicted the landscape of the HCC 

immune TME using the CIBERSORT algorithm, using 

22 subsets of immune cells. Three kinds of TICs 

(CD8
+
T cells, activated CD4

+
 memory T cells, and M1 

Macrophages) that correlated positively with ITK 

expression in HCC lesions were identified. These 

 

 
 

Figure 6. ITK expression in HCC tumors and paracarcinoma tissues, and the correlation between ITK and survival/clinical 
characteristics of patients with HCC (TCGA dataset). (A) ITK expression in HCC tumor tissues and paracarcinoma tissues (p = 0.0001). 
(B) ITK expression in paired HCC tumor tissues and paracarcinoma tissues derived from the same patient (p < 0.0001). (C) KM survival 
curves for the long-term OS of low/high ITK subgroups. (D) KM survival curves for the long-term RFS of low/high stromal score subgroups. 
(E–H) The correlation between ITK expression and clinicopathological stages. 



 

www.aging-us.com 18628 AGING 

 
 

Figure 7. Validation of ITK’s prognostic capacity. 176 pairs of HCC tumor and paracarcinoma tissues were obtained from our medical 
center and ITK expression levels were evaluated using IHC analysis. (A) KM survival curves for the post-operation OS of low/high ITK 
subgroups (p = 0.024). (B) KM survival curves for the post-operation RFS of low/high ITK subgroups (p < 0.001). (C) IHC of ITK expression. 

 

 
 

Figure 8. GSEA for HCC tumor samples. (A) Significantly enriched “hallmark gene sets” in the high ITK subgroup. (B) Significantly enriched 
“C7 gene sets” (the immunological gene sets) in the high ITK subgroup. 
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results were consistent with previous research findings. 

A recent study reported that the positive prognostic 

value of CD8
+
 T cells was confirmed in more than 

18,700 patients across 17 solid cancer types [31]. 

Similar conclusions for CD4
+
 memory T cells and M1 

Macrophages were published [32–36]. We also 

identified six TIC subpopulations, including plasma 

cells, resting NK cells, activated dendritic cells, 

activated NK cells, naïve CD4
+ 

T cells, and resting mast 

cells, which correlated negatively with ITK expression. 

Among these nine TIC subsets, CD8
+
 T cells, resting 

NK cells, and plasma cells were related significantly to 

the postoperative outcomes of patients with HCC. Our 

results indicated that the ITK expression level could 

dynamically reflect antitumor immune activities. 

 

Notably, ITK is an important member of the Tec family 

kinases and takes part in T cell receptor (TCR) 

signaling events driving processes including T cell 

development and Th2/Th9/Th17 responses, and 

mutations of ITK lead to T cell dysfunction [10, 23, 37]. 

Previous research found that T cell-mediated antitumor 

responses play an important role in natural HCC 

progression. For instance, tumor-associated antigen 

 

 
 

Figure 9. TIC profiling of HCC tumor tissues and correlation analysis. (A) The composition of 22 kinds of TICs in HCC tumor tissues is 
shown in a bar plot. (B) Heatmap showing the correlation between 22 kinds of TICs. (C) Principal component analysis of the HCC tumor 
tissues with high and low ITK expression. 
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(TAA)-specific CD8
+ 

T cells are significant components 

of HCC lesions and correlate with better RFS, 

indicating that the development of strategies aiming to 

enhance the total TAA-specific CD8
+ 

T cell response 

would unlock their full antitumor potential [38], thus 

contributing to better prognosis. Likewise, the 

upregulation of the other two identified TICs also leads 

to strengthened antitumor activities in the TME of 

patients with HCC. Among the reduced TIC subtypes in 

the high ITK group, dendritic cells (DCs) are important 

antigen-presenting cells (APCs) and are indispensable 

for T cell stimulation [39]. Our results showed that ITK 

expression correlated negatively with DCs density, 

indicating the dual role played by ITK in the immune 

 

 
 

Figure 10. The correlation between ITK expression and TICs proportion. (A) The distributions of 22 kinds of TICs in low/high ITK 
subgroups are shown in a violin plot. (B) Scatter plots of the 13 kinds of TICs significantly correlated with ITK expression (p < 0.05). (C) Venn 
diagram showing nine common TICs shared, as assessed using differential analysis and correlation analysis. 
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remodeling of the TME in HCC. A previous study 

focusing on breast cancer stated that Ibrutinib, an ITK 

inhibitor, could suppress tumor development and 

metastasis by stimulating the development of mature 

DCs from myeloid-derived suppressor cells (MDSCs) 

and might be an effective therapeutic method to treat 

breast cancer [40]. This is consistent with the classic 

therapeutic function of Ibrutinib in hematological 

malignancies [41]. However, controversial results were 

shown in solid tumors. For instance, high ITK 

expression is related to better prognosis in lung 

adenocarcinomas (LUAD) [42]. In colon cell lines and 

rodent models, monotherapy using the ITK inhibitor, 

Ibrutinib, was reported to perform poorly in tumor 

suppression, whereas the combination of Ibrutinib and a 

programmed cell death 1 ligand 1 (PD-L1) inhibitor 

showed significant antitumor capacity [43]. This 

suggested that ITK participates in the immune 

remodeling of the TME in HCC through complex 

mechanisms. 

 

In the present study, we observed that ITK could reflect 

the proportion of several important immune cells within 

the TME of HCC, acting as a credible biomarker for the 

remodeling status of the antitumor composition, and 

thus could act as a guide for immunotherapy 

applications [44]. The identification of molecular 

targets and the determination of their functions have 

revealed the therapeutic value of small-molecule 

inhibitors. To date, 43 small-molecule inhibitors have 

been approved by the FDA for oncology indications 

[45]. According to our study, ITK presents dual 

function in the immune TME of HCC, and further 

exploration should be carried out to determine the 

interaction between ITK and other immune cells, as 

well as cancer cells. Whether an ITK inhibitor or 

agonist is suitable for HCC treatment in different 

contexts needs more robust and direct experimental 

evidence. 

 

Our study also has some limitations. Although we 

carried out data mining based on the authoritative 

TCGA database, further mechanistic studies and 

experimental validation are required. 

 

In conclusion, we identified ITK as a novel biomarker 

of RFS and TME remodeling for HCC. As a crucial 

molecule in T cell differentiation, ITK upregulation in 

HCC lesions indicates the enhanced antitumor capacity 

of T cells in the TME and correlated positively with 

better prognosis. Increasing ITK expression contributes 

to TME remodeling of HCC via T cell activation. We 

hypothesized that ITK could serve as a sensitive 

biomarker for the prognosis of HCC and provides a 

potential therapeutic target for HCC treatment in the 

future. 

MATERIALS AND METHODS 
 

Data preparation 
 

Transcriptome RNA-seq data of 373 patients with HCC 

and 50 normal liver samples and the corresponding 

clinical data were downloaded from the TCGA database 

(https://portal.gdc.cancer.gov/). Our study was 

performed in accordance with the publication guidelines 

provided by the TCGA. 

 

Estimation of stromal and immune scores 
 

ESTIMATE is an algorithm used to evaluate the tumor 

purity, which uses the gene expression of an immune 

signature (141 immune genes) and a stromal signature 

(141 stromal genes). [46] The ESTIMATE immune 

score and stromal score were calculated using R 

package estimate (v.1.0.13) [47] to analyze the 

infiltration levels of immune cells and stromal cells for 

each HCC sample, and patients with HCC were divided 

into high and low score groups based on the median 

value of immune or stromal score. 

 

Survival analysis 
 

Overall survival (OS) of 365 patients with HCC and 

recurrence-free survival (RFS) of 320 patients with 

HCC were measured using the R package survival 

(v.3.2–3) [48] and survminer (v.0.4.8) [49]. The 

Kaplan–Meier method was used to plot the survival 

curve, and the log-rank test was used to show statistical 

significance, in which p < 0.05 was considered 

significant. 
 

Correlation analysis of the estimate score with 

clinical stages 
 

The clinicopathological characteristics data of the 

patients with HCC were downloaded from the TCGA. 

SPSS (v24.0; IBM Corp., Armonk, NY, USA) was used 

to perform the analysis. The Mann–Whitney U test was 

used for comparison between scores and the N/M 

classification, and the Kruskal–Wallis rank-sum test 

was used to compare between scores and TNM stage/T 

classification, in which p < 0.05 was considered 

significant. 
 

Differentially expressed gene analysis 
 

Based on the median score of the immune and stromal 

scores, 373 patients with HCC were subdivided into two 

groups (high score group and low score group), 

respectively. DEGs analysis was performed using R 

Package limma [50] to identify DEGs between the high 

and low score groups. DEGs with an absolute log2 

https://portal.gdc.cancer.gov/
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fold-change >1.5 (high score vs. low score group) and 

an adjusted p-value <0.05 were considered as 

statistically significant. 

 

Functional enrichment analysis 

 

The DEGs between the high score group and the low 

score group were used for GO, KEGG and Reactome 

enrichment analyses with the R package clusterProfiler 

[51] and ReactomePA [52]. Only terms with both an 

adjusted p-value and q value < 0.05 were considered as 

significantly enriched. 

 

PPI network construction 
 

DEGs were imported to the STRING database to 

evaluate their interactive relationships, and PPI pairs 

with a combined score > 0.95 were then reconstructed 

using Cytoscape version 3.7.1 [53]. Hub genes in the 

PPI network were identified using MCODE, a 

Cytoscape plug-in. 

 

Gene set enrichment analysis 
 

GSEA was performed using the R package 

clusterProfile with “Hallmark gene sets” and “c7 class: 

immunologic signature gene sets” v7.2 [54], and only 

gene sets with an adjusted p-value < 0.05 and q- < 0.05 

were considered as significant. 

 

TICs profile 

 

The CIBERSORT [55] algorithm was used to evaluate 

the abundance of 22 types of TICs based on the 

expression data from 373 tumor samples from the 

TCGA. 

 

IHC of primary samples of patients with HCC 

 

Primary tumoral and paratumoral tissue samples of 

patients with HCC who underwent liver resection in our 

medical center between 2015.01.01 and 2017.12.31 (n = 

176) were obtained (Ethical approval:2018–768). ITK 

immunohistochemistry was performed according to 

common protocols. The anti-ITK antibody was 

purchased from Abcam (Cambridge, MA, USA; No. 

ab32039). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The correlation between the scores and the long-term OS of patients with HCC. (A) KM survival curves 
for the long-term OS of low/high stromal score subgroups (p = 0.31). (B) KM survival curves for the long-term OS of low/high immune score 
subgroups (p = 0.5). (C) KM survival curves for the long-term OS of low/high estimate score subgroups (p = 0.18). 
 

 
 

Supplementary Figure 2. Reactome enrichment analysis of the common DEGs. 
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Supplementary Figure 3. Forest plot of the univariate COX regression analysis for RFS. 



 

www.aging-us.com 18639 AGING 

 
 

Supplementary Figure 4. HLA-DRB5 expression in HCC tumors and paracarcinoma tissues, and the correlation between HLA-
DRB5 and survival/clinical characteristics of patients with HCC. (A) HLA-DRB5 expression in HCC tumor tissues and tumor-adjacent 
normal tissues (p = 0.138). (B) HLA-DRB5 expression in paired HCC tumor tissues and tumor-adjacent normal tissues deriving from the same 
patient (p = 0.040). (C) Overall survival of HLA-DRB5 high and low expression subgroups (p = 0.12). (D) Recurrence-free survival of HLA-DRB5 
high and low expression subgroups (p = 0.22). (E–H) The correlation of HLA-DRB5 expression with clinicopathological staging characteristics. 
 

 
 

Supplementary Figure 5. Nine TICs not correlated with ITK expression. 
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Supplementary Figure 6. KM survival curves for the long-term OS of low/high groups defined by 22 different immune cell 
subsets. 
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Supplementary Figure 7. KM survival curves for the RFS of low/high groups defined by 22 different immune cell subsets. 
 

  



 

www.aging-us.com 18642 AGING 

Supplementary Tables 
 

Supplementary Table 1. Clinicopathological characteristics statistics of LIHC patients from TCGA. 

Clinical characteristics 
 

Total % 

  
373 100 

Age at diagnosis (y) young age (< = 60) 177 47.5 

 
old age (>60) 195 52.3 

Gender Male 252 67.6 

 
Female 121 32.4 

Stage Ⅰ 172 46.1 

 
Ⅱ 87 23.3 

 
Ⅲ 85 22.8 

 
Ⅳ 5 1.3 

T classification T1 182 48.8 

 
T2 95 25.5 

 
T3 80 21.4 

 
T4 13 3.5 

 
TX 2 0.5 

M classification M0 267 71.6 

 
M1 4 1.1 

 
MX 102 27.3 

N classification N0 253 67.8 

 
N1 4 1.1 

 
NX 116 31.1 

 

Supplementary Table 2. Gene list of genes identified by MCODE and univariate cox analysis. 

Table A: Gene list of hub genes identified by MCODE (n = 16) 

CCL21 CXCL8 CCR5 CCL19 CCR2 CXCL1 CD3E LCK 

ITK CD3G HLA-DQA2 HLA-DQB2 HLA-DRB5 HLA-DQA1 HLA-DQB1 HLA-DPA1 

 

Table B: Genes statistically significant in univariate COX analysis of RFS (n = 152) 

CXCR6 IGJ CD79A CELF2 ITK KLRB1 CD48 IKZF1 

ARHGAP15 HLA-DPA1 CD3E HLA-DOA DARC NAPSB ADAM6 EVI2B 

CD5 CCR5 MS4A7 MS4A1 CD3G DOCK2 PRKCB SLA 

LY9 CD226 LOC96610 CD2 GPR132 CCR2 CSF2RB GBP5 

SIGLEC8 SLAMF7 CD69 ACAP1 CCL22 ATP2A3 CD96 NCKAP1L 

TAGAP CCL21 FPR3 CCR7 BASP1 CD53 MS4A6A CD6 

HLA-DQA1 CYTIP PLD4 MGC29506 LCK EPB41L3 HLA-DQB1 P2RY13 

PTPRC GZMK IL7R EMB WDFY4 NCF1 CD84 FCRL5 

FYB CD163 HAPLN3 AOAH CPZ PLA2G2D EFEMP1 IL21R 

AEBP1 SIGLEC10 ITGA4 MNDA HLA-DQA2 SMOC2 CD1C MFAP4 

CLEC7A SHISA3 TFEC HLA-DRB5 KLHL6 RUNX2 ADAMDEC1 CCL19 

CYBB DCN ALOX5 GPR68 HLA-DQB2 NLRP3 IL2RA GAPT 

CD1E CLEC4E LILRB4 CR1 APOBEC3C RSPO3 SAMSN1 DES 

SIRPB2 TIMD4 WISP2 LOXL1 PRELP GATA3 TLR7 TLR8 
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GPR183 ALOX5AP GPBAR1 SVEP1 LUM CCL2 TNFSF13B HGF 

FNDC1 PLAC8 CXCL14 PTGDS GFPT2 CCDC80 PODN TMEM119 

F13A1 GLIPR2 ITGBL1 DPT THBS2 EGR2 FPR1 DPEP1 

ISLR HAND2 ASPG COL8A2 RGS1 MARCO CADM3 GAS7 

PDPN ADAMTS2 ADRA2A MOXD1 PDGFRA FMOD ADAM28 FCGR1A 

 

Table C: Genes statistically significant in univariate COX analysis of OS (n = 27) 

KLRB1 IL8 DARC MMP7 CTHRC1 MSC EFNA5 ITK 

CCR7 GZMK CXCR6 CXCL1 MS4A1 IL7R CD79A ATP2A3 

CD5 ACAP1 CD69 IGJ HLA-DRB5 CD6 CXCL6 MGC29506 

LY9 CREB3L1 CD2 
     

 

 

Supplementary Table 3. Enriched gene sets. 

MSigDB collection Description NES adj.p.value q.value 

h.all.v7.2.symbols.gmt 
    

ITK high expression HALLMARK_INFLAMMATORY_RESPONSE 1.5482 0.0005034 0.0003921 

 
HALLMARK_ALLOGRAFT_REJECTION 1.4715 0.005095 0.0039687 

 
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 1.4536 0.0055532 0.0043256 

 
HALLMARK_INTERFERON_GAMMA_RESPONSE 1.4195 0.0105352 0.0082064 

 
HALLMARK_IL2_STAT5_SIGNALING 1.3947 0.016093 0.0125356 

 
HALLMARK_IL6_JAK_STAT3_SIGNALING 1.4786 0.016093 0.0125356 

 
HALLMARK_TNFA_SIGNALING_VIA_NFKB 1.4019 0.019148 0.0149153 

  HALLMARK_COMPLEMENT 1.3644 0.0281044 0.0218918 

 
HALLMARK_HEME_METABOLISM 1.328 0.0376875 0.0293566 

c7.all.v7.2.symbols.gmt 
    

ITK high expression GSE4984_UNTREATED_VS_GALECTIN1_TREATED_DC_DN 1.7377 2.37E-06 1.76E-06 

 
GSE22886_NAIVE_CD8_TCELL_VS_MONOCYTE_UP 1.678 9.87E-06 7.33E-06 

 
GSE3039_NKT_CELL_VS_ALPHAALPHA_CD8_TCELL_DN 1.6849 1.18E-05 8.75E-06 

 
GSE7218_UNSTIM_VS_ANTIGEN_STIM_THROUGH_IGG_BCELL_DN 1.6628 7.78E-05 5.77E-05 

 
GSE3039_ALPHAALPHA_VS_ALPHABETA_CD8_TCELL_DN 1.6203 0.0001806 0.0001341 

 
GSE29618_BCELL_VS_MDC_UP 1.6334 0.0002267 0.0001683 

 
GSE11057_PBMC_VS_MEM_CD4_TCELL_UP 1.6131 0.0002267 0.0001683 

 
GSE45739_UNSTIM_VS_ACD3_ACD28_STIM_WT_CD4_TCELL_DN 1.5972 0.0007672 0.0005696 

Abbreviation: NES: normalized enrichment score; p.adjust: adjusted p.value; Gene sets with p.adjust less than 0.05 and 
q.value less than 0.05 were considered as statistical significance. Only several leading sets enriched in ITK high expression 
both in C7 were listed here due to a large number of enriched gene sets. 
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Supplementary Table 4. TICs co-determined by difference test and correlation test. 

TICs Pearson r P (two-tailed) Difference test (p-value) 

Plasma cells –0.269 <0.0001 0.003 

T cells CD8 0.4274 <0.0001 <0.001 

T cells CD4 naive –0.2935 <0.0001 <0.001 

T cells CD4 memory activated 0.2237 <0.0001 0.002 

NK cells resting –0.2056 <0.0001 0.003 

NK cells activated –0.2193 <0.0001 <0.001 

Macrophages M1 0.3197 <0.0001 <0.001 

Dendritic cells activated –0.1351 0.0092 0.014 

Mast cells resting –0.1769 0.0006 0.011 

 


