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INTRODUCTION 
 

Lung cancer, which including two main types small cell 

lung cancer (SCLC) and non–small cell lung cancer 

(NSCLC), is the most common cause of cancer deaths in 

the world [1]. NSCLC accounts for ~85% of lung cancer 

diagnoses and imposes a heavy burden on global health 

systems [2, 3]. Lung adenocarcinoma (LUAD) is the 
most common pathological subtype of NSCLC. Despite 

great advances in the treatment of LUAD, the clinical 

outcome is not satisfactory [4]. Recently, a number of 

molecularly targeted therapies have been developed that 

caused significant improvement in the treatment of 

LUAD, especially for patients with EGFR mutation [5] 

and ALK mutation [6, 7]. However, because of high 

gene mutation heterogeneity and complexity in 

molecular patterns of LUAD, large amount of LUAD 

patients without EGFR and ALK mutations lose the 

opportunity to use effective therapeutic drugs. Therefore, 

it is essential to identify reliable diagnostic and 

prognostic biomarkers for LUAD patients and thereby 

provide precise targeted therapies. 
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ABSTRACT 
 

Background: Epigenetic dysregulation has been increasingly proposed as a hallmark of cancer. Here, the aim of 
this study is to establish an epigenetic-related signature for predicting the prognosis of lung adenocarcinoma 
(LUAD) patients. 
Results: Five epigenetic-related genes (ERGs) (ARRB1, PARP1, PKM, TFDP1, and YWHAZ) were identified as 
prognostic hub genes and used to establish a prognostic signature. According our risk score system, LUAD 
patients were stratified into high and low risk groups, and patients in the high risk group had a worse 
prognosis. ROC analysis indicated that the signature was precise in predicting the prognosis. A new nomogram 
was constructed based on the five hub genes, which can predict the OS of every LUAD patients. The calibration 
curves showed that the nomogram had better accuracy in prediction. Finally, candidate drugs that aimed at hub 
ERGs were identified, which included 47 compounds. 
Conclusions: Our epigenetic-related signature nomogram can effectively and reliably predict OS of LUAD 
patients, also we provide precise targeted chemotherapeutic drugs. 
Methods: The genomic data and clinical data of LUAD cohort were downloaded from the TCGA database and 
ERGs were obtained from the EpiFactors database. GSE31210 and GSE50081 microarray datasets were included 
as independent external datasets. Univariate Cox, LASSO regression, and multivariate Cox analyses were 
applied to construct the epigenetic-related signature. 
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Epigenetic regulation is broadly defined as repression or 

activation of gene expression via DNA methylation and 

histone modification, without introducing changes in the 

DNA sequence per se [8, 9]. Epigenetic dysregulation is 

considered as an essential hallmark in the initiation and 

progression of different types of cancers [10, 11]. 

Recently, epigenetic dysregulation has been reported to 

promote carcinogenesis of pulmonary epithelial cells and 

the progression of LUAD [12]. Epigenetic genes, such as 

DNMT, HDAC, and PARP1 have emerged as attractive 

targets for the development of anticancer drugs for 

NSCLC [13–15]. Hence, epigenetic alterations are 

considered to be an important characteristic in NSCLC 

development and progression. Although, numerous 

studies have reported prognostic signature for LUAD 

[16–19], only a few researchers have explored the role of 

epigenetic prognostic markers in LUAD and found out 

potential drug candidates for targeted therapy. 

 

In the present study, we firstly developed an epigenetic-

related prognostic signature based on TCGA dataset of 

497 LUAD patients, and then validated it in both 

GSE31210 and GSE50081 datasets. More importantly, a 

new nomogram was created for predicting the overall 

survival (OS) of LUAD patients based on five epigenetic-

related genes (ERGs). The accurate prediction function of 

the nomogram was evaluated. Moreover, we further 

screened out candidate targeted chemotherapy drugs to 

the five ERGs. In conclusion, our study may provide new 

ideas for epigenetic-related prognostic biomarkers, 

thereby, highlighting the need to identify high risk 

patients and eventually delivering more effective targeted 

chemotherapeutic drugs for LUAD patients. 

 

RESULTS 
 

Identifying differentially expressed ERGs 

 

The flow diagram of our study is illustrated in Figure 

1A. Firstly, we downloaded mRNA data of 497 LUAD 

samples and 54 corresponding normal lung samples and 

corresponding clinical information from the TCGA 

database. Meanwhile, a total of 720 ERGs were obtained 

from the EpiFactors database. Then, we matched 720 

ERGs with LUAD-related mRNA data, 91 differentially 

expressed ERGs were identified (|log FC| > 1.0, adjusted 

P value < 0.05), including 12 downregulated and 79 

upregulated ERGs (Figure 1). 

 

GO and KEGG enrichment analyses 

 

GO analysis results indicated that 91 ERGs were  

mainly enriched in 422 Go terms, such as covalent 

chromatin modification, histone modification, chromatin 

remodeling, peptidyl-lysine modification, regulation of 

chromosome organization and so forth (Figure 2A, 2B). 

KEGG analysis results demonstrated that 91 ERGs were 

mainly enriched in 4 pathways including homologous 

recombination, cell cycle, lysine degradation and fanconi 

anemia (Figure 2C, 2D). 

 

Identification of survival-related differentially 

expressed ERGs 

 

By using univariate Cox regression analysis, we 

identified 16 ERGs that were significantly associated 

with prognosis in patients with LUAD (Table 1) 

(P<0.05; Figure 3A). Of the 16 genes, 14 were 

identified as risk factors and two were identified as 

protective factors. UHRF1, HJURP, BUB1, PBK, 

AURKA, ACTL6A, ASF1B, PRKDC, CDK1, PARP1, 

UBE2T, YWHAZ, PKM, and TFDP1 were identified as 

risk factors (P<0.05; HRs, 1.0012-1.0740). Whereas 

ARRB1 and CBX7 were considered as protective 

factors (P<0.05; HRs, 0.9512 and 0.8885, respectively). 

The expression of 16 ERGs in LUAD and normal lung 

samples were presented in Figure 3B, and the 

correlation between these ERGs could be seen in Figure 

3C. Due to the important prognostic value of the 

candidate genes, their genetic alterations were analyzed. 

As shown in Figure 3D, missense mutation is the most 

common type of mutation, and there are 10 genes with 

mutation rate ≥3%, among which PRKDC mutation is 

the most frequent (12%). 

 

Development of epigenetic-related signature 

 

To eliminate highly correlated ERGs and prevent 

overfitting of the signature, the Lasso regression 

analysis was performed (Figure 4A, 4B). Finally, five 

ERGs were confirmed by multivariate Cox regression 

analysis and applied to develop an epigenetic-related 

prognostic signature (Table 1). The signature was 

established to assess the prognosis of each LUAD 

patient as follows: 

 

Risk score = (-0.03706×expression level of ARRB1) + 

(0.015474×expression level of PARP1) + (0.004509 

×expression level of YWHAZ) + (0.001132×expression 

level of TFDP1) + (0.004303×expression level of 

PKM). 

 

According to above formula, the risk scores of 426 

LUAD patients were calculated, and patients were 

clustered into high and low risk groups by median risk 

score. The risk score (Figure 5A) and survival status 

(Figure 5B) of 426 LUAD patients are presented. As 

shown in Figure 5C, patients in the high risk group had 

significantly poorer OS compared to those in the low 
risk group. The prognostic signature exhibited good 

predictive performance and accuracy for predicting the 

1-, 3- and 5-year OS (Figure 5D). 



 

www.aging-us.com 18703 AGING 

 

 
 

Figure 1. Differentially expressed epigenetic-related genes(ERGs) in lung adenocarcinoma (LUAD). (A) A flow diagram of the 

study. (B) Heatmap of ERGs between LUAD and nontumor tissues in TCGA database. The color from green to orange represents the 
progression from low expression to high expression. (C) Volcano plot of ERGs in TCGA database. The orange dots in the plot represents 
upregulated genes and green dots represents downregulated genes with statistical significance. Gray dots represent no differentially 
expressed genes. 
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Relationships between risk score and 

clinicopathological factors 

 

Furthermore, the expression of the five crucial genes and 

clinicopathological factors in high and low risk groups 

are presented in Figure 6A. The results indicated that 

with reduction of the risk score, ARRB1 was gradually 

increased, while YWHAZ, PKM, PARP1, and TFDP1 

were gradually decreased. Significant differences  

were found for the pathologic T stage between the  

high and low risk groups. Moreover, a higher risk score 

was associated with higher pathological stage, N-stage 

and some histological growth patterns, including 

adenocarcinoma, adenocarcinoma with mixed subtypes, 

bronchioloalveolar carcinoma, non-mucinous, and 

papillary adenocarcinoma (Figure 6B). 

 

Next, Univariate Cox analysis data demonstrated that 

pathologic stage, T stage, N stage and the risk score were 

all associated with OS (Figure 6C). Multivariate analysis 

data demonstrated that stage, M and the risk score 

(P<0.001) could be used as an independent prognostic 

factors (Figure 6D). Moreover, YWHAZ is significantly 

correlated with pathological stage, PKM is significantly 

correlated with pathological stage and N stage (P < 0.05, 

Table 2). Then the relationship between the risk score 

and clinicopathological factors was assessed. The results 

indicated that patients with high risk scores were 

 

 
 

Figure 2. Gene functional enrichment analysis of differentially expressed ERGs. (A) The top 12 significant terms of GO function 
enrichment. (B) The GO circle shows the scatter map of the logFC of the specified gene. (C) The correlation between intersection genes and 
the significant terms of KEGG. (D) The KEGG circle shows the scatter map of the logFC of the specified gene. The higher the Z-score value 
indicated, the higher expression of the enriched pathway. 
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Table 1. Univariate and multivariate Cox regression analyses of OS in LUAD patients. 

Genes 
Univariate analysis 

P 
Multivariate analysis 

P Coef 
HR (95% CI) HR (95% CI) 

ARRB1 0.9512(0.9180-0.9857) 0.0059 0.9636(0.9318-0.9965) 0.0306 -0.0371 

PARP1 1.0158(1.0021-1.0299) 0.0238 1.0156(1.0020-1.0294) 0.0251 0.0155 

PKM 1.0049(1.0027-1.0072) <0.0001 1.0043(1.0018-1.0068) 0.0007 0.0043 

TFDP1 1.0012(1.0001-1.0023) 0.0266 1.0011(0.9999-1.0023) 0.0665 0.0011 

YWHAZ 1.0058(1.0027-1.0090) 0.0002 1.0045(1.0021-1.0078) 0.0070 0.0045 

HJURP 1.0553(1.0188-1.0930) 0.0027 

   

ACTL6A 1.0231(1.0056-1.0409) 0.0096 

UBE2T 1.0109(1.0000-1.0215) 0.0409 

CDK1 1.0190(1.0019-1.0363) 0.0289 

CBX7 0.8885(0.8037-0.9822) 0.0209 

PBK 1.0366(1.0092-1.0647) 0.0086 

BUB1 1.0457(1.0010-1.0826) 0.0117 

ASF1B 1.0216(1.0012-1.0423) 0.0375 

UHRF1 1.0740(1.0163-1.1350) 0.0113 

AURKA 1.0243(1.0063-1.0426) 0.0079 

PRKDC 1.0194(1.0048-1.0342) 0.0091 

 

 
 

Figure 3. Identification of survival-related differentially expressed ERGs. (A) Volcano plot showing survival-related ERGs. P values 

<0.05 are considered to be statistically significant. (B) The expression of epigenetic-related prognostic genes between LUAD and normal 
tissues in TCGA database. (C) The correlation network of candidate genes. The correlation coefficients are represented by different colors.  
(D) Mutation frequency of candidate genes based on the cBioportal database. 
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Figure 4. Establishment of epigenetic-related prognostic signature. (A) Screening of optimal parameter (lambda) at which the 

vertical lines were drawn. (B) Lasso coefficient profiles of these ERGs with non-zero coefficients determined by the optimal lambda. 
 

 
 

Figure 5. Construction of the epigenetic-based prognostic risk signature in the TCGA cohort. (A) The risk score distribution of 

LUAD patients. (B) Survival status and duration of patients. (C) Survival curves for the low risk and high risk groups. (D) Time-independent 
receiver operating characteristic (ROC) analysis of risk scores for prediction the overall survival in the TCGA set. 
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positively correlated with advanced tumor stage, higher T 

stage, and higher N stage (P < 0.05, Table 2). 

 

Validating the performance of the epigenetic-related 

signature 

 

Both GSE31210 and GSE50081 datasets, including 174 

and 127 LUAD samples, respectively, were used for 

validation. Consistent with our above results, the Kaplan-

Meier curve showed that patients in the high risk group 

had a worse prognosis (Figures 7D, 8D). The risk score 

(Figures 7A, 8A), survival status (Figures 7B, 8B) and 

gene expression heatmap (Figures 7C, 8C) of five ERGs 

are shown, respectively. The ROC curves were built  

to verify the predicted capability of five ERGs, and the 

AUC values for 1, 3 and 5-year survival were 0.777, 0.73, 

0.746 (GSE31210, Figure 7E) and 0.711, 0.691, 0.735 

(GSE50081, Figure 8E), respectively. A nomogram for 

predicting OS was established based on the five ERGs 

(Figure 9A). Moreover, the 1, 3, and 5-year OS predicted 

by our nomogram were remarkable consistent with the 

actual observed survival (Figure 9B–9D). 

 

 
 

Figure 6. Relationships between the risk assessment score expression and clinicopathological factors in LUAD. (A) Heatmap of 
the epigenetic-related genes expression in the high and low risk groups and the clinicopathologic differences between the two groups.  
(B) Boxplots show the risk assessment score of patients with different pathological stage, T_stage, N_ stage and growth pattern. Univariate 
(C) and multivariate (D) independent prognostic analysis of independent risk factors for overall survival (OS) in patients with LUAD. 
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Table 2. Relationship between the expression of epigenetic-related genes and clinical characteristics. 

Gene 

symbol 

Age  

(≥65/<65) 

Gender 

(male/female) 

Pathological 

stage  

(IV-III/ I–II) 

T stage  

(T3–T4/T1–T2) 

N stage  

(N2–3/N0-N1) 

M stage  

(M1/ M0) 

t(P) t(P) t(P) t(P) t(P) t(P) 

ARRB1 -1.513(0.131) -1.635(0.103) 1.487(0.139) 0.507(0.614) 1.17(0.243) 0.395(0.697) 

PARP1 0.934(0.351) -0.761(0.447) -0.344(0.732) -0.269(0.789) -0.628(0.531) -1.23(0.233) 

YWHAZ 0.369(0.713) -1.728(0.085) -2.189(0.031) -1.72(0.092) -1.302(0.194) -0.694(0.495) 

TFDP1 1.113(0.267) -1.077(0.283) -1.035(0.304) 1.155(0.249) -1.083(0.281) -1.029(0.316) 

PKM -1.609(0.109) -0.663(0.508) -2.865(0.005) -1.936(0.059) -3.006(0.003) -1.352(0.191) 

riskScore 0.612(0.541) -1.205(0.229) -3.031(0.003) -2.092(0.042) -2.704(0.008) -1.997(0.060) 

Note: t: t value of student's t test; P: P-value of student's t test. 

 

Exploring the expression and prognostic of crucial 

ERGs 

 

The mRNA expression of the five hub genes in LUAD 

were analyzed by using the TCGA database. We 

confirmed that the mRNA expression of PARP1, PKM, 

TFDP1, and YWHAZ in LUAD tissues were all 

increased, while ARRB1 was decreased (Figure 10). 

Moreover, we explored the protein expression of the 

five hub genes. The results indicated that the protein of 

 

 
 

Figure 7. Validation of the epigenetic-based prognostic risk signature in the GSE31210 cohort. (A) The risk score distribution of 
LUAD patients. (B) Survival status and duration of patients. (C) Heatmap of the epigenetic-related genes expression. (D) Survival curves for 
the low risk and high risk groups. (E) Time-independent receiver operating characteristic (ROC) analysis of risk scores for predicting the overall 
survival in the GSE31210 set. 
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PARP1, PKM, TFDP1, and YWHAZ were increased in 

LUAD tissues, which were in line with their mRNA 

expression levels (Figure 11). Furthermore, we found 

that the expression of the three high risk genes (PKM, 

TFDP1, and YWHAZ) were negatively associated with 

the prognosis in LUAD, while low risk gene ARRB1 

was positive correlation with the prognosis by using the 

GEPIA database (Figure 12). 

 

Identification of potential candidate drugs targeting 

the signature 

 

CMap mode-of-action (MoA) analysis found that 47 

compounds could be candidate drugs targeting the 

signature and the drugs shared 18 kinds of mechanisms 

(Figure 13), ten drugs shared the MoA of topoisomerase 

inhibitor (amonafide, amsacrine, doxorubicin, ellipticine, 

etoposide, idarubicin, mitoxantrone, pidorubicine, 

pirarubicin, teniposide), seven drugs shared the MoA of 

CDK inhibitor (aloisine, alvocidib, indirubin, indirubin, 

kenpaullone, purvalanol-a, roscovitine), six drugs shared 

the MoA of aurora kinase inhibitor (alisertib, barasertib, 

danusertib, methylnorlichexanthone, reversine, 

tozasertib), and five drugs shared the MoA of PARP 

inhibitor (olaparib, phenanthridone, rucaparib, veliparib, 

3-amino-benzamide). 

 

DISCUSSION 
 

Lung adenocarcinoma, a molecularly complex and 

heterogeneous disease, remains the most common 

causes of cancer-associated deaths worldwide [1, 20]. 

Recently, the development of drugs targeting on EGFR 

[5] and ALK [7] has promoted the treatment of some 

patients with LUAD, however, the highly gene mutation 

heterogeneous of LUAD has limited the benefits to a 

small number of patients. Notably, there is growing 

evidence that epigenetic modifications are frequently 

 

 
 

Figure 8. Validation of the epigenetic-based prognostic risk signature in the GSE50081 cohort. (A) The risk score distribution of 
LUAD patients. (B) Survival status and duration of patients. (C) Heatmap of the epigenetic-related genes expression. (D) Survival curves for 
the low risk and high risk groups. (E) Time-independent receiver operating characteristic (ROC) analysis of risk scores for predicting the overall 
survival in the GSE50081 set. 
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reversible, and may serve as attractive targets for lung 

cancer therapy [21, 22]. Therefore, it is particularly 

important to identify suitable epigenetic markers for 

LUAD diagnosis and prognosis, that can provide 

valuable support in decision making when considering 

treatment options. 

 

In this study, we developed a novel and meaningful 

epigenetic-related prognostic signature (ARRB1, 

YWHAZ, PKM, PARP1, and TFDP1) for LUAD 

patients and validated them in two independent datasets 

from GEO. According our risk score system, LUAD 

patients were stratified into high and low risk groups, 

and patients in the high risk group had a worse 

prognosis. Then, we confirmed that each of the five 

signatures could be an independent prognostic factor. A 

new nomogram was constructed based on the five hub 

genes, which can predict the OS of every LUAD 

patients. Interestingly, the expression of three high risk 

genes (PKM, TFDP1, and YWHAZ) had an enormous 

implication in the prognosis of LUAD patients. Finally, 

we identified 47 compounds that could serve as 

candidate targeted chemotherapeutic drugs to the five 

ERGs for LUAD patients. These drugs included the 

topoisomerase inhibitor, CDK inhibitor, aurora kinase 

inhibitor, PARP inhibitor, and so on. 

 

The epigenetic factors included in our signature have 

been previously demonstrated to be closely related to the 

development and progression of lung cancer. ARRB1 

(also known as β-arrestin-1), a multifunctional adaptor, 

was initially discovered to promote internalization and 

desensitization of G protein-coupled receptors (GPCRs) 

[23, 24]. A study by Pillai et al. revealed that ARRB1 

 

 
 

Figure 9. Construction of a nomogram based on the epigenetic-related signature in the TCGA cohort. (A) The nomogram based 
on the signature in LUAD patients at 1, 3, and 5 years. (B–D) Calibration curves of nomogram for the signature at 1, 3, and 5 years. 
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promoted the expression of mesenchymal genes through 

mediation of the E2F1 transcription factor in non-small 

cell lung carcinoma cell lines (NSCLC) [25]. Likewise, 

Shen et al. reported that ARRB1 could enhance the 

chemo-sensitivity of lung cancer through the mediation 

of DNA damage response [26]. Our results suggested 

that ARRB1 may be a putative tumor suppressor gene in 

LUAD. The M2 isoform of pyruvate kinase (PKM2) 

(also named PKM, PK3, THBP1), an essential enzyme 

involved in glycolysis, is known to mediate the 

conversion of glucose to lactate in cancer cells under 

normoxic conditions [27, 28]. Jing Li reported that 

phosphorylation of PKM2 and inactivation of STAT3 

inhibited lung cancer cell proliferation [29]. Inhibitors of 

 

 
 

Figure 10. Comparison of the hub genes mRNA levels in paired adjacent normal tissues and LUAD tissues from the TCGA 
cohort. (A) ARRB1, (B) PARP1, (C) PKM, (D) TFDP1, (E) YWHAZ. 

 

 
 

Figure 11. Verification of hub ERGs expression in LUAD and normal lung tissue using the HPA database. (A) ARRB1, (B) PARP1, 

(C) PKM, (D) TFDP1, (E) YWHAZ. 
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Figure 12. Kaplan–Meier survival analysis is performed on the hub genes. (A) ARRB1, (B) PARP1, (C) PKM, (D) TFDP1, (E) YWHAZ. 

 

 
 

Figure 13. Results of CMap analysis. 



 

www.aging-us.com 18713 AGING 

PKM2 could moderately decelerate tumor cell 

proliferation [30, 31]. This finding might be in 

agreement with our current results, that PKM2 is a high 

risk gene in the context of LUAD. PARP1 has been 

reported as an abundant chromatin-associated enzyme 

able to catalyze the transfer of ADP-ribose units from 

NAD to substrate proteins [32]. Alternatively, PARP1 

might play a important role in the development of 

various cancers, including cell proliferation, apoptosis, 

DNA repair, and so forth [33]. Recently, the use of 

immune checkpoint inhibitors has shown dramatic effect 

in the prognosis of NSCLC. Sophie Postel-Vinay 

reported that PARP inhibition enhanced the intrinsic 

immunity of tumor cells in NSCLC with deficiency in 

excision repair cross-complementing group 1, a gene 

which has crucial role in the nucleotide excision repair 

[34]. They also suggested that PARP inhibition, which 

did not cause severe bone marrow toxicity, might 

represent an interesting alternative or complement to 

platinum-based chemotherapy in combination with anti–

PD-(L)1 agents in NSCLC. Transcription factor Dp-1 

(TFDP1) is a key player of cell cycle regulation, it is a 

predominant protein that binds to E2F, another vital 

transcription protein that participates in the control of 

cell cycle and action of tumor suppressor proteins. 

TFDP1 can be candidate master regulators contributing 

to follicular lymphoma progression [35]. Knockdown of 

TFDP1 reduced both PITX1 promoter activity and 

mRNA transcription which caused patients suffering of 

knee/hip osteoarthritis [36]. Wang et al. revealed that 

TFDP1/E2F1 transcriptional activity played an 

important role in NSCLC [37]. YWHAZ (also named 

14-3-3ζ), acts as a major hub protein for many signal 

transduction pathways [38, 39]. YWHAZ was frequently 

shown to be upregulated in several types of cancers, and 

its overexpression was often correlated with unfavorable 

prognosis of cancer patients [40–43]. Ma et al. found 

that YWHAZ was a credible prognostic biomarker, and 

might be a therapeutic target in NSCLC [44]. 

 

Overall, in concordance with our findings, there is 

mounting evidence in the literature that tells about the 

important role of the 5 hub genes (described above) in 

relation to NSCLC, which further supports the use of 

these hub genes as prognostic genes for LUAD patients. 

In recent years, a great deal of knowledge has been 

accumulated to help identify prognostic signature of 

different types of cancers, one of which is NSCLC. In 

our study, we not only identified the five powerful 

ERGs that are useful as prognostic signature, also 

provided potential drugs for targeted therapy. 

Interestingly, PARP inhibitors are currently regarded as 

a novel class of small molecule therapeutics for lung 
cancer. Henning Willers and colleagues found that 

PARP inhibitor by controlling ROS levels upon EGFR 

TKI treatment, promoted the sensitivity of EGFR-

mutated lung cancer to tyrosine kinase inhibitor 

treatment [45]. We hope our study will provide more 

choice for those patients not having EGFR mutation. 

 

In the present study, there are some limitations that 

require mentioning. First, the three datasets are all 

retrospective and, hence, extrapolation based on these 

results may be difficult. To that end, the findings of this 

work should be validated, and further exploration using a 

larger multicenter prospective observational trial is 

desirable. Second, our findings have to be enriched by 

conducting long term in vivo experiments and additional 

in vitro experiments to investigate the functional role of 

the epigenetic factors associated with LUAD. 

 

In summary, five ERGs (ARRB1, PARP1, PKM, 

TFDP1, and YWHAZ) are promising biomarkers for the 

diagnosis and prognosis of LUAD, which could provide 

valuable references to identify whether LUAD patients 

are at high risk. In addition, our findings may provide 

precise targeted chemotherapeutic drugs. 

 

MATERIALS AND METHODS 
 

Study subjects 

 

The RNA-seq data of 497 LUAD and 54 normal lung 

samples were downloaded from The Cancer Genome 

Atlas (TCGA) database, and the RNA-seq data of 174 

LUAD and 127 LUAD samples were downloaded from 

GSE31210 and GSE50081 dataset, respectively. A total of 

720 epigenetic-related genes (ERGs) were retrieved from 

the EpiFactors database (http://epifactors.autosome.ru/). 

 

Identification and enrichment analysis of differentially 

expressed ERGs 

 

Differentially expressed ERGs were obtained by using 

the Limma package in R software [46]. To further 

investigate the biological relevance of these genes, 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses 

were conducted utilizing R “GOplot” package. 

 

Development of the epigenetic-related signature for 

patients with LUAD 

 

We collected clinical information of LUAD patients 

who were followed for less than 2000 days in the 

TCGA database. Univariate Cox regression analysis 

was performed by R “survival” package to identify 

ERGs markedly related to OS. Genetic alterations in the 

candidate genes were obtained from cBioPortal 
(https://www.cbioportal.org/). Then, a novel epigenetic-

related prognostic signature was developed by Lasso 

and multivariate Cox regression analyses [47, 48]. The 

http://epifactors.autosome.ru/
https://www.cbioportal.org/
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risk scores of LUAD patients were calculated according 

to the formula: the signature risk score = Ʃ (βi × Expi), 

where βi, the coefficients, represented the weight of the 

respective signature and Expi represented the prognostic 

factors expression value as previously described [49]. 

According to the signature with identified prognostic 

factors, a nomogram for predicting the probability of 

OS was established. 

 

Validating the performance of the epigenetic-related 

signature 

 

To validate the performance of the signature, the 

GSE31210 and GSE50081 datasets were considered as 

the validation cohort. The risk scores for LUAD patients 

were calculated by using the formula. Survival and ROC 

curve analyses were performed as described above. 

 

Exploring the expression and prognostic of crucial 

ERGs 

 

To explore the prognostic value and the expression of 

these ERGs in LUAD, survival analysis was conducted 

on GEPIA database (http://gepia.cancer-pku.cn),  

the expression of these ERGs were confirmed on 

Human Protein Atlas (HPA) online database 

(http://www.proteinatlas.org/) [50]. 

 

Predicting candidate small molecules for LUAD 

patients 

 
To predict potential drugs for LUAD patients, we 

utilized the Broad Institute’s Connectivity Map (CMap) 

to screen candidate molecule drugs as previously 

described [51, 49]. 

 

Statistical analysis 

 

In this study, all statistical analyses were conducted 

using Perl software (version 5.28.1) and R platform 

(version 3.6.1). The comparison of two paired groups 

was performed using the Wilcoxon rank-sum test. P 

value <0.05 was considered as statistically significant. 
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