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ABSTRACT 
 

Long non-coding (lnc)RNA ABHD11-AS1 participates in the development and progress of various cancers, but 
its role in colorectal cancer (CRC) remains poorly known. In the present study, public database analysis and 
quantitative reverse transcription PCR of CRC and normal tissues showed that ABHD11-AS1 was 
overexpressed in CRC and associated with poor prognosis in CRC patients. Both in vitro and in vivo 
experiments demonstrated that loss-of-function of ABHD11-AS1 attenuated the proliferation, migration, 
and invasion of CRC cells and induced their apoptosis. Transcriptome sequencing and Kyoto Encyclopedia of 
Genes and Genomes pathway enrichment analysis indicated that the phosphoinositide 3 kinase (PI3K)/Akt 
signaling pathway is a potential target of ABHD11-AS1. Additionally, we noted that ABHD11-AS1 deficiency 
reduced integrin subunit alpha (ITGA)5 expression, and impaired the phosphorylation of P85, focal adhesion 
kinase (FAK), and Akt1 in CRC cell lines and tumor tissues of nude mice. Furthermore, we observed that 
ITGA5 overexpression abrogated the effect of ABHD11-AS1 knockdown on the proliferation and invasion 
abilities of CRC cells. Taken together, our studies suggest that lncRNA ABHD11-AS1 promotes proliferation, 
migration, and invasion in CRC by activating the ITGA5/FAK/PI3K/Akt signaling pathway, and that the 
ITGA5/FAK/PI3K/Akt axis is a promising target for CRC therapy. 
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INTRODUCTION 
 

Colorectal cancer (CRC) has the third highest incidence 

of malignant tumors and the fifth major cause of 

mortality in China [1]. Although great progress has 

been made in its screening and treatment during the past 

decade, the prognosis for CRC patients is still poor and 

the 5-year overall survival rate is only 56.7% [2]. 

Moreover, the limitations of screening strategies mean 

that patients are typically diagnosed with advanced 

disease, which is associated with an unfavorable clinical 

outcome. Therefore, it is of great importance to identify 

a reliable and valid biomarker and molecular target for 

colorectal cancer. 

 

LncRNAs exceed 200 nucleotides in length and lack a 

protein coding ability. They are important regulators of 

biological processes, including chromosome structure 

modulation, epigenetic regulation, transcription, 

mRNA splicing, and translation [3, 4]. LncRNAs such 

as RP11-317J10.2 [5], HOTAIR [6], CCAT2 [7], 

BCAR4 [8], and H19 [9] both activate and inhibit gene 

expression via a diverse range of mechanisms to affect 

CRC progression. However, to date, only a few 

lncRNAs associated with CRC have been characterized 

in detail. 

 

LncRNA ABHD11 antisense RNA 1 (ABHD11-AS1), 

located in the 7q11.23 region, has a carcinogenic 

effect in multiple tumors. Wen et al. confirmed that 

ABHD11-AS1 enhanced cell multiplication and 

metastasis in papillary thyroid carcinoma and 

predicted poor survival [10]. Similarly, ABHD11-AS1 

promoted proliferation, invasion, and migration, and 

inhibited the apoptosis of ovarian cancer cell lines 

[11]. Moreover, its tumorigenic potential was 

identified in endometrial carcinoma [12] and 

pancreatic cancer [13], where it was found to be 

associated with tumor–node–metastasis staging and 

prognosis. 

 

The molecular mechanism by which ABHD11-AS1 

affects the occurrence and development of CRC has not 

been fully investigated. In this study, we show that 

ABHD11-AS1 may function as an oncogene and that 

high ABHD11-AS1 expression is significantly 

correlated with poor prognosis in CRC patients. 

Additionally, lentivirus-mediated downregulation of 

ABHD11-AS1 was found to inhibit CRC cell 

proliferation, invasion and migration by down-

regulating the integrin subunit alpha (ITGA)5/focal 

adhesion kinase (FAK)/phosphoinositide 3 kinase 

(PI3K)/Akt pathway, both in vivo and in vitro. Our 

results suggest that ABHD11-AS1 is a promising 

therapeutic target could be used to assess prognosis in 

CRC. 

MATERIALS AND METHODS 
 

Patient tissue samples 

 

CRC tissues and paired normal tissues were collected 

from a total of 60 CRC cases admitted to the Sanming 

First Hospital Affiliated to Fujian Medical University 

between April 2013 and October 2014. All samples 

were independently confirmed to be adenocarcinoma by 

two pathologists. Samples were frozen in liquid 

nitrogen immediately after surgery until required for 

analysis. Patients who had received any neoadjuvant 

therapies or who had a history of cancer were excluded 

from the study. The Ethics Committees of Affiliated 

Sanming First Hospital of Fujian Medical University 

approved the study (approval no. 2013[72]), and all 

patients signed an informed consent form. 

 

Cell culture 

 

The human colorectal cancer cell lines HT29, HCT116, 

SW480, SW620, and LoVo, and normal colonic 

epithelium cell lines NCM460 and FHC were cultured 

in DMEM medium with 10% fetal bovine serum (FBS), 

100 units/ml penicillin, and 100 µg/ml streptomycin at 

37° C with 5% CO2 [14]. 

 

Plasmid construction 
 

shRNA1(sh1) and shRNA2(sh2) specific for ABHD11-

AS1 were synthesized and subcloned into PLKO.1-

TRC-puro vector. ABHD11-AS1 sh1 sequences were as 

follows: forward, 5-CCGGGGACCAAGTCCTCCAGG 

AACGCTCGAGCGTTCCTGGAGGACTTGGTCCTT

TTT-3, and reverse, 5-AATTAAAAAGGACCAAGTC 

CTCCAGGAACGCTCGAGCGTTCCTGGAGGACTT

GGTCC-3; ABHD11-AS1 sh2 sequences were: 

forward, 5-CCGGTTCTCCGAACGTGTCACGTTTCA 

AGAGAACGTGACACGTTCGGAGAATTTTT-3, and 

reverse, 5-AATTAAAAATTCTCCGAACGTGTCACG 

TTCTCTTGAAACGTGACACGTTCGGAGAA-3. The 

coding region of ITGA5 was obtained by PCR method 

and was subcloned into pZsG vector. Primers for 

ITGA5 were: forward, 5' -ATAAGAATGCGGCCGCA 

AGAGCGGGCGCTATGGGG-3' and reverse, 5' -G 

ACCTACGTAAATGGGAGTCTGAAATTGGGAGG

ACTC-3'. 

 

RNA extraction and quantitative reverse 

transcription PCR (RT-qPCR) assays 
 

Total RNA was extracted using TRIzol reagent 

(Invitrogen, Carlsbad, CA, USA) and a total of 2 μg 

RNA was used to synthesize first-strand cDNA using a 

reverse transcription kit (Takara, Dalian, China). 18S 

was used as an internal control. 
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PCR primers were: ABHD11-AS1 forward, 5'-CTCTC 

CACCTGACAGCAACATC-3' and reverse, 5'- TTGG 

TCCAGGGAGGGTTCT-3'; and 18S forward, 5'- CGA 

CGACCCATTCGAACGTCT-3' and reverse, 5'- CTCT 

CCGGAATCGAACCCTGA-3'. Relative transcript 

levels of ABHD11-AS1 were calculated using the 2
-ΔΔCt

 

method. All experiments were performed in triplicate. 

 

Cell proliferation assay 

 

HCT116 and SW480 cells were plated in 96-well plates 

at 3×10
3
 cells well and maintained in DMEM 

containing 10% FBS. At each indicated time point, 10 

μl of cell counting kit (CCK)8 solution (Dojindo, 

Kumamoto, Japan) was added to each well and 

incubated at 37° C for 2 h. Absorbance was then 

measured by an RT-6000 microplate reader (Rayto, 

Shenzhen, China) at a wavelength of 450 nm. 

 

Fluorescence in situ hybridization 

 

HCT116 cells were immobilized with 4% 

paraformaldehyde for 20 min and then washed three 

times with phosphate-buffered saline (PBS) for 5 min 

each time. After 8 min of protease K treatment, cells 

were dehydrated using an ethanol gradient and then 

hybridized with a fluorescently labeled ABHD11- 

AS11 probe. 4',6-diamidino-2-phenylindole (Life 

Technologies, Carlsbad, CA, USA) was used to stain 

the nucleus. Fluorescence was observed under a Nikon 

microscope. 

 

Flow cytometric analysis of apoptosis 
 

Cells were harvested and fixed with cold  

ethanol overnight and then incubated with propidium 

iodide and RNase in the dark for 15 min. They were 

washed twice with cold PBS and harvested, then 

stained with fluorescein isothiocyanate-conjugated 

annexin V for 20 min and propidium iodide for 15 

min in the dark. Stained cells were evaluated by flow 

cytometry using the FACSAriaIII sorter (BD 

Biosciences, San Jose, CA, USA) and analyzed by 

FlowJo vX.0.7 software. 

 

Cell migration and invasion assays 
 

Cell migratory and invasive abilities were detected with 

the Transwell assay kit (BD Biosciences). A total of 1 × 

10
5
 cells were suspended in 200 µl serum-free medium 

and seeded in the upper compartment of the Transwell 

insert. Then, 500 µl of growth medium was added to the 

lower chambers as a chemoattractant. After 24 h, cells 

were fixed with 4% paraformaldehyde, and migratory 

cells on the underside were stained with 0.1% crystal 

violet. Cells in five random fields of view were counted 

under the DC 300F phase-contrast microscope (Leica, 

Wetzlar, Germany). 

 

Mouse xenograft study 
 

Six-week-old male BALB/c nude mice were bought 

from the Experimental Animal Center of Xiamen 

University (Xiamen, China). HCT116-shNC and 

HCT116-shADHB11 cells were harvested and 

resuspended in PBS at 5 × 10
7
 cells/ml, and 100 μl of 

the cells was injected subcutaneously into the right 

flank of each mouse. The tumor size was recorded once 

a week. Tumor volume (V) was calculated using the 

formula: π/6 × length × width
2
. 

 

Western blot analysis 
 

RIPA lysis buffer (Sigma-Aldrich, St Louis, MO, USA) 

containing protease inhibitors (Sigma) was used to 

extract total protein. Protein concentrations were 

determined using the bicinchoninic acid method (Pierce 

Chemical Co., Rockford, IL, USA). A total of 40 μg of 

total protein was resolved by 8% tris–glycine sodium 

dodecyl sulfate polyacrylamide gels and transferred to 

nitrocellulose membranes. After being blocked in 

blocking buffer containing 5% non-fat milk for 2 h at 

room temperature, the membranes were incubated 

overnight with primary antibodies at 4° C. After 

washing three times, the membranes were incubated 

with the horseradish peroxidase-conjugated secondary 

antibody (diluted 1:5000). The membranes were washed 

again and proteins were visualized using ECL 

Substrates (Millipore, Bedford, MA, USA). GAPDH 

was used as an internal control. The primary antibodies 

used in this study were: ITGA5, phosphorylated (p)-

FAK, FAK, p-P85, P85, p-Akt1, and Akt1 (all Cell 

Signaling Technology, Beverly, MA, USA), and 

GAPDH (Santa Cruz Biotechnology, Santa Cruz, CA, 

USA). 

 

Statistical analysis 

 

All statistical analyses were performed using 

GraphPad Prism version 8.0 (GraphPad Software, La 

Jolla, CA, USA). The Student’s t-test was used to 

estimate statistical significance between groups. A P-

value of less than 0.05 was regarded as statistically 

significant. Results are shown as means ±standard 

deviation (SD) of three biological replicates or 

samples. 

 

Ethical statement 
 

This study was approved by the Medical Ethics 

Committee of Affiliated Sanming Hospital of Fujian 

Medical University. 
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Data availability statement 
 

The data that support the findings of this study are 

available from the corresponding author upon 

reasonable request. 

 

RESULTS 
 

ABHD11-AS1 was overexpressed in CRC tissues and 

indicated poor prognosis 
 

Using Gene Expression Profiling Interactive Analysis 

(GEPIA), we investigated ABHD11-AS1 expression in 

CRC. As shown in Figure 1A, ABHD11-AS1 was 

overexpressed in CRC tumor samples compared with 

normal tissue samples. Quantitative reverse 

transcription (RT)-qPCR analysis showed that the 

expression of ABHD11-AS1 mRNA was increased in 

86.7% (52/60) of CRC patients (Figure 1B). We also 

used RT-qPCR to investigate ABHD11-AS1 expression 

in five CRC cell lines and two normal human colonic 

epithelial cell lines. As shown in Figure 1C, ABHD11-

AS1 expression was higher in HT29, HCT116, SW480, 

SW620, and LoVo colorectal cancer cell lines than in 

normal colonic epithelial cell lines NCM460 and FHC, 

with HCT116 and SW480 cells expressing much higher 

ABHD11-AS1 levels. Both cell lines were therefore 

used for subsequent studies. 

 

CRC patients were divided into two groups according to 

their median expression of ABHD11-AS1, and Kaplan–

Meier analysis indicated that the up-regulation of 

ABHD11-AS1 was associated with significantly shorter 

overall survival (Figure 1D, P = 0.027). 

 

 
 

Figure 1. ABHD11-AS1 was highly expressed in CRC and indicated a poor prognosis. (A) Public database GEPIA displayed the mRNA 
expression of ABHD11-AS1 in CRC and normal colorectal tissue. (B) mRNA expression of ABHD11-AS1 in CRC and normal colorectal tissue in 
our patient samples. (C) mRNA expression ABHD11-AS1 in CRC and normal colonic epithelium cell line. (D) Kaplan–Meier plot of 60 patients 
with survival data (from our samples) stratified by ABHD11-AS1 expression levels. 
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ABHD11-AS1 deficiency attenuated proliferation 

and promoted apoptosis in CRC cells 

 

Next, we used lentiviruses to infect HCT116 and 

SW480 cell lines with ABHD11-AS1 shRNAs to 

knock-out ABHD11-AS1 expression. As 

demonstrated in Figure 2A, 2B, ABHD11-AS1 

expression was obviously decreased following 

ABHD11-AS1-sh-1 or ABHD11-AS1-sh-2 infection. 

CCK-8 assay findings indicated that the 

 

 
 

Figure 2. ABHD11-AS1 deficiency attenuated proliferation and promoted apoptosis in CRC cells. (A) ABHD11-AS1 expression in 
HCT116-ABHD11-AS1-sh cells was determined by RT-qPCR. (B) ABHD11-AS1 expression in SW480-ABHD11-AS1-sh cells was determined by 
RT-qPCR. (C) The proliferation curves of HCT116-sh-NC cells and HCT116-ABHD11-AS1-sh cells measured by CCK-8 array. (D) The proliferation 
curves of SW480-sh-NC cells and SW480-ABHD11-AS1-sh cells measured by CCK-8 array. (E) PI staining illustrated the cell cycle distribution of 
HCT116-sh-NC cells and HCT116-ABHD11-AS1-sh cells. (F) PI staining illustrated the cell cycle distribution of SW480-sh-NC cells and SW480-
ABHD11-AS1-sh cells. (G) Annexin V-7ADD and PI double staining illustrated the apoptosis cells of HCT116-sh-NC cells and HCT116-ABHD11-
AS1-sh cells. (H) Annexin V-7ADD and PI double staining illustrated the apoptosis cells of SW480-sh-NC cells and SW480-ABHD11-AS1-sh cells. 
*P<0.05, **P<0.01, ***P<0.001. 
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ABHD11-AS1 deficiency significantly impaired 

proliferation in HCT116 and SW480 cells  

(Figure 2C, 2D), while fluorescence-activated  

cell sorting results revealed that more ABHD11- 

AS1-deficient cells were arrested in G0/G1  

phase compared to the control group (Figure  

2E, 2F). Moreover, as seen in Figure 2G,  

2H, sh-ABHD11-AS1 infection significantly 

increased the apoptosis rate in CRC cells.  

These results suggest that ABHD11-AS1  

promotes growth and inhibits apoptosis in CRC  

cells. 

 

ABHD11-AS1 deficiency suppressed CRC cell 

migration and invasion 

 

Using the Transwell assay, we discovered that a 

deficiency of ABHD11-AS1 dramatically attenuated the 

migration and invasion of HCT116 and SW480 cells 

(Figure 3A–3D). 

 

 
 

Figure 3. ABHD11-AS1 deficiency suppressed CRC cell migration and invasion. (A) Transwell assay for cell migration.  
The ABHD11-AS1-deficiency HCT116 cell had significantly less migration cells than that of control. (B) Transwell assay for cell migration.  
The ABHD11-AS1-deficiency SW480 cell had significantly less migration cells than that of control. (C) Transwell assay for cell invasion. The 
ABHD11-AS1-deficiency HCT116 cell had significantly less invasion cells than that of control. (D) Transwell assay for cell invasion. The 
ABHD11-AS1-deficiency SW480 cell had significantly less invasion cells than that of control. ***P<0.001. 
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ABHD11-AS1 knockdown inhibited xenograft tumor 

growth in vivo 

 

To explore the oncogenesis of ABHD11-AS1 in vivo, 

athymic nude mice were subcutaneously injected with 

control cells or ABHD11-AS1-deficient cells. Tumor 

growth was then measured over the next 4 weeks. As 

shown in Figure 4A–4D, tumor volume and weight 

were significantly impaired in mice injected with 

ABHD11-AS1-deficient cells. These findings provide 

further support of an oncogenic role for ABHD11-AS1. 

 

ABHD11-AS1 deficiency inhibited the 

ITGA5/FAK/PI3K/Akt signaling pathway in CRC 
 

We next employed transcriptome sequencing to 

investigate the differential expression of genes after the 

down-regulation of ABHD11-AS1 in CRC cells (Figure 

5A). Kyoto Encyclopedia of Genes and Genomes 

(KEGG) enrichment analysis demonstrated that 

PI3K/Akt signaling pathway-related genes such as 

cAMP responsive element-binding protein 3-like 3 

(CREB3L3), integrin-α5 (IGT5A), and interleukin-17 

(IL-17) were down-regulated in shABHD11-AS1 over-

expressing cells (Figure 5B). We verified these results 

using RT-qPCR and found that IGT5A mRNA 

expression decreased dramatically in ABHD11-AS1 

knockdown cells (Figure 5C, 5D). shABHD11-AS1 

regulation of ITGA5 mRNA expression was further 

confirmed using small interfering RNA transfection 

(data not shown). 

 

Next, we analyzed the protein expression of ITGA5 and 

other proteins downstream of ITGA5 in ABHD11-AS1 

knockdown cells. We showed that the expression of 

ITGA5, p-FAK, p-P85, and p-Akt1 was dramatically 

decreased following sh-ABHD11-AS1 infection in two 

CRC cell lines (Figure 5E, 5F). Similar results were 

observed in the tumor tissues of nude mice (Figure 5G). 

To explore the underlying mechanism whereby 

ABHD11-AS1 regulates ITGA5 expression, we 

determined the subcellular localization of ABHD11-

AS1 in CRC cells. RNA fluorescence in situ 

hybridization indicated that ABHD11-AS1 was mainly 

localized in the cytoplasm (Figure 6). Studies have 

shown that lncRNAs localized in the cytoplasm regulate 

 

 
 

Figure 4. ABHD11-AS1 deficiency impaired CRC cells growth in vivo. (A) Gross view of the tumor bearing in the mice. (B) Gross view 
of after sampling. (C) Growth curve of tumor volume. (D) Tumor weight was significantly different between the control and ABHD11-AS1 
deficiency groups. ***P<0.001. 
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Figure 5. ABHD11-AS1 deficiency inhibited ITGA5/FAK/PI3K/Akt signaling pathway in CRC. (A) mRNA sequencing to find 
differential genes between HCT116-sh-NC cells and ABHD11-AS1 deficient cells and displayed via Heat-map. (B) Differential genes enriched 
by KEGG pathway. Top 16 pathways were illustrated. (C) RT-qPCR to detect mRNA expression of ITGA5, CREB3L3, ITGA5, IL7 in HCT116 cells 
and ABHD11-AS1 deficient cells. (D) RT-qPCR to detect mRNA expression of ITGA5, CREB3L3, ITGA5, IL7 in SW480 cells and SW480 ABHD11-
AS1 deficient cells.  (E) WB analysis of protein abundance of ITGA5, FAK, p-FAK, P85, p-P85, Akt1, p-Akt1 in HCT116 cells and HCT116 
ABHD11-AS1 deficient cells. (F) WB analysis of protein abundance of ITGA5, FAK, p-FAK, P85, p-P85, Akt1, p-Akt1 in SW480 cells and SW480 
ABHD11-AS1 deficient cells. (G) WB analysis of protein abundance of ITGA5, FAK, p-FAK, P85, p-P85, Akt1, p-Akt1 in tumor tissues of nude 
mice. ***P<0.001. 
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mRNA turnover by competitively binding micro 

(mi)RNAs, but unfortunately we failed to identify 

miRNAs that could bind to both ABHD11-AS1 and 

ITGA5 mRNA simultaneously (data not shown). 

 

ITGA5 abrogated the effects of ABHD11-AS1 

deficiency in CRC 
 

To explore whether sh-ABHD11-AS1 exerted its 

function through regulating the ITGA5/FAK/PI3K/Akt 

signaling pathway in CRC, we transfected HCT116 and 

SW480 cells with sh-ABHD11-AS1 lentiviruses alone 

or in combination with ITGA5 lentiviruses. As shown 

in Figure 7A, 7B, ITGA5 over-expression abrogated the 

ABHD11-AS1 inhibition-mediated effect on CRC cell 

proliferation. ITGA5 was also able to rescue the cell 

invasive abilities inhibited by sh-ABHD11-AS1 (Figure 

7C, 7D). 

 

DISCUSSION 
 

Mutations accumulating in chromatin can initiate and 

boost tumor development and progression, while 

epigenetic alterations themselves can be attributed to 

carcinogenesis. Additionally, lncRNA dysfunction has 

been reported to be associated with the development of 

a variety of different types of cancer [15–17]. 

 

LncRNAs can be oncogenes or tumor suppressor genes 

that function to regulate cellular differentiation and 

proliferation [18], and mounting evidence suggests that 

they have the potential to be used as precise non-

invasive biomarkers for CRC screening and disease 

evaluation [19]. For instance, H19, an oncogenic 

lncRNA in CRC, was shown to participate in cell 

proliferation and migration, and to be a predictor of 

poor prognosis [9]. 

 

The expression of ABHD11-AS1 is well studied in 

human papillary thyroid cancer [20], pancreatic cancer 

[21], and bladder cancer [22]. Herein, we observed that 

ABHD11-AS1 was up-regulated in CRC tissues, and 

that its high expression predicted unfavorable clinical 

outcomes. Additionally, ABHD11-AS1 depletion 

suppressed the proliferation and invasiveness of CRC 

cells in vitro and in vivo, suggesting that ABHD11-AS1 

exerts an oncogenic effect in CRC. 

 

Mechanisms by which lncRNAs regulate gene 

expression are dependent on its subcellular localization. 

Studies have shown that lncRNAs localized in the 

cytoplasm can function as miRNA sponges to inhibit 

binding to mRNA targets, leading to the stabilization of 

target mRNAs and regulation of corresponding protein 

expression [23]. The cytoplasmic localization of 

ABHD11-AS1 in CRC cells observed in the present 

study implies that it may function as a competitor of an 

miRNA that targets ITGA mRNA; however, this is yet 

to be identified. 

 

The PI3K/Akt signaling pathway is an important 

pathway that regulates cell metabolism, proliferation, 

and survival, and is frequently constitutively activated 

in cancer. This can be via activating mutations of p110a 

 

 
 

Figure 6. ABHD11-AS1 was mainly localized in the cytoplasm. Subcellular localization of ABHD11-AS1 determined by RNA FISH assay, 
U6 and 18s rRNA were used as internal controls. 
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(PIK3CA), fibroblast growth factor receptor 3, Ras, and 

Akt kinase genes, or inactivating mutations of the 

negative regulator phosphatase and tensin homolog gene 

[24]. During the past decade, many lncRNAs have been 

shown to contribute to cancer development, metastasis, 

and drug resistance through activating the Akt pathway. 

For example, ABHD11-AS1 was found to increase levels 

of p-PI3K and p-Akt1 proteins in pancreatic cancer cells, 

although the detailed upstream mechanisms remain 

unknown [13]. In this study, transcriptome sequencing 

and KEGG enrichment analysis showed that the PI3K/Akt 

signaling pathway may contribute to the tumor-promoting 

function of ABHD11-AS1. 

 

Integrins are heterodimeric transmembrane receptors 

consisting of α and β subunits, which form a large 

family that participates in cell proliferation, cytoskeletal 

organization, adhesion, migration, and differentiation 

[25, 26]. ITGA5 and FAK are two important upstream 

effectors of the PI3K/Akt pathway [27, 28]. The 

cytoplasmic tyrosine kinase FAK has been identified as 

a key mediator of integrin intracellular signaling. FAK 

phosphorylation acts like a switch of downstream 

signaling cascades, and is essential for the activation of 

PI3K/Akt signaling [29]. ITGA5 dysregulation was 

shown to facilitate the occurrence and development of 

CRC, but its precise role in CRC remained controversial 

[30–32]. Here, we showed that sh-ABHD11-AS1 

decreased the mRNA and protein expression of ITGA5 

in CRC cell lines, resulting in the down-regulation of p-

FAK, p-P85, and p-Akt1. Furthermore, we found that 

ITGA5 over-expression abrogated the inhibitory effects 

 

 
 

Figure 7. ITGA5 was able to rescue the effects of ABHD11-AS1 deficiency in CRC. (A) The proliferation curve of HCT116 cells with 
indicated administrations measured by CCK-8 assay. (B) The proliferation curve of SW480 cells with indicated administrations measured by 
CCK-8 assay. (C) Transwell assay to analysis invasion of HCT116 cell with indicated administrations. (D) Transwell assay to analysis invasion of 
SW480 cell with indicated administrations. ***P<0.001. 
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of ABHD11-AS1 deficiency on CRC cell proliferation, 

migration, and invasion. These results suggest that 

ABHD11-AS1 exerts its tumor-promoting function 

through targeting the ITGA5/FAK/PI3K/Akt signaling 

pathway. 

 

Integrins have been identified as therapeutic targets for 

cancer metastasis, with several integrin-based 

antibodies investigated in clinical trials [33]. As an 

example, the ITGA5 antagonist cilengitide has anti-

cancer effects on metastatic tumors in animal models 

[34]. Additionally, the ITGA5-based antibody CTNO-

95 promoted progression-free survival in patients with 

castration-resistant prostate cancer [35]. Our results 

suggest another possible means of modulating ITGA5 

through orchestrating ABHD11-AS1 expression. 

ABHD11-AS1 could also be used as a prognostic 

predictor and is a promising target for CRC therapy. 
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