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ABSTRACT

Breast cancer is a complex disease, and several processes are involved in its development. Therefore, potential
therapeutic targets need to be discovered for these patients. Proteasome 26S subunit, ATPase gene (PSMC) family
members are well reported to be involved in protein degradation. However, their roles in breast cancer are still
unknown and need to be comprehensively researched. Leveraging publicly available databases, such as cBioPortal
and Oncomine, for high-throughput transcriptomic profiling to provide evidence-based targets for breast cancer is
a rapid and robust approach. By integrating the aforementioned databases with the Kaplan—-Meier plotter
database, we investigated potential roles of six PSMC family members in breast cancer at the messenger RNA level
and their correlations with patient survival. The present findings showed significantly higher expression profiles of
PSMC2, PSMC3, PSMC4, PSMC5, and PSMC6 in breast cancer compared to normal breast tissues. Besides, positive
correlations were also revealed between PSMC family genes and ubiquinone metabolism, cell cycle, and
cytoskeletal remodeling. Meanwhile, we discovered that high levels of PSMC1, PSMC3, PSMC4, PSMC5, and PSMC6
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transcripts were positively correlated with poor survival, which likely shows their importance in breast cancer
development. Collectively, PSMC family members have the potential to be novel and essential prognostic

biomarkers for breast cancer development.

INTRODUCTION

In 2020, breast cancer accounted for 30% of all types of
cancer in women in the United States. Expressions of the
estrogen receptor (ER), progesterone receptor, and
human epidermal growth factor receptor (HER)-2 are
used to subgroup breast cancer cases. Currently, salvage
therapy for breast cancer patients includes fulvestrant
(selective ER downregulators) [1, 2], cyclin-dependent
kinase 4/6 inhibitors [3], aromatase inhibitors combined
with everolimus (a mammalian analog of rapamycin
which acts as a mammalian target of rapamycin (MTOR)
inhibitor) [4], and histone deacetylase (HDAC) inhibitors
[5]. High expression of B-cell lymphoma 2 was detected
in nearly 70% of metastatic breast cancer patients, and
treatment with a selective inhibitor improved apoptosis in
a preclinical model of breast cancer [6, 7]. Meanwhile,
proteasome 26S subunit ATPase (PSMC), proteasome
20S subunit beta (PSMB), GATA-binding protein,
serine/threonine Kinase, and matrix metallopeptidase
family genes, signal transducer and activator of
transcription (STAT), Notch, and phosphatidylinositol 3-
kinase (PI3K) were reported to be causes of those
alterations [8-11].

The PSMC family is comprised of six members, namely
PSMC1, PSMC2, PSMC3, PSMC4, PSMC5, and
PSMC6, which partially constitute formation of the 19S
regulatory complex. This complex plays an important
role in regulating the 26S proteasome, which in turn,
catalyzes the unfolding and translocation of substrates
into the 20S proteasome. In addition, members of the
PSMC gene family, except for PSMC3, are known to
cause N-CoR degradation [12]. Previous studies showed
that PSMC6 promotes osteoblast apoptosis and cancer
cell proliferation, while PSMC2 inhibits apoptosis.
Furthermore, PSMC6 also inhibited activation of the
PI3K/AKT signaling pathway in an animal model of
ovariectomy-induced osteoporosis [13-15]. PSMC5
participates in degradation of TInl and angiogenesis
[16]. In hepatocellular carcinoma cells, knockdown of
PSMC3IP resulted in suppression of xenograft pro-
liferation and tumorigenesis [17].

High-throughput technologies are widely used as systemic
approaches to explore differences in expressions of
thousands of genes for both biological and genomics
systems [18-20]. It is well recognized that many
upregulated and downregulated genes are associated with
oncogenic or tumor-suppressive functions in cancer

development [21-26]. Nevertheless, a holistic approach to
exploring messenger (M)RNA levels of the entire PSMC
family in breast cancer has not been conducted.

Therefore, in the present study, we analyzed all
available mRNA data from public breast cancer
databases, comparing datasets from breast cancer
patients with those from normal tissues. We also
predicted interactive networks and gene regulatory
networks related to the PSMC family to determine
potential biomarkers. A meta-analysis approach was
adopted to screen downstream molecules associated
with PSMC genes. Based on our analysis, PSMC family
members and their downstream-regulated genes are
potential candidates for new therapeutic targets in breast
cancer progression.

RESULTS

PSMC family members play crucial roles in breast
cancer progression

Previous studies identified six PSMC family members in
Homo species, and some of these genes play crucial roles
in cancer progression. Oncomine platform contained a
total of 392 unique analyses for PSMC1 expression,
and PSMC1 had significant in 13 of 392 unique analyses.
PSMC2 had significant in 55 of 433 unique
analyses, PSMC3 had significant in 28 of 421 unique
analyses, PSMC4 had significant in 71 of 432
unique analyses, PSMC5 had significant in 24 of
420 unique analyses, PSMC6 had significant in 28 of 445
unique analyses (Figure 1). However, a meta-analysis is
needed to clarify gene signatures of PSMC family
members in breast cancer. According to our results from
an Oncomine analysis of MRNA expressions of PSMC2,
PSMC3, PSMC4, PSMCS5, and PSMC6, these members
are highly upregulated in breast cancer tissues; therefore,
we chose breast cancer to perform further bioinformatics
analyses (Figure 1). Furthermore, in the METABRIC
database, expressions of PSMC members in breast cancer
tissues were significantly higher than those in normal
tissues; p values ranged from 2.16E-45 to 0.023 for
PSMC1, 1.37E-29 to 0.016 for PSMC2, 3.18E-21 to
0.001 for PSMC3, 1.28E-53 to 0.018 for PSMC4, 7.02E-
36 to 0.041 for PSMC5, and 9.03E-12 to 0.039 for
PSMC6 (Supplementary Table 1). Meanwhile, to further
explore gene expressions of the entire PSMC family in
breast cancer, we compared transcript levels of different
breast cancer subtypes, such as the triple-negative, HER-
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2, and luminal subtypes, relative to normal breast tissues,
in TCGA database (Supplementary Figure 1).
Interestingly, we discovered that PSMC genes were
overexpressed in a subtype-specific manner: specifically,
PSMC1, PSMC2, PSMC3, PSMC4 were highly
expressed in the triple-negative subtype, PSMC5 in HER-
2, and PSMC6 in luminal cancer. These results suggest
oncogenic effects of PSMC family genes on tumor
progression.

Associations between mRNA levels of the PSMC
family and clinicopathological parameters in breast
cancer patients and cell lines

GEPIA2 datasets were used to analyze mRNA levels
of PSMC members in breast cancer tissues compared
to normal tissues. We found that levels of all six
PSMCs were upregulated in breast cancer tissues

PSMC1

PSMC2 PSMC3

relative to normal breast tissues (Figure 2A-2H).
Additionally, analysis of the CCLE dataset
(https://www.broadinstitute.org/ccle) also  showed
differential expressions of PSMC family members in
breast cell lines (Figure 3).

Genes coexpressed with PSMC family genes in
breast cancer

We analyzed genes coexpressed with PSMCL1 in the
Perou Breast 2 dataset from the Oncomine platform.
We found that PSMC1 was positively correlated with
MYL9, PCOLCE, ANXA6, DVL1, MAPKAPK2,
PROC, FTL, ZNF358, CHRNA1, COL5Al, MPP1,
PDEG6A, COL1AlL, MIA, SH2B3, COL6AL, and BGN.
We used the Landemaine dataset to analyze genes
coexpressed with PSMC2 and found that its
expression was positively correlated with SMADS5,
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Figure 1. Overview of mRNA expression levels of proteasome 26S subunit, ATPase (PSMC) genes in multiple types and
subtypes of cancer from the Oncomine database. The analysis compared expressions of target genes in breast cancer tissues relative
to normal matched tissues. Red and blue gradients display the top-ranked genes in specific datasets. Significant unique analysis means the
number of datasets that satisfied the threshold of >2 multiples of change, p<0.05, and in the top 10% gene ranking.
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Figure 2. Transcript expressions of proteasome 26S subunit, ATPase (PSMC) genes in breast cancer. (A-F) Expressions of PSMC
members in multiple types of cancer. (G, H) Transcript expressions of PSMC members in clinical breast cancer patients. Red bar and box plots
show tumor expression while green/gray colors represent normal breast tissues.
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KLHL20, ZNF148, KLHL28, PPP4R2, SFRS12IP1,
NPHP3, TMCC1, KIAA2018, DHX29, Clorf27,
Cl40rfl38, SOCS4, Cllorf46, FKTN, RNF170,
CHIC1, ZNHIT6, and JMIDIC. We analyzed genes
coexpressed with PSMC3 in the Minn dataset and
found that its expression was positively correlated
with EIF6, CLIC1, MAPRE1, EIF2S2, GRPEL1,
TMEM93, PSMB6, EXOSC9, RPAI, COPS3, G3BP1,
EIF2S1, NOL7, SNRPC, EEFIEI, RDBP, and CSEIL.
As for the genes coexpressed with PSMC4, we used
the Ma dataset and found that it was positively
correlated with expressions of ADRM1, CAPZB,
ACOT7, HSPB1, UEVLD, PCBD2, CCDC64,
C7orf68, SCD, CYB561, GPRC5A, DNAJA4, HAGH,
SNRNP25, PSMD2, ANXA4, GRB2, UBE2F, and
UBEZF. We analyzed genes coexpressed with PSMC5
in the Julka dataset and found that its expression was
positively correlated with CCDC45, CMYA5, KCTD3,
SPOPL, TP53INP1, TPPP3, C20o0rf54, PTGERS,

PLK1S1, MYADM, ADAMTSL3, ABCC5, and CAPS.
For genes coexpressed with PSMC6, we used
the Kreike dataset and found that its expression
was positively correlated with CLPX, CCDC90B,
FAM18B2, C60rf62, ZBTB33, PYROXD1,
CDC42SE2, COMMDS6, LOC401397, CAPZAl,
TPRKB, GABPA, MATR3, ZDHHC20, SCOC, and
COPS2 (Figure 4A).

Additionally, associations among PSMC1, PSMC2,
PSMC3, PSMC4, PSMC5, and PSMC6 were also
analyzed using the GEPIA dataset. Specifically, PSMC1
was positively correlated with PSMC2 (R=0.41,
p<0.05), PSMC3 (R=0.36, p<0.05), PSMC4 (R=0.2,
p<0.05), PSMC5 (R=0.26, p<0.05), and PSMC6
(R=0.42, p<0.05). PSMC2 was positively correlated
with  PSMC3 (R=0.27, p<0.05), PSMC4 (R=0.21,
p<0.05), PSMC5 (R=0.11, p<0.05), and PSMC6 (R=0.3,
p<0.05). PSMC3 was positively correlated with PSMC4

EXOC1, CAT, WDR11, SDCBP, CCDC46, C20orf3, (R=0.24, p<0.05), PSMC5 (R=0.22, p<0.05), and
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Figure 3. Expressions of proteasome 26S subunit, ATPase (PSMC) genes in different breast cancer cell lines. Heatmap plots
were acquired from the CCLE database, which indicated expression levels of six PSMC members in breast cancer cell lines. The upper blocks
in red indicate over-expression, whereas the bottom blocks indicate under-expression.
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PSMC6 (R=0.15, p<0.05). PSMC4 was positively
correlated with PSMC5 (R=0.021, p<0.05) and PSMC6
(R=0.068, p<0.05). Finally, PSMC5 was positively
correlated with PSMC6 (R=0.13, p<0.05) (Figure 4B).
Meanwhile, we obtained similar results from the
cBioPortal and the Cytoscaped and METABRIC
databases, which revealed that the six PSMC members
were correlated with cell cycle-related genes
(Supplementary Figure 2). In addition, expressions of
PSMC family members were also correlated with
immune infiltration profiles in breast cancer, as
analyzed with the Tumor Immune Estimation Resource
(TIMER; cistrome.shinyapps.io/timer) tool. Expression

PSMC1

of each PSMC gene was associated with tumor purity
and markers of different types of immune cells
(Supplementary Figure 3).

Protein expressions and prognostic values of the
PSMC family in breast cancer specimens

Since PSMC family genes were differentially expressed
in samples from breast cancer patients, we next
explored the potential roles of these genes in human
breast cancer tissues, correlating their expressions with
other potential biomarkers related to molecular subtypes
of breast cancer. To determine expressions of PSMC
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Figure 4. Genes coexpressed with the proteasome 26S subunit, ATPase (PSMC) family and correlations among the six PSMC
genes in breast cancer. (A) Genes coexpressed with PSMC genes in breast cancer from the Oncomine platform. (B) Correlations among

PSMC genes in breast cancer from the GEPIA2 platform.
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family members and their clinical relevance, we
analyzed protein expressions of individual PSMC
members in clinical specimens from the Human Protein
Atlas. The data demonstrated that PSMC1-6 presented

PSMC1
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PSMC5

PSMC6

moderate protein expressions, and PSMC2, PSMC3,
and PSMC5 were highly expressed

clinical

tissues

from Dbreast
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(Figure 5). The Kaplan—Meier plotter database also
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Figure 5. Protein expression levels of proteasome 26S subunit, ATPase (PSMC) family members across clinical specimens of
breast cancer. PSMC1, PSMC4, and PSMC6 proteins were moderately expressed, and some clinical tissues showed strong PSMC2, PSMC3,

and PSMCS5 protein expressions in breast cancer.
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showed that PSMC1, PSMC3, PSMC4, PSMC5

PSMC6 had high expression levels in breast cancer

, and

tissues may have oncogenic roles in breast cancer

progression. High transcription levels of PSMC1,

PSMC3, PSMC4, PSMC5, and PSMC6 predicted
survival, whereas PSMC2 did not show the
pattern (Figure 6).
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Figure 6. Relationship between expressions of proteasome 26S subunit, ATPase (PSMC) family members with recurrence-
free survival (RFS) and distant metastasis-free survival (DMFS) from clinical breast cancer patients (n=2898). Kaplan—-Meier
plots show correlations of RFS and DMFS in breast cancer patients with high and low expression levels of PSMC family members using the
median of expression as the cutoff. Red and black lines respectively represent higher and lower values than the median. High expression
levels of most PSMC members were associated with poor survival, whereas high expression levels of PSMC2 were associated with

significantly better survival rates (p<0.05).
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analysis on the GeneGo Metacore platform
demonstrated that genes coexpressed with the six
PSMC genes participated in biological processes
related to cancer progression. MetaCore can be used
to construct downstream networks associated with
biological processes from uploaded genes. By up-
loading PSMC coexpressed genes from the
METABRIC database into the Metacore platform, we
found that several cancer progression-related pathways
were correlated with genes of the PSMC family
(Supplementary Figures 4, 5 and Supplementary Table
2), including "Cytoskeleton remodeling_Regulation of
actin  cytoskeleton organization by the Kkinase
effectors of Rho GTPases", "Cell cycle_Role of APC in
cell cycle regulation”, "Cell cycle_Chromosome
condensation in  prometaphase”, "Cell cycle_
Nucleocytoplasmic transport of CDK/Cyclins”, and

"Transcription_Role of heterochromatin protein 1
family in transcriptional silencing” (Figure 7). Next,
the STRING platform was used to externally validate
and search for potential protein-protein interactions
(PPIs). The resulting network with a core cluster
contained all of the genes associated with cancer
progression and metastasis (Figure 8).

Next, we explored whether individual genes of the
PSMC family regulate specific pathways and networks
in breast cancer development. We obtained co-
expression profiles for PSMC1 from TCGA and
METABRIC breast cancer datasets. Afterward, GeneGo
Metacore annotations of each biological process
suggested that genes coexpressed with PSMC1 were
involved inG-protein-coupled receptor (GPCR)- and
apoptosis-related pathways and networks such as
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Figure 7. Coexpression of proteasome 26S subunit, ATPase (PSMC) genes and signal transduction pathways in breast cancer
tissues. (A) Venn diagram of PSMC family coexpression networks in METABRIC breast cancer databases. PSMC genes were analyzed using

METABRIC databases, and the intersection of coexpressed genes

was plotted. (B) To explore potential networks regulated by PSMC family

genes, we exported coexpressed genes and further uploaded them to the MetaCore platform for a pathway analysis. (C) The MetaCore
pathway analysis of "biological processes" indicated that “Cytoskeleton remodeling_Regulation of actin cytoskeleton organization by the
kinase effectors of Rho GTPases"-related pathways were correlated with breast cancer development.
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“Chemotaxis_Lysophosphatidic  acid  signaling via
GPCRs”,  “Development Positive  regulation  of
WNT/Beta-catenin signaling in the cytoplasm”, and
“Apoptosis and survival Regulation of apoptosis by
mitochondrial proteins”, and play essential roles in breast
cancer (Supplementary Figure 6 and Supplementary Table
3). PSMC2-related genes were involved in Wnt- and
hypoxia-related pathways and networks such as
“Development Negative regulation of WNT/Beta-catenin

signaling in the cytoplasm” and “Transcription HIF-1
targets”, which may be involved in breast
cancer (Supplementary Figure 7 and Supplementary
Table 4). Genes coexpressed with PSMC3 participated
in processes of cytoskeleton- and organization-related
pathways and networks such as “Cytoskeleton
remodeling_Regulation of actin cytoskeleton
organization by the kinase effectors of Rho GTPases”
(Supplementary Figure 8 and Supplementary Table 5).

BLI%77
RELZRPL23A

4

Figure 8. Network analysis of protein-protein interactions (PPIs) by the STRING platform. Genes associated with the proteasome
26S subunit, ATPase (PSMC) family were uploaded to the STRING platform to establish the network. Using k-means clustering, the network

was further separated into different clusters.
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PSMC4-related genes were involved in mitogen-activated
protein  kinase (MAPK)- and inflammation-related
pathways and networks such as “Signal trans-
duction_CXCR4 signaling via MAPKSs cascades” and
“Signal transduction_Angiotensin II/AGTRI1 signaling via
Notch, Beta-catenin and NF-xB pathways”, which may
participate in breast cancer (Supplementary Figure 9 and
Supplementary Table 6). Genes found to be coexpressed
with PSMC5 were involved in oxidative stress- and cell
adhesion-related pathways and networks such as
“Oxidative stress ROS-induced cellular signaling” and
“Cell adhesion Tight junctions” (Supplementary Figure
10 and Supplementary Table 7). PSMC6-coexpressed
genes were involved in calcium- and hormone-related
pathways and  networks such as  “Signal
transduction_Calcium-mediated signaling” and
“Reproduction_Gonadotropin-releasing hormone (GnRH)
signaling ”, which could participate in breast cancer
(Supplementary Figure 11 and Supplementary Table 8).

DISCUSSION

Breast cancer has the highest prevalence rate compared
to other types of cancer, particularly in females. Despite
several years of extraordinary efforts to increase our
knowledge of tumor biology and improve surgical
treatments and chemotherapies, prognoses of advanced
breast cancer patients have not improved [27-32].
Therefore, it is very important to investigate new
diagnostic tools and novel biomarkers that can allow us
to refine patient prognoses and investigate effective
interventions.

Most genes of the PSMC family are upregulated in many
types and subtypes of cancer. PSMC members were
proven to be involved in tumor progression. For example,
overexpression of PFNL1 is associated with PSMC1 in the
MDA-MB-231 triple-negative breast cancer cell line and
may involve multiple mechanisms for cancer progression
[33]. PSMC2 is highly expressed in pancreatic cancer, and
PSMC2-knockdown  significantly  decreased  cell
proliferation. PSMC3 was identified as a crucial node in a
PPI network in glioma cells [34]. PSMC4 and PSMC5
contribute to prostate tumorigenesis [35]. Additionally,
PSMC4 was identified as one of the best biomarkers for
endometrial cancer [36], and risk model construction
revealed that it is also a prognostic marker for the same
type of cancer [37]. PSMCS5 acts as a novel regulator and
is involved in the extracellular signal-regulated kinase 1/2
signaling pathway [38], and it was observed to have a
relatively higher cytoplasmic expression pattern in most
cancer types [39]. Both the PSMC6 and MAPKS8 genes
were upregulated in melanosis coli patients [40], and
CRISPR Genome-Wide Screening demonstrated that the
PSMC6 subunit is an important and sensitive target for
bortezomib in multiple myeloma cells [41].

Since the roles of PSMC family members in breast
cancer are poorly described, the present findings show
their importance, by providing preliminary clues for
prospective studies in breast cancer research. Findings
from the current study are in line with previous reports
on the roles of PSMC genes in cancer. Both mRNA and
protein levels of PSMC2, PSMC3, PSMC4, PSMC5,
and PSMC6 were significant in cancer tissues, and
PSMC1, PSMC3, PSMC4, PSMC5, and PSMC6
overexpression was associated with poor prognoses of
breast cancer patients. Meanwhile, to further clarify its
role of PSMC family genes in pan-cancer, we also used
GEPIA2 database to confirm that PSMC family genes
had prognostic value in these integrated analyses
(Supplementary Figure 12), as well as the PSMC family
gene expressions in CCLE database (Supplementary
Figure 13),

The coexpression analysis revealed the positive
correlative roles of PSMC family genes in cytoskeletal
remodeling and CDK/cyclins, as well as cell cycle-
related pathways and networks, which are consistent
with previous studies. To some extent, this is the first
report on both mRNA and protein expressions of the
PSMC family in cancer cell lines and tissues, together
with their associations with breast cancer patient
survival.

Collectively, by integrating multiple high-throughput
databases, our study uncovered that PSMC genes have
prognostic and predictive value in breast cancer. To
comprehensively provide a complete picture of the
PSMC members not only in breast but also in other
types and subtypes of cancer, our results can be used as
hints for further examination of this family, and
possibly they can serve as novel biomarkers and
potential prognostic indicators in breast cancer.

MATERIALS AND METHODS
Oncomine analysis

Oncomine (https://www.oncomine.org/), a well-
known high-throughput database for mRNA, was used
to query expressions of PSMC family members [42].
In brief, each gene symbol of the PSMC family was
used to search for expression levels in 20 types of
cancer relative to matched normal-type samples. The
search thresholds included a multiple of change of 2-
fold, a p value of <0.01, and a gene ranking in the top
10%. The search output displayed the number of
datasets that satisfied the above thresholds among all
unique analyses. Upregulated genes in the generated
dataset were displayed in a red gradient, decreasing
with the top-ranked percentage, while downregulated
genes in the generated dataset were presented in a
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blue gradient that decreased with the gene ranking. A
gene could be upregulated in one dataset and
downregulated in another depending on the search
thresholds and study parameters. It is useful to
examine discrepancies in gene expressions among
studies, and plots of breast cancer subtypes were
conducted with the ggpubr package in R environment
as we previously described [43-46].

Cancer cell line encyclopedia (CCLE) analysis

In addition to investigating mMRNA expressions of PSMC
family members in cancer tissues from the Oncomine
database, we further searched for their expression
levels in cell lines via the CCLE database
(https://portals.broadinstitute.org/ccle) [47]. The CCLE is
a high-throughput web-based tool with large numbers of
human cancer cell lines (n = 1457) and unique datasets (n
= 136,488). An RNA sequencing method was selected to
search for expressions of PSMC family members in 60
breast cancer cell lines, and results were plotted with
default settings as we previously described [48-50].

Functional enrichment analysis of PSMC family
members

To acquire coexpression patterns of PSMC family
members in the METABRIC and cBioPortal
databases [51], a Venn diagram was created using
InteractiVenn (http://www.interactivenn.net/). Then,
1588 coexpressed genes were further uploaded to Gene
Ontology for pathway and network analyses using the
MetaCore platform (https://portal.genego.com/), a
functional annotation platform for exploring the
biological significance behind a large list of genes.
Statistical significance as the boundary criterion was set
to p<0.05, as we previously described [52-54].

Search tool for the retrieval of interacting genes
(STRING)

Together with investigating mRNA expression levels,
we concomitantly performed searches for PPI
networks of PSMC family members based on
coexpressed genes using the STRING database.
STRING has protein data comprising 24.6 million
proteins in more than 5000 organisms, resulting in
more than 2 billion interactions [55]. We selected the
k-means clustering algorithm to classify target
proteins into different clusters.

Kaplan—-Meier plot of survival analysis
To understand how mRNA expression levels of PSMC

gene family members affected relapse-free survival (RFS)
and distant metastasis-free survival (DMFS) of breast

cancer patients, we performed a survival analysis using
the Kaplan—Meier plotter database (https://kmplot.com/)
[56]. Meanwhile, we also assessed the prognostic value of
PSMC gene family members for pan-cancer analysis in
GEPIA2, which contains RNA sequencing expression
data from different types of tumors as well as the normal
samples from the TCGA and GTEXx projects, including
Cholangio  carcinoma,  Colon  adenocarcinoma,
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma,
Esophageal carcinoma, Pancreatic adenocarcinoma,
Pheochromocytoma and  Paraganglioma, Prostate
adenocarcinoma, Rectum adenocarcinoma, Sarcoma, Skin
Cutaneous  Melanoma, Stomach adenocarcinoma,
Testicular Germ Cell Tumors, Thyroid carcinoma,
Thymoma, Uterine Corpus Endometrial Carcinoma,
Uterine  Carcinosarcoma and Uveal Melanoma,
Glioblastoma multiforme, Head and Neck squamous cell
carcinoma, Kidney Chromophobe, Kidney renal clear cell
carcinoma, Kidney renal papillary cell carcinoma, Acute
Myeloid Leukemia, Brain Lower Grade Glioma,
Adrenocortical carcinoma, Bladder Urothelial Carcinoma,
Breast invasive carcinoma, Cervical squamous cell
carcinoma and endocervical adenocarcinoma, Liver
hepatocellular carcinoma, Lung adenocarcinoma, Lung
squamous cell carcinoma, Mesothelioma, Ovarian serous
cystadenocarcinoma [57, 58]. All default settings
inKaplan—Meier were selected for our analysis, namely
survival curves, log-rank p values, and hazard ratios with
95% confidence intervals (Cls).

Tumor immune estimation resource (TIMER)

To further analyze the infiltration level of immune
cells, we applied TIMER 2.0 (http://timer.comp-
genomics.org) across 31 cancer types comprising of
more 10,000 samples [59, 60]. The differences between
normal and tumor in mMRNA expression of PSMC genes
were obtained using DiffExp module. We then selected
B cells, T cells clusters including CD4+ and CD8+
together with neutrophils, macrophages, and dendritic
cells for our analysis.
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SUPPLEMENTARY MATERIALS

Supplementary Figures
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Comparison and P value PSMC1 PSMC2 PSMC3 PSMC4 PSMC5 PSMC6
Normal-vs-Luminal 1.99E-05 <1E-12 <1E-12 <1E-12 2.22E-16 1.62E-12
Normal-vs-HER2 Positive 1.62E-02 9.69E-08 1.24E-04 8.21E-11 4.66E-03 1.46E-02
Normal-vs-TNBC 7.73E-07 <1E-12 1.62E-12 1.11E-16 9.96E-05 2.73E-01
Luminal-vs-HER2 Positive 1.95E-01 1.61E-02  8.59E-01 9.26E-01 6.73E-01 5.60E-01
Luminal-vs-TNBC 3.20E-03 3.14E-07  3.58E-07 1.42E-03 7.57E-07 1.27E-06
HER2 Positive-vs-TNBC 7.04E-01 4,80E-01  3.99E-04 1.05E-02 5.19E-02 4.78E-02

Supplementary Figure 1. Expressions of proteasome 26S subunit, ATPase (PSMC) family members in breast cancer in TCGA
database. Comparison of members of PSMC family genes in different subtypes of breast cancer patients. (A) The differential expression of
PSMCL1 in breast cancer subclasses. (B) The differential expression of PSMC2 iin breast cancer subclasses. (C) The differential expression of
PSMC3 in breast cancer subclasses (D) The differential expression of PSMC4 in breast cancer subclasses. (E) The differential expression of
PSMCS in breast cancer subclasses. (F) The differential expression of PSMC6 in breast cancer subclasses. (G) Comparison of PSMC genes
between normal and breast cancer subtypes as well as within subtypes.
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Supplementary Figure 2. Correlations among different proteasome 26S subunit, ATPase (PSMC) family members in breast
cancer. (A) Correlations between PSMC family members and cell cycle-related genes in breast cancer patients from the METABRIC database,
and insignificant correlations are marked by crosses. (B) Through a cytoscape analysis, high correlations between PSMC members and cancer
development-related pathways were observed.
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Supplementary Figure 3. Correlations between expressions of proteasome 26S subunit, ATPase (PSMC) family members and
immune infiltration profiles in breast cancer. The figure shows the expression of each gene associated with tumor purity and several
tumor-infiltrating immune cell markers, such as B cell, CD8+ T cell, CD4 + T cell, macrophage, neutrophil, and dendritic cell markers (p<0.05).
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Supplementary Figure 4. Cell cycle-related networks were correlated with proteasome 26S subunit, ATPase (PSMC) family
genes in breast cancer. The MetaCore pathway analysis of "biological processes" indicated that "Cell cycle_Nucleocytoplasmic transport of
CDK and Cyclins"-related pathways were correlated with PSMC family genes in breast cancer development.
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Supplementary Figure 5. Ubiquinone-related networks were correlated with proteasome 26S subunit, ATPase (PSMC) family

genes in breast cancer. The MetaCore pathway analysis of "biological processes"
pathways were correlated with PSMC family genes in breast cancer development.
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Supplementary Figure 6. MetaCore pathway analysis of the coexpression gene network of proteasome 26S subunit, ATPase
1 (PSMC1) in breast cancer patients. Downstream pathway analyses revealed that "Chemotaxis_Lysophosphatidic acid signaling via
GPCRs" might play an important role in breast cancer development.
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catenin signaling in the cytoplasm" might play an important role in breast cancer development.
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Supplementary Figure 8. MetaCore pathway analysis of the coexpression gene network of proteasome 26S subunit, ATPase
3 (PSMC3) in breast cancer patients. Downstream pathway analyses revealed that "Apoptosis and survival_Regulation of apoptosis by
mitochondrial proteins" might play an important role in breast cancer development.
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Supplementary Figure 9. MetaCore pathway analysis of the coexpression gene network of proteasome 26S subunit, ATPase
4 (PSMC4) in breast cancer patients. Downstream pathway analyses revealed that "Signal transduction_CXCR4 signaling via MAPK
cascades" might play an important role in breast cancer development.
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Supplementary Figure 10. MetaCore pathway analysis of the genetic network coexpressed with proteasome 26S subunit,
ATPase 5 (PSMC5) in breast cancer patients. Downstream pathway analyses revealed that "Oxidative stress_ROS-induced cellular
signaling" might play an important role in breast cancer development.
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Supplementary Figure 11. MetaCore pathway analysis of the genetic network coexpressed with proteasome 26S subunit,
ATPase 6 (PSMC6) in breast cancer patients. Downstream pathway analyses revealed that "Signal transduction_Calcium-mediated
signaling" might play an important role in breast cancer development.
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Supplementary Figure 12. Overall survival curves comparing the high and low expression of PSMC family genes across
different types of cancer. The survival map for PSMC family genes in pan-cancer analyzed in GEPIA2 platform, and p<0.05 considered

significant.
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Supplementary Figure 13. The transcript expression of PSMC family genes in a variety of cancer cell lines. (A) The differential
expression of PSMC1 in Cancer Cell Line Encyclopedia (CCLE). (B) The differential expression of PSMC2 in CCLE. (C) The differential expression
of PSMC3 in in CCLE. (D) The differential expression of PSMC4 in CCLE. (E) The differential expression of PSMC5 in CCLE. (F) The differential
expression of PSMC6 in CCLE.
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Supplementary Tables

Please browse Full Text version to see the data of Supplementary Tables 3-8.

Supplementary Table 1. Significant changes in transcription levels of the proteasome 26S subunit, ATPase
(PSMC) family genes in different types of breast cancer from the METABRIC database.

Gene Types of sarcoma vs. normal p value ttest Multiple of change % Gene ranking
(cancer/normal)  (cancer/normal) (cancer/normal)
PSMC1 Invasive ductal breast carcinoma 2.16E-45 17.213 1.239 1776 (in top 10%)
Invasive lobular breast carcinoma 3.73E-15 8.299 1.186 2610 (in top 14%)
Invasive ductal and invasive lobular breast carcinoma 2.32E-12 7.567 1.186 2619 (in top 14%)
Tubular breast carcinoma 5.85E-10 6.657 1.156 3135 (in top 17%)
Medullary breast carcinoma 6.09E-09 7.432 1.43 1189 (in top 7%)
Invasive breast carcinoma 5.63E-04 3.76 1.249 2613 (in top 14%)
Ductal breast carcinoma in situ 1.50E-02 2.516 1.13 4252 (in top 23%)
Benign breast neoplasm 2.30E-02 3.543 1.172 1385 (in top 8%)
PSMC2 Invasive ductal breast carcinoma 1.37E-29 13.032 1.212 3117 (in top 17%)
Tubular breast carcinoma 4.52E-10 6.731 1.206 3098 (in top 17%)
Medullary breast carcinoma 2.74E-07 6.158 1.479 1898 (in top 10%)
Invasive ductal and invasive lobular breast carcinoma 2.84E-07 5.278 1.189 4496 (in top 24%)
Invasive lobular breast carcinoma 2.52E-04 3.521 1.08 6711 (in top 35%)
Mucinous breast carcinoma 4.81E-04 3.453 111 5503 (in top 29%)
Ductal breast carcinoma in situ 2.00E-03 3.814 1.224 1815 (in top 10%)
Invasive breast carcinoma 1.10E-02 2.468 1.164 4963 (in top 26%)
Breast carcinoma 1.60E-02 2.378 1.149 4844 (in top 26%)
PSMC3 Invasive ductal breast carcinoma 1.81E-56 21.593 1.391 1165 (in top 7%)
Invasive lobular breast carcinoma 3.18E-21 10.223 1.268 1647 (in top 9%)
Invasive ductal and invasive lobular breast carcinoma 1.18E-14 8.518 1.283 2072 (in top 11%)
Tubular breast carcinoma 1.54E-10 6.928 1.213 2948 (in top 16%)
Mucinous breast carcinoma 2.35E-09 6.759 1.251 2118 (in top 11%)
Medullary breast carcinoma 5.08E-09 7.49 1.581 1167 (in top 7%)
Invasive breast carcinoma 1.04E-05 5.336 1.334 995 (in top 6%)
Breast carcinoma 7.67E-04 3.846 1.207 2135 (in top 12%)
Ductal breast carcinoma in situ 1.00E-03 3.932 1.328 1734 (in top 9%)
PSMC4 Invasive ductal breast carcinoma 1.28E-53 20.067 1.663 1299 (in top 7%)
Invasive lobular breast carcinoma 4.00E-21 10.233 1.505 1665 (in top 9%)
Invasive ductal and invasive lobular breast carcinoma 8.95E-21 10.973 1.704 1064 (in top 6%)
Mucinous breast carcinoma 3.44E-20 12.783 1.953 138 (in top 1%)
Tubular breast carcinoma 2.41E-11 7.464 1.468 2693 (in top 14%)
Breast carcinoma 9.68E-06 6.234 1.766 501 (in top 3%)
Ductal breast carcinoma in situ 7.54E-05 5.948 1.877 375 (in top 2%)
Invasive breast carcinoma 2.24E-04 4.167 2.021 2119 (in top 11%)
Medullary breast carcinoma 1.00E-03 3.259 1.381 4759 (in top 25%)
Benign breast neoplasm 1.60E-02 5.134 2.085 1096 (in top 6%)
Breast phyllodes tumor 1.80E-02 3.029 1.637 2003 (in top 11%)
PSMC5 Invasive ductal breast carcinoma 7.02E-36 15.397 1.431 2506 (in top 14%)
Invasive lobular breast carcinoma 6.11E-13 7.435 1.274 3086 (in top 17%)
Tubular breast carcinoma 3.05E-12 7.714 1.403 2414 (in top 13%)
Invasive ductal and invasive lobular breast carcinoma 5.95E-12 7.294 1.327 2733 (in top 15%)
Mucinous breast carcinoma 1.09E-09 6.884 1.393 1996 (in top 11%)
Invasive breast carcinoma 7.93E-06 5.41 1.518 916 (in top 5%)
Medullary breast carcinoma 5.07E-04 3.559 1.273 4293 (in top 23%)
Ductal breast carcinoma in situ 2.00E-03 3.797 1.493 1893 (in top 10%)
Breast carcinoma 8.00E-03 2.758 1.317 4011 (in top 21%)
Benign breast neoplasm 4.10E-02 3.005 1.297 2135 (in top 12%)
PSMC6 Invasive ductal breast carcinoma 9.03E-12 6.909 1.065 5885 (in top 31%)
Tubular breast carcinoma 1.96E-07 5.569 1.173 4195 (in top 22%)
Invasive ductal and invasive lobular breast carcinoma 6.40E-04 3.303 1.14 6817 (in top 36%)
Invasive lobular breast carcinoma 3.00E-03 2.815 1.052 7600 (in top 40%)
Mucinous breast carcinoma 4.00E-03 2.76 1.05 6596 (in top 35%)
Breast carcinoma 7.00E-03 2771 1.061 3885 (in top 21%)
Ductal breast carcinoma in situ 3.90E-02 1.965 1.068 5699 (in top 30%)
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Supplementary Table 2. Pathway analysis of genes co-expressed with proteasome 26S subunit, ATPase (PSMC)
family genes from public breast cancer databases using the MetaCore database (with p<0.01 set as the cutoff

value).
# Map p Value Network objects from active data
Cytoskeleton remodeling_Regulation of actin cytoskeleton 6.29E-07 ARPC1B, BETA-PIX, Talin, Vinculin, ERM proteins, MyHC,
organization by the kinase effectors of Rho GTPases DMPK, Spectrin, MLCK, MRLC, Rac1l-related
2 Cell cycle_Chromosome condensation in prometaphase 1.24E-06 CAP-G, Cyclin A, CAP-G/G2, Aurora-A, Cyclin B, Histone H3,
CDK1 (p34)
3 Cell cycle_Nucleocytoplasmic transport of CDK/Cyclins 1.32E-06 Importin (karyopherin)-alpha, Cyclin A, Cyclin D1, Cyclin D3,
Cyclin D, CDK1 (p34)
4 Transcription_Role of heterochromatin protein 1 (HP1) 1.48E-06 SUMO-1, Cyclin A2, HDAC4, Rb protein, MEF2, Histone H4,
family in transcriptional silencing HDACS, Histone H3, CDK1 (p34)
5 Cell cycle_Role of APC in cell cycle regulation 2.43E-06 Geminin, Cyclin A, Aurora-A, Kid, Cyclin B, MAD2a, Securin,
CDK1 (p34)
6 Cell cycle_Spindle assembly and chromosome separation 3.13E-06 Importin (karyopherin)-alpha, Aurora-A, HEC, Kid, Cyclin B,
MAD?2a, Securin, CDK1 (p34)
7 Cell cycle_Regulation of G1/S transition (part 1) 9.74E-06 Cyclin A, Skp2/TrCP/FBXW, Cyclin D1, TGF-beta receptor type Il,
RING-box protein 1, SMAD4, Cyclin D3, Cyclin D
8 Cell cycle_Regulation of G1/S transition (part 2) 1.06E-05  Cyclin A2, Cyclin A, Cyclin D1, Rb protein, Cyclin D3, Cyclin D, c-
Fos
9 Abnormalities in cell cycle in SCLC 1.36E-05 PCNA, Cyclin A, Cyclin D1, Rb protein, Histone H3, CDK1 (p34),
Cyclin E2
10 Prolactin/lJAK2 signaling in breast cancer 4.63E-05 Bcl-6, STATS, Cyclin D1, STAT5B, PKM2, Cyclophilin A
11 Ubiquinone metabolism 4.65E-05 NDUFABL1, NDUFA4, NDUFB6, NDUFA2, NDUFA11, coenzyme
Q2 homolog, prenyltransferase (yeast), NDUFB5, NDUFB10,
NDUFC1, NDUFV3
12 Cell cycle_The metaphase checkpoint 6.12E-05 SPBC25, Aurora-A, HEC, CDCA1, HZwint-1, MAD2a, CENP-H
13 Transport_The role of AVP in regulation of Aquaporin 2 7.92E-05 MRLC2, MyHC, SNAP-23, Annexin I, VAMP2, MLCK, MRLC, c-
and renal water reabsorption Fos
14 Immune response_Function of MEF2 in T lymphocytes 7.92E-05 MAP3K3, MEF2D, HDAC4, Calcineurin A (catalytic), MEF2,
HDACS5, MEF2C, Calcineurin A (beta)
15 Cell cycle progression in Prostate Cancer 1.05E-04 Beta-catenin, Cyclin D1, STAT5B, Rb protein, Cyclin B, CDK1
(p34), c-Fos
16 Immune response_ETV3 effect on CSF1-promoted 1.57E-04 MSK1/2 (RPS6KA5/4), ETV3, PRIM2A, HDACS5, CDK1 (p34)
macrophage differentiation
17 Angiotensin Il Signaling in Cardiac Hypertrophy 2.05E-04 Thioredoxin, CBP, HDAC4, Calcineurin A (catalytic), NF-kB,
HDACS, SOD1, TRPC1, c-Fos
18 Cell cycle_Cell cycle (generic schema) 2.63E-04 Cyclin A, Rb protein, Cyclin B, Cyclin D, CDK1 (p34)
19 Signal transduction_Activin A signaling regulation 3.07E-04  CBP, Histone H2, SMAD4, TGF-beta receptor type I11 (betaglycan),
Histone H4, Histone H3
20 Aminoglycoside- and cisplatin-induced hair cell death 3.65E-04 Calpain 1(mu), Cytochrome c, Beta-catenin, Histone H2A, HDAC4,
Calcineurin A (catalytic), Histone H2B, Histone H4, NF-kB, Histone
H3, c-Fos
21 Cell cycle_Sister chromatid cohesion 4.14E-04 PCNA, Cyclin B, Securin, Histone H3, CDK1 (p34)
22 Noise-induced hair cell death and spiral ganglion neuron 4.18E-04  Calpain 1(mu), Cytochrome c, Alpha-fodrin, VAMP1, GDNF, ERM
degeneration proteins, HDAC4, Rb protein, Calcineurin A (catalytic), Histone H3
23 Cell cycle_ESR1 regulation of G1/S transition 4.28E-04 Cyclin A2, Cyclin A, Skp2/TrCP/FBXW, Cyclin D1, Rb protein, c-
Fos
24 Transcription_N-CoR/SMRT complex-mediated epigenetic 4.58E-04 PBX1, HDAC4, Histone H2B, Histone H4, NF-kB, HDACS, c-Fos
gene silencing
25 HBV-dependent transcription regulation leading to HCC 6.24E-04 PCNA, CBP, EGR2 (Krox20), Cyclin D1, Pinl1
26 Development_Role of HDAC and calcium/calmodulin- 7.45E-04 MAP3K3, MEF2D, HDAC4, Calcineurin A (catalytic), MEF2,
dependent kinase (CaMK) in control of skeletal myogenesis HDACS5, MEF2C
27 CREB1-dependent transcription deregulation in 7.55E-04 Cytochrome ¢, CBP, NDUFB5, COX Vla-1, SOD1
Huntington's Disease
28 Development_ NOTCH1-mediated pathway for NF-KB 7.55E-04 Jaggedl, MAML1, Histone H4, NF-kB, Histone H3
activity modulation
29 Apoptosis and survival_Ubiquitination and phosphorylation 7.81E-04 UEV1A, MAP3K3, E2N(UBC13), TRADD, NF-kB1 (p105), NF-
in TNF-alpha-induced NF-kB signaling kB1 (p50)
30 Mitogenic action of ErbB2 in breast cancer 1.04E-03 Beta-catenin, Cyclin G2, Cyclin D1, MSK1, ErbB4, NF-kB, c-Fos
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Supplementary Table 3. Pathway analysis of genes coexpressed with proteasome 26S subunit, ATPase 1
(PSMC1) from public breast cancer databases using the MetaCore database (with p<0.01 set as the cutoff
value).

Supplementary Table 4. Pathway analysis of genes coexpressed with proteasome 26S subunit, ATPase 2
(PSMC2) from public breast cancer databases using the MetaCore database (with p<0.01 set as the cutoff
value).

Supplementary Table 5. Pathway analysis of genes coexpressed with proteasome 26S subunit, ATPase 3
(PSMC3) from public breast cancer databases using the MetaCore database (with p<0.01 set as the cutoff
value).

Supplementary Table 6. Pathway analysis of genes coexpressed with proteasome 26S subunit, ATPase 4
(PSMC4) from public breast cancer databases using the MetaCore database (with p<0.01 set as the cutoff
value).

Supplementary Table 7. Pathway analysis of genes coexpressed with proteasome 26S subunit, ATPase 5
(PSMC5) from public breast cancer databases using the MetaCore database (with p<0.01 set as the cutoff
value).

Supplementary Table 8. Pathway analysis of genes coexpressed with proteasome 26S subunit, ATPase 6
(PSMC6) from public breast cancer databases using the MetaCore database (with p<0.01 set as the cutoff
value).
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