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INTRODUCTION 
 

The incidence of cancer and cancer-associated death has 

been on the rise at 3.5% in China since 2000, making 

cancer a significant burden on public health care [1, 2]. 

Among diverse cancer types, breast cancer (BC) is the 

most common malignancy among females in China [3]. 

It is estimated that 70–80% of patients with early-stage 

and non-metastatic BC are curable, whereas BC with 

advanced-stage is not curable due to current diagnostic 

and therapeutic strategies [4]. Over the past decades, the 
treatment of BC has dramatically evolved in many 

aspects, including surgery, radiotherapy, chemotherapy, 

hormonal manipulation, or a combinational treatment 

[5]. The survival rate of BC, however, is still low and 

displays heterogeneous patterns in different regions 

thanks to the lack of early diagnosis and cost-

effectiveness of treatments [6]. 

 

It has been demonstrated that the majority of BC-related 

deaths result from metastasis to other organs rather than 

the primary tumor itself [7]. To date, identification of 

BC metastasis is to detect the clinical manifestations 

of the metastatic organs, biopsies of metastatic organs, 

radiological assessments, medical imaging, as well as 
molecular markers [8]. Although these screenings have 

dramatically lowered the BC metastasis-associated 

mortality, these strategies mentioned above are still not 
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ABSTRACT 
 

Metastasis is the leading cause of breast cancer (BC)-related deaths. Circular RNAs (circRNAs) have emerged as 
essential regulators for cancer progression and metastasis. Therefore, the objective of this study was to 
investigate the role of circRNAs in BC metastasis and related mechanism. In this study, we established the BC 
cell line with high or low potential of metastasis. RNA sequencing, migration and invasion assay, Fluorescence 
in situ hybridization, luciferase report assay, circRNA pulldown, and transmission electron microscopy were 
performed to elucidate the molecular mechanism. The results showed that circRNA circFOXK2 was significantly 
increased in BC cells with high metastatic ability, and the upregulation of circFOXK2 was correlated with poor 
clinicopathological characteristics. Functional experiments demonstrated that overexpression of circFOXK2 
promoted migration and invasion of BC cells. Also. circFOXK2 could act with IGF2BP3, an RNA-binding protein, 
and miR-370 to synergistically promote BC metastasis. Moreover, miR-370 could be transferred through 
exosomes to enhance the metastatic ability of recipient cells. In conclusion, circFOXK2 functions as a key 
regulator in BC metastasis, and the role of circFOXK2 on BC metastasis is tightly associated with the 
involvement of IGF2BP3 and miR-370. CircFOXK2 might serve as a potential biomarker for the diagnosis and 
treatment of BC. 
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sufficient and accurate for diagnosing BC at the earliest 

stage [7]. Therefore, it is an urgent need to explore the 

molecular mechanism underlying BC metastasis. 

Growing evidence demonstrated that metastasis is a 

complicated multi-step process, including invasion, 

intravasation, survival in blood, extravasation, as well 

as colonization at the distant metastatic organs [9]. As 

the first and most critical step of metastasis, the 

invasion is regarded as a migratory process of cancer 

cells from the primary tumor to distant other organs 

[10]. However, the initiation of invasion during BC 

progression is not fully understood. 

 

Over the past decades, RNAs, particularly the non-

coding RNAs (ncRNAs), have drawn increasing 

attention from both clinical and academic researchers 

due to the rapid development of high-throughput RNA 

sequencing techniques and bioinformatics [11]. Most 

RNAs in eukaryotic cells are ncRNAs, not messenger 

RNAs (mRNAs) [12]. Accumulating evidence revealed 

that ncRNAs, including long non-coding RNAs 

(lncRNAs), microRNAs (miRNAs), and circular RNAs 

(circRNAs), play an essential role in physiological and 

pathological processes, including cancers [13]. Among 

these ncRNAs, circRNAs have been reported to interact 

with miRNAs or RNA-binding proteins (RBPs) to 

regulate the development and progression of cancers 

[14, 15]. Also, circRNAs are considered as promising 

biomarkers for early diagnosis of cancers, such as 

serum cricRNAs [16]. In BC, several circRNAs are 

found to be aberrantly expressed in BC and participate 

in the carcinogenesis of BC [17–19]. However, the 

function of circRNAs in BC metastasis has not been 

comprehensively investigated. 

 

In this study, by establishing BC cells with high or low 

potential of metastasis, we aimed to investigate the 

functional cricRNA associated with BC metastasis and 

related molecular mechanism. This study provides 

insight into the molecular basis of BC metastasis and 

the role of circRNA in the metastatic process. 

 

RESULTS 
 

CircFOXK2 is upregulated in highly metastatic BC 

cells 

 

To investigate the mechanism by which BC cells are 

highly metastatic, we established two BT-549 cell 

populations with high and low potential of metastasis 

(BT-549-H and BT-549-L), as previously described [20, 

21]. Then, we determined the characteristics of BT-549-

H and BT-549-L cells. The results showed that BT-549-

H cells had a higher level of migratory and invasive 

abilities compared with BT-549-L and BT-549 cells 

(Figure 1A and 1B). Also, injecting through the tail vein 

of mice, we found more lung metastasis and higher 

expression of Ki67 in mice injected with BT-549-H 

cells relative to BT-549-L (Figure 1C and 1D). As 

showed in Figure 1E, both cell populations showed 

similar cell viability. Next, RNA sequencing analysis 

was carried out to determine the differentially expressed 

circRNAs associated with metastasis of BC cells, as 

showed in a volcano plot (Figure 1F). By performing 

qRT-PCR, we measured the expressions of the top 10 

upregulated and downregulated circRNAs, respectively. 

The results showed that circFOXK2 displayed the 

highest upregulation in BT-549-H, compared with 

BT-549-L (Figure 1G). Though analysis in database 

circBase [22], CircAtlas [23], and CircFunBase [24], 

circFOXK2, also named hsa_circ_0000816, was 343 nt 

in length and located in FOXK2 2–3 exons. Moreover, 

circFOXK2 was primarily expressed in the nuclei of 

BT-549 cells, as determined by RNA fluorescence in 

situ hybridization (FISH) assay (Figure 1H). 

 

CircFOXK2 is involved in metastasis of BC 

 

To explore the role of circFOXK2 in metastasis of BC, 

we measured the expression of circFOXK2 in BC 

tissues and found that the level of circFOXK2 was 

significantly higher in advanced-stage tissues compared 

with early-stage (Figure 2A). Correlation analysis 

suggested that the upregulation of circFOXK2 was 

correlated with invasive histological type, lymph node 

metastasis, and advanced stage. For liver metastasis, the 

expression of circFOXK2 was higher in metastatic liver 

tissues compared with paired BC tissues (Figure 2B), 

which was verified through FISH assay (Figure 2C). 

These results together indicated that circFOXK2 is 

associated with metastasis of BC. 

 

CircFOXK2 is required for BC metastasis 

 

To further explore the effect of circFOXK2 on BC 

metastasis, we applied the plasmid of circLONP2 

and circFOXK2-specific anti-sense oligonucleotide 

(ASO) to overexpress and knockdown the expression 

of circFOXK2, respectively (Figure 3A and 3F). 

Meanwhile, the overexpress and knockdown 

circFOXK2 did not influence the expression of FOXK2 

mRNA (Figure 3A and 3F). In migration and invasion 

assays, BT-549 cells with overexpression of 

circFOXK2 displayed significantly increased migratory 

and invasive abilities compared with control cells 

(Figure 3B and 3C). Also, the upregulation of 

circFOXK2 led to a higher level of lung metastasis and 

Ki67 in the mouse model (Figure 3D and 3E). On the 

other hand, the downregulation of circFOXK2 
displayed the opposite roles (Figure 3G–3J). Therefore, 

the results collectively demonstrated that circFOXK2 

plays an essential role in BC metastasis. 
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IGF2BP3 is critical for the effect of circFOXK2 on 

BC metastasis 

 

It has been demonstrated that RNA-binding proteins 

(RBPs) are critical for the function of circRNAs [25]. 

According to predictions of CircFunBase [24], several 

potential RBPs might be involved in the role of 

circFOXK2, including EIF4A3, FMRP, HuR, AGO2, 

and IGF2BP1-3 (Figure 4A). Of which, IGF2BP family 

has been reported to be essential to cancer development 

and progression [26–28]. By using RNA pulldown and 

Western blotting assays, the results showed that 

circFOXK2 physically interacted with three IGF2BP 

family members, including IGF2BP1, IGF2BP2, and 

IGF2BP3, but not with EIF4A3, FMRP, HuR, and AGO2 

(Figure 4B). Among three, IGF2BP3 acts as a critical 

factor in the regulation of cancers, such as tumor cell 

proliferation, invasion, and chemoresistance [29]. Thus, 

we speculated that IGF2BP3 might be an essential RBP 

mediating the effect of circFOXK2 in BC metastasis. In 

our rescue experiments, IGF2BP3 was overexpressed and 

inhibited successfully in BT-549 cells (Figure 4C). The 

expression of circFOXK2 positively correlated with the 

protein level of IGF2BP3 (Figure 4D). Also, the 

overexpression of IGF2BP3 promoted cell migration and 

invasion and reversed the effect of knockdown of 

circFOXK2 in BT-549 cells (Figure 4E and 4F). 

Meanwhile, the downregulation of IGF2BP3 attenuated 

the effect of overexpression of circFOXK2 on migration 

and invasion of BC cells (Figure 4G and 4H). These 

results showed that IGF2BP3 is essential for the effect of 

circFOXK2 on BC metastasis. 

 

CircFOXK2-miR-370 interaction is essential for BC 

metastasis 

 

The role of circRNA-miRNAs interaction has been well 

studied in various cancers [30, 31]. In this study, we 

 

 
 

Figure 1. CircFOXK2 is upregulated in highly metastatic BC cells. (A) Migration ability of BT-549 cells with high and low potential of 

metastasis (BT-549-H and BT-549-L). Scale bar: 20 μm. (B) Invasion ability of BT-549 cells with high and low potential of metastasis (BT-549-H 
and BT-549-L). Scale bar: 20 μm. (C) Lung metastasis of mice injected with BT-549 or BT-549-H cells through the tail vein, as determined by 
H&E stain. Scale bar: 100 μm. (D) The expression of Ki67 in lung tissues of mice injected with BT-549 or BT-549-H cells through the tail vein, as 
determined by IHC assay. Scale bar: 40 μm. (E) Cell viability of BT-549-H and BT-549-L cells. (F) Volcano plot of differentially expressed 
circRNAs between BT-549-H and BT-549-L cells. (G) Heatmap for expressions of top 10 upregulated and downregulated circRNAs between 
BT-549-H and BT-549-L cells. (H) Cellular distribution of circFOXK2 in BT-549 cells, as detected by RNA FISH assay. Data were represented as 
mean ± SD. Each experimental group had at least three replicates. *p < 0.05, **p < 0.01, ***p < 0.001. 
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used Circular RNA Interactome Database to predict 

the potential miRNAs interacting with circFOXK2 

[32]. The results showed that circFOXK2 had a 

binding sequence of miR-370 (Figure 5A). Then, 

luciferase assay revealed that cells transfected with 

miR-370 mimic plus plasmids carrying wildtype 

binding sequence showed significantly decreased 

luciferase activity than those treated with plasmids 

carrying mutant binding sequence (Figure 5B). Also, 

circRIP assay demonstrated that miR-370 was 

enriched in circFOXK2-specific probes compared 

with those in the control group (Figure 5C). 

Moreover, the overexpression and knockdown of 

circFOXK2 increased and decreased the expression 

of miR-370, respectively (Figure 5D). Also, the 

expression of circFOXK2 displayed a positive 

correlation with miR-370 (Figure 5E). Collectively, 

these results further verified the interaction between 

circFOXK2 and miR-370. To further determine the 

role of miR-370 in BC metastasis, we applied 

miRNA mimic and inhibitor to overexpress and 

knockdown miR-370, respectively (Figure 5F and 

5G). As showed in rescue experiments, the 

overexpression of miR-370 restored the inhibited 

migratory and invasive abilities in BT-549 cells with 

downregulation of circFOXK2, whereas the 

knockdown of miR-370 exerted opposite roles 

(Figure 5H–5K). As such, these results indicated that 

circFOXK2-miR-370 interaction is essential for BC 

metastasis. 

 

 
 

Figure 2. CircFOXK2 is involved in the metastasis of BC. (A) Expression of circFOXK2 in BC tissues in the early or advanced stage. (B) 

Expression of circFOXK2 in BC tissues or paired liver metastasis. (C) Expression of circFOXK2 in liver metastasis, as detected by RNA FISH 
assay. Scale bar: 30 μm. Data were represented as mean ± SD. Each experimental group had at least three replicates. *p < 0.05, **p < 0.01, ***p 
< 0.001. 
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Exosomal miR-370 derived from BT-549-H promote 

BC metastasis 

 

Exosomes play a critical role in intercellular 

communication in cancers; in particular, cancer cells 

with high metastatic potential can impact neighboring 

cells through exosomes [33, 34]. As shown in Figure 

6A, BT-549 cells cocultured with BT-549-H displayed 

significantly increased migratory and invasive abilities, 

which was reversed the blockade of exosome generation 

by GW4869 [35] (Figure 6A and 6B). Then, we isolated 

exosomes from BT-549 (BT-549-Exo) and BT-549-H 

(BT-549-H-Exo) cells, respectively. The morphology 

and size of exosomes were identified through 

transmission electron microscopy, nanoparticle tracking 

analysis (Figure 6C). Exosomal markers CD63 and 

Tsg101 were measured by Western blotting assay 

(Figure 6D). Moreover, we found that circFOXK2 

rarely expressed in exosomes, whereas miR-370 was 

highly expressed in BT-549-H-Exo, compared with 

BT-549-Exo (Figure 6E). Meanwhile, the level of 

miR-370 was higher in BT-549-H-Exo than 

BT-549-Exo (Figure 6F). Fluorescence staining assay 

demonstrated that exosomal miR-370 derived from 

BT-549-H-Exo was taken up by recipient BT-549 cells 

(Figure 6G). Furthermore, the overexpression and 

knockdown of circFOXK2 could increase and decrease 

both exosome generation and expression of exosomal 

miR-370, respectively (Figure 6H and 6I). Intriguingly, 

exosomes with overexpression of miR-370 promoted 

migration and invasion abilities in BT-549 cells, while 

the opposite effect was found in BT-549 cells treated 

with exosomes with knockdown of miR-370 (Figure 6J 

and 6K). These results together suggested that 

circFOXK2 induces metastasis of recipient cells by 

promoting the transfer of exosomal miR-370. 
 

DISCUSSION 
 

BC initiates as a local disease and then metastasize to 

the lymph nodes and other distant organs [7]. Previous 

studies demonstrated that metastasis is the leading cause 

 

 
 

Figure 3. CircFOXK2 is required for BC metastasis. (A) Expressions of circFOXK2 and FOXK2 mRNA in BT-549 cells transfected with 

circFOXK2-expressing plasmids and the negative control. (B) Migration ability of circFOXK2-overexpressing BT-549 cells. Scale bar: 20 μm. (C) 
Invasion ability of circFOXK2-overexpressing BT-549 cells. Scale bar: 20 μm. (D) Lung metastasis of mice injected with circFOXK2-overexpressing 
BT-549 cells through the tail vein, as determined by H&E stain. Scale bar: 50 μm. (E) The expression of Ki67 in lung tissues of mice injected with 
circFOXK2-overexpressing BT-549 cells through the tail vein, as determined by IHC assay. Scale bar: 40 μm. (F) Expressions of circFOXK2 and 
FOXK2 mRNA in BT-549 cells transfected with circLONP2-specific anti-sense oligonucleotide (ASO). (G) Migration ability of circFOXK2-
Knockdown BT-549 cells. Scale bar: 20 μm. (H) Invasion ability of circFOXK2-Knockdown BT-549 cells. Scale bar: 20 μm. (I) Lung metastasis of 
mice injected with circFOXK2-Knockdown BT-549 cells through the tail vein, as determined by H&E stain. Scale bar: 50 μm. (J) The expression of 
Ki67 in lung tissues of mice injected with circFOXK2-Knockdown BT-549 cells through the tail vein, as determined by IHC assay. Scale bar: 40 
μm. Data were represented as mean ± SD. Each experimental group had at least three replicates. *p < 0.05, **p < 0.01, ***p < 0.001. 
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of BC-associated death [36]. Based on the widely 

recognized model of metastasis, a population of cancer 

cells in the primary tumor acquire genetic modifications 

over time, allowing these cells are capable of 

metastasizing and forming a new tumor in other distant 

organs [37]. Given this model, exploring the detailed 

 

 
 

Figure 4. IGF2BP3 is critical for the effect of circFOXK2 on BC metastasis. (A) Prediction of RNA-binding proteins of circFOXK2. 

(B) Interaction between circFOXK2 and IGF2BP1, IGF2BP2, IGF2BP3, EIF4A3, FMRP, HuR, and AGO2, as determined by RNA pulldown and 
Western blotting assay. (C) Protein expression of IGF2BP3 in BT-549 cells transfected with IGF2BP3-expressing plasmids or IGF2BP3-specific 
small interfering RNA (siRNA). (D) Pearson correlation between the expressions of circFOXK2 and IGF2BP3. (E and G) Rescue experiments for 
the migration ability of BT-549 cells treated as indicated. Scale bar: 20 μm. (F and H) Rescue experiments for the invasion ability of BT-549 
cells treated as indicated. Scale bar: 20 μm. Data were represented as mean ± SD. Each experimental group had at least three replicates. *p < 
0.05, **p < 0.01, ***p < 0.001. 
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mechanism of initiating cancer cell metastasizing would 

significantly extend our understanding of metastasis. In 

this study, we established a BC BT-549 cell line with a 

high potential of metastasis (BT-549-H) and then 

screened the potential circRNAs involved in the 

acquired metastatic ability of BT-549 cells. Also, we 

found that circFOXK2 was increased in BT-549-H cells 

and correlated with clinicopathological features of 

patients with BC. Moreover, the effect of circFOXK2 

on BC metastasis was mediated through RNA-binding 

protein IGF2BP3 and miR-370. Meanwhile, miR-370 

could be transferred from BT-549-H cells to recipient 

cells through exosomes, promoting the invasive ability 

of recipient cells. These results together elucidate the 

role of circFOXK2 in BC metastasis and related 

functional pathways. 

 

In this study, by establishing a BT-549 cell population 

with a high potential of metastasis and RNA 

sequencing, we demonstrated that circFOXK2, mainly 

expressed in the nuclei, was associated with enhanced 

metastatic ability of BT-549 cell. Also, functional 

experiments showed that the overexpression of 

circFOXK2 significantly improved the migratory and 

invasive abilities of BT-549 cells, whereas the 

knockdown of circFOXK2 exerted the opposite role. 

According to analysis in the databases [22–24], 

circFOXK2, also named hsa_circ_0000816, was located 

in 2–3 exons of the FOXK2 gene. Qiao et al. reported 

that the upregulation of circFOXK2 is associated with 

periventricular white matter damage (PWMD) of 

premature infants [38]. Also, circFOXK2 may 

participate in the regulation of myotonic dystrophy [39]. 

Moreover, circFOXK2, a sponge of miR-206, is 

predicted to be involved in asthenospermia, a common 

cause of human male infertility [40]. In cancers, the role 

of circRNAs in metastasis has been widely recognized. 

For example, circ_0067934 is upregulated in both 

tissues and cells of hepatocellular carcinoma and 

promotes metastasis through miR-1324/FZD5/Wnt/ 

β-catenin pathway [41]. Also, the downregulation of 

circ_100395 was associated with enhanced metastasis 

and poor prognosis in lung cancer [42]. Wong et al. 

demonstrated that circFOXK2 promotes progression 

and metastasis of pancreatic cancer through binding 

with miR-942 and RBPs complex [43]. In this study, we 

first that circFOXK2 is a crucial regulator for the 

regulation of metastasis, which provides an avenue to 

explore the mechanism mediating the effect of 

circFOXK2 on BC metastasis. 

 

Given the multiple mechanisms underlying the function 

of circRNAs, the interaction between circRNAs and 

RBPs play a critical role in transcriptional modulation, 

translation, and extracellular transportation [44]. In 

general, RBPs are a group of proteins associated with 

the regulation of gene expression at either the 

transcriptional or translational level [25]. In this study, 

we demonstrated that circFOXK2 could interact with 

IGF2BP family members, including IGF2BP1, 

IGF2BP2, and IGF2BP3, in BC cells. of which 

IGF2BP3 and circFOXK2 synergistically regulate the 

metastatic ability of BC cells. Accumulating studies 

have been shown that IGF2BP3 functions as an 

 

 
 

Figure 5. CircFOXK2-miR-370 interaction is essential for BC metastasis. (A) Putative binding site of miR-370 in the circFOXK2 

sequence. (B) Luciferase activity in BT-549 cells treated as indicated. (C) circRIP assay. (D) Expression of miR-370 in circFOXK2-overexpressing/ 
knockdown BT-549 cells. (E) Pearson correlation between the expressions of circFOXK2 and miR-370. (F) Expression of miR-370 in BT-549 cells 
treated with miR-370 mimic. (G) Expression of miR-370 in BT-549 cells treated with miR-370 inhibitor. (H and J) Rescue experiments for the 
migration ability of BT-549 cells treated as indicated. Scale bar: 20 μm. (I and K) Rescue experiments for the invasion ability of BT-549 cells 
treated as indicated. Scale bar: 20 μm. Data were represented as mean ± SD. Each experimental group had at least three replicates. *p < 0.05, 
**p < 0.01, ***p < 0.001. 
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essential regulator in BC progression. For example, the 

aberrant level of IGF2BP3 is detected in the majority of 

invasive triple-negative breast carcinomas [45, 46], while 

the expression of IGF2BP3 is only elevated in adenoid 

cystic carcinomas in basal-like BC [47, 48]. Furthermore, 

a tight correlation between IGF2BP3 expression and 

lymph node metastasis is found in colorectal 

adenocarcinoma [49], oral squamous cell carcinoma 

[50], and gastric cancer [51]. Collectively, IGF2BP3 

functions as a fine-tuner regulating the expression of 

genes related to cancer progression and metastasis. 

 

In the present study, we applied online tools to predict 

potential miRNA interacting with circFOXK2 and 

identified that circFOXK2 could directly target 

miR-370. As an oncogenic factor, miR-370 functions as 

a promoter for cancer progression through targeting 

TGFβ-RII [52] or FOXO1 [53, 54]. Unlike the well-

studied relation that circRNAs act as miRNA sponges, 

we observed that the expression of circFOXK2 and 

miR-370 displayed a similar pattern. Functionally, our 

rescue experiments showed that the miR-370 and 

circFOXK2 synergistically regulated BC cell invasion 

and migration. These results indicate that circFOXK2 

might interact with miR-370, thereby promoting the 

biogenesis of miR-370. It has been reported that 

circRNA ciRS-7 participates in the biogenesis of mature 

miR-7 [14, 55]. On the other hand, the expression of 

 

 
 

Figure 6. Exosomal miR-370 derived from BT-549-H promote BC metastasis. (A) Migration ability of BT-549 cells cocultured with 

BT-549-H cells or BT-549-H plus GW4869 treatment. Scale bar: 20 μm. (B) Invasion ability of BT-549 cells cocultured with BT-549-H cells or 
BT-549-H plus GW4869 treatment. Scale bar: 20 μm. (C) Morphology and size distribution of exosomes derived from BT-549 (BT-549-Exo) or 
BT-549-H (BT-549-H-Exo) cells, as determined by transmission electron microscopy, nanoparticle tracking analysis. (D) Expressions of 
exosomal markers CD63 and Tsg101, as detected by Western blotting. (E) Expressions of circFOXK2 and miR-370 in BT-549-Exo and BT-549-
H-Exo. (F) Expression of miR-370 in BT-549 cells treated with BT-549-Exo and BT-549-H-Exo. (G) Exosomal miR-370 was taken up by recipient 
BT-549 cells, as determined by fluorescence staining assay. Scale bar: 20 μm. (H) Number of exosomes in BT-549 cells with overexpression or 
knockdown of circFOXK2. (I) Expression of exosomal miR-370 in BT-549 cells with overexpression or knockdown of circFOXK2. (J) Migration 
ability of BT-549 cells treated with exosomes containing miR-370 mimic or inhibitor. Scale bar: 20 μm. (K) Invasion ability of BT-549 cells 
treated with exosomes containing miR-370 mimic or inhibitor. Scale bar: 20 μm. Data were represented as mean ± SD. Each experimental 
group had at least three replicates. *p < 0.05, **p < 0.01, ***p < 0.001. 
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miR-370 was found to be increased in exosomes 

derived from BT-549-H cells, and exosomal miR-370 

could be internalized by recipient cells, eventually 

promote invasion and migration. Collectively, our 

observations suggested that circFOXK2 works with 

miR-370 to promote BC metastasis cooperatively. 

However, the detailed mechanism by which how 

circFOXK2 interacts with miR-370 should be 

investigated in future studies. 

 

In conclusion, the results suggested that circFOXK2 

was upregulated in metastatic BC cells and is correlated 

to poor clinicopathological features of BC patients. 

Functionally, circFOXK2 promotes invasion and 

migration of BC cells, and the effect of circFOXK2 on 

BC metastasis is associated with the involvement of 

IGF2BP3 and miR-370. This study indicates that 

circFOXK2 might serve as a biomarker for the 

diagnosis and treatment of BC. 
 

MATERIALS AND METHODS 
 

Ethics statement 

 

All patients were informed before inclusion, and the written 

consents were given. All experiments were approved by the 

ethics committee of our hospital. All animal experiments 

complied with the guidelines of the Animal Ethics 

Committee for the care and use of our hospital.  

 

Patients 

 

BC primary tissues were collected from patients with 

BC who underwent operation between March 2015 and 

March 2017 at our hospital. The exclusion criteria were 

as follows: 1) suffering from other malignancies; 2) 

patients had previous treatment; 3) histologic diagnosis 

was not BC, and 4) patients had not complete data of 

analysis. All samples were stored at –80°C until use. 

 

Cell culture 

 

BC cell line BT-549 and HEK293T cells were 

purchased from the cell bank of the Chinese Academy 

of Sciences (Shanghai, China). BT-549 cells were 

cultured in RPMI 1640 media supplemented with 10% 

fetal bovine serum (FBS) (Gibco, USA). HEK293T 

cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) with 10% FBS (Gibco, USA). Cells 

were maintained in an incubator (Thermo Fisher 

Scientific, USA) at 37°C with 5% CO2. 

 

Migration and invasion assay 

 

To establish BT-549 cell population with high and low 

potential of metastasis (BT-549-H and BT-549-L), 

BT-549 cells were subjected to repetitive invasion 

assay, as previously described [20, 21]. After incubation 

for 36 hours at 37°C invaded cells underneath the 

membrane and uninvaded cells were collected and 

expanded for the next round of screen. After 10 and 30 

screen rounds, cell populations were classified as 

BT-549-L and BT-549-H cells, respectively. Migratory 

and invasive abilities were determined using QCM 

Chemotaxis Cell Migration Assay (24-well, 8 µm) and 

QCM ECMatrix Cell Invasion Assay (24-well, 8 µm) 

(Sigma-Aldrich, USA) according to the manufacturer’s 

instruction. The data were quantified in 5 random places 

under a microscope. 

 

CCK-8 assay 

 

Cell viability was determined using Cell Counting Kit 8 

(WST-8/CCK8) (Abcam, Japan) according to the 

manufacturer’s instructions. The BT-549-H and BT-

549-L cells were seeded (1 × 105 cells/well) in a 96-well 

dish. OD values were measured by absorbance at 460 

nm at 1, 2, 3, 4, and 5 day. 

 

RNA sequencing  

 

RNA sequencing assay was carried out between 

BT-549-H and BT-549-L cells, as previously described 

[56]. In brief, total RNAs were isolated from cells, 

exosomes, tissues using Trizol (Invitrogen, USA). RNA 

quality and concentration were determined by 

NanoDrop™ 2000 (Thermo Scientific, USA). RNA 

sequencing libraries were established and sequenced by 

Beyotime Biotechnology (Shanghai, China). Ribosomal 

RNAs (rRNAs) were removed from total RNAs (5 μg) 

using Ribo-Zero Plus rRNA Depletion Kit (Illumina, 

USA). Linear RNAs were digested using RNase R 

(New England Biolabs Inc, USA). Sequencing libraries 

were established using NEBNext Ultra RNA Library 

Prep Kit for Illumina (New England Biolabs Inc, USA) 

according to the manufacturer’s instructions. RNA 

samples were fragmented into pieces of ~ 300 bp in 

length, and the first-strand cDNAs were synthesized by 

reverse transcription and random hexamer primers. 

Afterward, the second-strand cDNAs were synthesized 

using Second Strand Synthesis Reaction Buffer. The 

final cDNA fragments were applied to the end 

modification processes, such as the addition of a single 

“A” base and the ligation of the adapters. Then, the 

chain specific libraries were constructed using USER 

Enzyme (New England Biolabs Inc, USA) and 

amplified by PCR. The libraries were qualified by 

NEBNext® Library Quant Kit for Illumina (New 

England Biolabs Inc, USA). Lastly, the libraries were 
subjected to sequencing assay on an Illumina HiSeq 

sequencer system (Illumina, USA). The sequencing 

quality of raw data was evaluated by FastQC software 
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[56]. High-quality reads were aligned to the human 

reference genome (GRCh38/hg38) using Tophat2 

software [57] with default parameters. Unaligned reads 

were used for subsequent circRNA analysis using 

CIRCexplorer2 [58] and Find_circ [59]. Differential 

expression analysis between BT-549-H and BT-549-L 

was carried out using Limma (v3.32.10) R package 

[60]. CricRNA with Q value > 0.01 was defined as 

significantly differential expression. 

 

Quantitative real-time PCR 

 

Total RNAs were isolated from cells, exosomes, tissues 

using Trizol (Invitrogen, USA). RNA quality and 

concentration were determined by NanoDrop™ 2000 

(Thermo Scientific, USA). cDNA was synthesized 

using PrimeScript™ RT reagent Kit (TaKaRa, China). 

Quantitative real-time PCR was carried out using TB 

Green™ Premix Ex Taq™ II (TaKaRa, China) on ABI 

7500 real-time PCR system (Applied Biosystems, 

USA). The relative expression was calculated using 

2−ΔΔCt method [61]. β-actin and U6 were used as 

reference genes. 

 

Western blotting 

 

Total protein of cells or exosomes was isolated by using 

the cell lysis buffer (Beyotime Institute of 

Biotechnology, China). The western blotting assay was 

performed as previously reported [62]. The primary 

antibodies for IGF2BP3, CD63, and Tsg101 were 

obtained from Santa Cruz Biotechnology (Santa Cruz 

Biotechnology, USA). Optical density was quantified 

by the Uvitec Alliance software (Eppendorf, Germany). 

 

Cell transfection 

 

Anti-sense oligonucleotide (ASO) for circFOXK2 

knockdown and pcDNA3.1vectors for circFOXK2 

overexpression were obtained from RiboBio 

(Guangzhou, China). The sequence information were as 

following: ASO-circFOXK2: 5′-GAAGGUGCACAUU 

CAGGUUTT-3′; ASO-negative control: 5′-TTCTCCG 

AACGTGTCACGT-3′; pcDNA3.1 vector-circFOXK2 

(forward): 5′-GCGATATCGTGCACATTCAGGTTCC 

CGAG-3′, pcDNA3.1 vector-circFOXK2 (reverse): 5′-

GCCCGCGGCTTCGGGCTGTCTCCA-3′. ASO 

negative control and pcDNA3.1vectors were used as the 

negative control, respectively. Lentiviral miR-370 

mimic, inhibitor, respective negative control were 

obtained from Qiagen (Hilden, Germany). Plasmids for 

IGF2BP3 overexpression and siRNAs for IGF2BP3 

knockdown were purchased from Qiagen (Hilden, 
Germany). Cell transfection was performed using 

Lipofectamine™ 3000 Transfection Reagent (Invitrogen, 

USA) according to the manufacturer’s instructions. 

Fluorescence in situ hybridization (FISH) 

 

FISH assay was carried out as previously described 

[63]. In brief, circFOXK2-specific probes marked with 

Digoxigenin (DIG) -11-uridine triphosphate (UTP) 

(Roche, USA) was used. Cells were fixed with 4% 

paraformaldehyde for 10 min and permeabilized in 

0.5% Triton X-100 in PBS solution for 5 min. Cells 

were then hybridized with the probe at 37°C for 16 

hours. Then, the cells were washed with sodium citrate 

containing 0.1% Tween-20 for 5 min and then saline-

sodium citrate (SSC) buffer for 5 min. Cells were 

stained with 4′,6-diamidino-2-phenylindole (DAPI) 

(Invitrogen, USA) for 10 min. Images were taken using 

SP8 laser confocal microscopy (Leica, Germany). 

 

Luciferase report assay 

 

The conserved sequences containing the putative 

binding site of miR-370 were synthesized from the 

circFOXK2 sequence and then were cloned into pGL3-

enhancer vector (Promega Corporation, USA). The 

mutated binding site of miR-370 was also cloned into 

the same luciferase reporter. Luciferase reporter 

plasmids and miR-370 mimic/negative control were 

transfected into HEK293T cell using Lipofectamine™ 

3000 Transfection Reagent (Invitrogen, USA) according 

to the manufacturer’s instructions. After 24 hours of 

transfection, relative luciferase activity was determined 

using Dual-Luciferase® Reporter Assay System 

(Promega Corporation, USA) according to the 

manufacturer’s instructions. 

 

RNA and circRNA pulldown 

 

Biotin-labeled circFOXK2-specific probe and negative 

control probe were (Sangon Biotech, China) were used 

for RNA pulldown assay. The assay was performed as 

previously described [64, 65]. RNAs attached to the 

beads were isolated using Trizol (Invitrogen, USA) and 

measured by qRT-PCR. Proteins attached to the beads 

were measured by Western blotting. 

 

Exosome isolation and identification 

 

Exosomes were isolated from BT-549 and BT-549-H 

cultured medium with exosome-free PBS using Total 

Exosome Isolation Reagent (Invitrogen, USA) 

according to the manufacturer’s instructions. Then, 

transmission electron microscopy (TEM) and 

nanoparticle tracking analysis (NTS) were performed to 

determine exosome morphology, and size, and 

concentration, as previously described [66]. The 
concentration of exosomal proteins was determined 

using Pierce BCA Protein Assay Kit (Thermo Fisher 

Scientific, USA). 
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Exosome electroporation 

 

MiR-370 mimic or inhibitor was loaded into exosomes 

through electroporation assay using Gene Pulser Xcell 

Electroporation Systems (BioRad, USA) as previously 

described [67]. 

 

Cell-exosome coculture  

 

BT-549 and BT-549-H cells (1 × 105) were placed in 

the inner chamber of 24 transwell plates. Recipient cells 

were placed in the outer chamber. Twenty-four hours 

later, cells in the outer chamber were used to determine 

the migration and invasion abilities. 

 

Animal study 

 

Male BALB/c athymic nude mice (6–8 weeks) were 

purchased from Shanghai Laboratory Animal Center 

(Shanghai, China) and maintained in standard 

conditions in the animal facility at our hospital. 

CircFOXK2-overexpressing/knockdown BT-549 or 

BT-549 cells (1 × 105) were injected into mice through 

the lateral tail vein (n = 8 per group). Eight weeks post-

injection, mice were sacrificed, and lung and liver 

tissues were collected. The number of tumor nodules 

was quantified through hematoxylin and eosin (HE) 

staining and immunohistochemistry (IHC) assay, as 

previously described [68, 69]. 

 

Statistical analysis 

 

Data were represented as mean ± SD. Data were 

analyzed by SPSS 18.0 software (SPSS Inc, USA). 

Pearson correlation was used to analyze the 

correlation between circFOXK2 and IGF2BP3, and 

circFOXK2 and miR-370. Mean differences between 

groups were analyzed using the Tukey’s test. In this 

study, differences were regarded to be significant at 

p < 0.05. 
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