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INTRODUCTION 
 

Gene expression alterations occurring throughout the 

lifespan have been described for a multitude of species, 

organs, and cell types [1–10]. The most commonly 

reported age-related dysregulations involve the immune 

system [9, 11–13] where inflammatory response genes 

are upregulated even in the absence of pathogen 

infection [5, 6, 9, 11, 14–19]. Energy metabolism, redox 

homeostasis, and mitochondrial function alterations are 

also frequently observed in age-related studies [6, 9, 11, 

15–18, 20], particularly the downregulation of genes 

encoding mitochondrial ribosomal proteins and 

components of the electron transport chain [5, 11, 14–

16, 18], protein synthesis machinery [5, 11, 17], 

developmental and cell differentiation genes [9, 11, 19], 
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ABSTRACT 
 

Gene expression alterations occurring with aging have been described for a multitude of species, organs, and 
cell types. However, most of the underlying studies rely on static comparisons of mean gene expression levels 
between age groups and do not account for the dynamics of gene expression throughout the lifespan. These 
studies also tend to disregard the pairwise relationships between gene expression profiles, which may underlie 
commonly altered pathways and regulatory mechanisms with age. To overcome these limitations, we have 
combined segmented regression analysis with weighted gene correlation network analysis (WGCNA) to identify 
high-confidence signatures of aging in the brain, heart, liver, skeletal muscle, and pancreas of C57BL/6 mice in a 
publicly available RNA-Seq dataset (GSE132040). Functional enrichment analysis of the overlap of genes 
identified in both approaches showed that immune- and inflammation-related responses are prominently 
altered in the brain and the liver, while in the heart and the muscle, aging affects amino and fatty acid 
metabolism, and tissue regeneration, respectively, which reflects an age-related global loss of tissue function. 
We also explored sexual dimorphism in the aging mouse transcriptome and found the liver and the muscle to 
have the most pronounced gender differences in gene expression throughout the lifespan, particularly in 
proteostasis-related pathways. While the data showed little overlap among the age-dysregulated genes 
between tissues, aging triggered common biological processes in distinct tissues, which we highlight as 
important features of murine tissue physiological aging. 
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and extracellular matrix components [6, 14–16]. Up-

regulated genes are associated with the stress response 

and DNA repair [5, 6, 9, 11, 14, 16–18], RNA 

processing [11, 12, 17] and cell cycle arrest [5, 16, 19]. 

Despite this, the existence of specific genetic signatures 

of aging continue to be a matter of debate as gene 

regulation is mostly tissue- [5–7, 15, 20–24] and cell-

specific [25, 26], but also because there is focus on 

comparisons between young and old individuals without 

much consideration of the dynamics of gene expression 

throughout the lifespan. Nonetheless, recent studies in 

humans and animal models shed light on these 

dynamics. As an example, a marked shift in mRNA and 

microRNA expression has been reported to occur at 

around age 20 in the human prefrontal cortex [27, 28]. 

Less striking alterations were reported in the same brain 

region between 30-60 years [28, 29], entailing genes 

related to the synapse, fatty acid metabolism, purine 

nucleotide binding, ubiquitin proteolysis, channel 

activity, translation, DNA damage response, trans-

criptional activation, and neuronal function [30]. Late 

middle-age and early old-age shifts have also been 

described in human peripheral blood leukocytes for 

genes involved in cancer, hematological and immuno-

logical diseases, cell-mediated immune response and 

signaling pathways [31], and in the human brain and 

muscle for both coding and non-coding RNAs 

pertaining to longevity pathways [32].  

 

Similar findings have been reported in a study across 11 

rat organs where the most frequent changes in gene 

expression occurred at around 6 and 21 months [33], 

proposed to be equivalent to middle-age in humans 

[34]. Another study across 17 mouse tissues, whose 

dataset we re-analyzed in this work, identified shift 

points of gene expression trajectories at around 6 

months for extracellular matrix genes, 10 months for 

mitochondrial genes, 12 months for genes encoding heat 

shock proteins, and at around 15 months for immune 

response genes [6]. Other studies also suggest tissue-

specific turning points in gene expression profiles [6, 

20, 35]. For example, immune response gene expression 

was found to change in the mouse kidney between 13 

and 20 months, in line with the previously described 

organismal trend, whereas in the spleen and lung this 

shift occurs later in life, at around 26 months [35].  

 

Interestingly, various works show prominent sex-

differences in gene expression and regulation in 

mammals, affecting processes such as hormone 

secretion, immune response, extracellular matrix 

organization, oxidoreductase activity, lipid metabolism, 

nucleotide metabolism, cytoplasmic and mitochondrial 

translation, RNA helicase activity, ribosomal RNA 

processing, synaptic plasticity, and neurotransmitter 

transport [36–38, recently reviewd in 39]. However, 

evidence regarding gender-biased gene expression 

across the lifespan is much scarcer. A recent study in 

mice found sex-specific differences in the aging of cells 

of renin lineage in the kidney, with aged females 

exhibiting up-regulation of genes involved in angio-

genesis, apoptosis, epithelial to mesenchymal transition, 

and TGFβ signaling, whereas in aged males these genes 

were down-regulated [40]. Another study showed age-

related induction of genes involved in the apoptosis of 

microglia in the retinas of old female mice, while in old 

males the expression of these genes was not affected by 

aging [41]. Sex differences across the lifespan have also 

been described for the mouse hippocampus, with aged 

females exhibiting activation of genes involved in 

inflammatory processes, when compared with aged 

males [42].  

 

These studies have mainly focused on differential gene 

expression to characterize the aging transcriptome, 

using methods that rely on static comparisons of mean 

expression values between consecutive age groups, or 

relative to a reference time point, thus ignoring the 

influence of gene expression levels in earlier time points 

in those of later ages [comprehensively reviewed in 43] 

and making it difficult to perform gene prioritization. 

These methods also disregard the pairwise relationships 

between gene expression profiles, which may underlie 

commonly altered pathways and regulatory mechanisms 

with age. To clarify these issues, we have combined 

segmented regression analysis with weighted gene 

correlation network analysis (WGCNA) to re-analyze a 

publicly available mouse RNA sequencing (RNA-Seq) 

dataset (GSE132040) [6, 44].  

 

The GSE132040 dataset was made publicly available by 

the Tabula Muris Consortium [45] and consists of 

transcriptomic data from 17 male and female mouse 

tissues sampled across 10 different time points, making 

it a very useful resource for the study of mammalian 

aging. In the article resulting from the analysis of  

this dataset [6], Schaum and colleagues performed 

differential gene expression, both relative to a reference 

(1, 3 or 6 months) or between consecutive time  

points and, acknowledging the limitations of pairwise 

comparisons, also grouped genes into different clusters 

based on Euclidean distance and fitted local regression 

(LOESS) models for each gene in order to address the 

expression dynamics across the lifespan. We believe 

this approach does not fully account for the limitations 

we presented above, and since our goal is to identify 

gene expression signatures and shifts in expression 

throughout aging, we decided to re-analyze this data 

using the R packages Trendy [46] and WGCNA [47].  
 

Trendy is an R package that fits a set of segmented 

(piece-wise) regression models to high-throughput, 
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ordered expression data, allowing to identify dynamic 

gene expression patterns over a time course and to 

determine the direction and point in time when 

changes in expression occur [46]. It is a recently 

developed methodology that has been so far applied in 

stem cell differentiation [48] and in hepatic disease 

progression [49] studies. Interestingly, the latter 

research also integrated Trendy with WGCNA to 

identify high-confidence genes involved in human 

autoimmune hepatitis (AIH) [49]. Conversely, 

WGCNA is a widely implemented systems biology 

approach not only used for constructing co-expression 

networks based on the pairwise correlations between 

genes, but also for detecting significant associations 

between these networks’ modules and a given trait of 

interest, and to identify important players in these 

associations [47]. It has been broadly applied in the 

context of aging research to identify novel age-related 

gene expression signatures, as is the case of CR2, 

VPREB3, MS4A1 and CCR6, involved in B cell 

activation and receptor signaling pathways in human 

peripheral blood cells [50], PPP3CB, CAMSAP1, 

ACTR3B, and GNG3, involved in synaptic vesicle 

cycle, cGMP-PKG, and dopaminergic synapse 

signaling pathways in human pre-frontal cortex [51], 

and PGLS, a gene potentially involved in synaptic loss 

in the aging brain of rhesus macaques [52], among 

other examples.  

 

For all these reasons, we subjected the Tabula Muris 

Consortium’s GSE132040 dataset to a new analysis 

pipeline comprising the Trendy and WGCNA 

approaches in order to: 1) identify expression 

signatures of genes significantly correlated with age 

(and with sex) in different mouse tissues, 2) establish 

their trajectories from mature adulthood to old age, 3) 

identify the time point of the shift in the gene 

expression profile, and 4) evaluate the biological 

processes (BPs) associated with the gene dys-

regulations. Different onsets of gene dysregulation 

were identified, demonstrating the asynchronous 

impairment of gene expression with age described by 

Schaum et al. [6]. Gene Ontology (GO) biological 

processes’ over-representation analysis revealed that 

inflammation and immunity-related responses are 

prominently altered in the brain and the liver, while in 

the heart and the muscle aging affects fatty acid 

metabolism, and tissue regeneration, respectively, 

which may reflect the global loss of organ function, 

confirming previous reports. Additionally, functional 

enrichment analysis showed sex-differences in the 

expression throughout the lifespan of genes involved 

in energy metabolism and proteostasis-related path-

ways, with only males exhibiting age-related 

dysregulation of these processes. Despite little overlap 

in age-dysregulated genes between tissues, a 

comparison at the level of dysregulated processes 

revealed inter-tissue commonalities, such as altera-

tions in immune response, tissue regeneration, energy 

metabolism, glucocorticoid signaling and response to 

amino acid stimulus. We propose that the genes 

involved in these processes are important players of 

murine physiological aging. 

 

RESULTS 
 

Most dynamic changes in gene expression across the 

lifespan are observed within mature adulthood and 

middle life 

 

In order to obtain a global characterization of the 

mouse aging transcriptome and, in particular, to 

understand which of the main known sources of 

genetic variation (tissue, age, and sex) is responsible 

for the highest percentage of sample segregation, we 

performed a principal component analysis (PCA) of 

brain, heart, liver, muscle and pancreas samples, 

ranging from 3- to 27-month -old male and female 

mice, based on variance stabilizing transformation 

(VST)-normalized read counts. Principal components 

were calculated based on the 500 most variable genes 

as they are expected to capture the greatest variability 

between samples (see Methods - Data pre-processing 

and normalization). We observed that, based on VST-

normalized gene expression values, samples tend to 

cluster by tissue, which is in line with what Schaum et 

al. [6] found, as well as with previous observations [5, 

7, 15, 20–24]. For this reason, subsequent analyses 

were performed on each tissue separately (Figure 1A). 

Additionally, we focused only on samples from the 

brain, heart, muscle, liver, and pancreas, in order to 

provide an in-depth discussion of the findings and 

also for future integration with in-house proteomics 

data. When considering gene expression variation in 

each tissue independently, we observed that sex, 

rather than age, is responsible for most of the 

between-sample variability and adjusted for its effect 

on gene expression by adding it as a co-variable in the 

regression model (Supplementary Figure 1; see 

Methods – Trendy segmented regression analysis).  

 

As a first approach to establish age-regulated genes, we 

carried out segmented regression analysis on each 

tissue’s expressed genes (brain: 34164, heart: 28073, 

liver: 20157, muscle: 18978, pancreas: 18414; post-

filtering, normalized expression; see Methods – Data 

pre-processing and normalization), using the R package 

Trendy (v. 1.8.2) [46]. In brief, in a segmented 

regression model, each gene’s expression is regarded as 

a linear piece-wise function over time, with each 

segment being separated by a breakpoint (i.e., a point 

when gene expression changes). The Trendy model fits  
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Figure 1. Whole-transcriptome characterization of different mouse tissues throughout the lifespan by segmented regression 
analysis. (A) PCA of all tissues performed on VST-normalized read counts of the 500 most variable genes and colored by all known effects 
highlights type of tissue as the main contributor to sample segregation. (B) Percentage of top dynamic (Trendy) genes across the lifespan for 
the mouse brain, heart, liver, muscle, and pancreas, highlighting the liver and the pancreas the ones with higher and lower dysregulation, 
respectively. The displayed values correspond to the percentages of the total number of Trendy genes found in each tissue relative to the 
total number of expressed genes per tissue (brain: 34164, heart: 28073, liver: 20157, muscle: 18978, pancreas: 18414). Top dynamic genes 
were selected based on tissue-specific adjusted R2 thresholds (brain: > 0.2; heart: > 0.2; liver: > 0.1; muscle: > 0.3; pancreas: > 0.3) and p-
values < 0.1 in at least one segment; Supplemental File SF1). (C) Histograms of the distribution of breakpoints in gene expression of the top 
dynamic genes per tissue. Each bar depicts the sum of all breakpoints of all Trendy genes at that given time point. Monotonic behaviors (i.e., 
no breakpoints) are not included in the histograms. Dotted, vertical lines indicate the median breakpoint distribution for each tissue. Median 
breakpoint distribution in the muscle was significantly different from all the other tissues (Kruskal-Wallis Test followed by Dunn’s Test; 
Supplementary Table 1). (D) Percentage of top dynamic genes exhibiting 0 to 7 breakpoints (maximum number of breakpoints allowed in the 
Trendy regression model). In all tissues, except from the Pancreas, most Trendy genes exhibit monotonic expression patterns (continuously 
up or down). In the Pancreas, the majority of genes display one breakpoint. (E) Biotype distribution of the top dynamic genes per tissue. 
Biotype nomenclature based on Ensembl annotation. In all tissues, protein coding genes were significantly over-enriched relative to the 
reference genome’s annotation, whereas lncRNAs were significantly under-enriched (Fisher’s Exact Test; Supplementary Table 2). 
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to each gene multiple segmented regression models 

with varying number of breakpoints, and then selects 

the one who explains the best the dynamics of that 

given gene’s expression across the time-course (see 

Methods – Trendy segmented regression analysis). 

Then, we selected the top dynamic (Trendy) genes 

based on the goodness of fit of the chosen model to 

the corresponding gene expression pattern, and  

on the significance of the segments (see Methods – 

Trendy segmented regression analysis; Supplementary 

Table 10).  

 

Next, to obtain a global view of the amplitude of gene 

expression dysregulation of each tissue with aging, we 

calculated the percentage of Trendy genes across the 

lifespan, considering each tissue’s total number of top 

dynamic genes relative to each tissue’s total expressed 

genes. We identified a total of 747, 1799, 3690, 1048, 

and 336 dynamic genes in the brain (2.2%), heart 

(6.4%), liver (18.3%), muscle (5.5%), and pancreas 

(1.8%), respectively (Figure 1B). These results 

highlight the pancreas and the liver with the lowest 

and the highest number of genes changing their 

expression with age, respectively. When considering 

the distribution of the breakpoints of each tissue’s top 

dynamic genes, we found that, for all tissues except 

for the muscle, the majority of the changes in gene 

expression throughout the lifespan occur between 

mature adulthood and middle age. Until 15 months 

(approximately the end of middle-age [34], we 

observed 64.5% of breakpoints in the brain, 68.4% in 

the heart, 65.1% in the liver, 41.9% in the muscle, and 

79.1% in the pancreas (Figure 1C). Moreover, the 

median breakpoint times for the brain (12), heart (14), 

liver (12) and pancreas (15) were not significantly 

different between these tissues but differ significantly 

from the median breakpoint time of the muscle (18) 

(Figure 1C; Supplementary Table 1). Nevertheless, 

with the exception of the pancreas, the majority of 

Trendy genes exhibit monotonic expression behaviors 

(no breakpoints, k=0; Figure 1D), either continuously 

increasing or decreasing expression throughout time. 

Biotype assessment of the top dynamic genes in each 

tissue based on the Ensembl classification (see 

Methods – Data pre-processing and normalization) 

showed that dysregulation mainly occurs at the 

protein coding level (Figure 1E; Supplementary Table 

2). The observed under-enrichment of long non-

coding RNAs (lncRNAs) in each tissue when 

compared with the reference genome, might be an 

artifact resulting from the filtering process as these 

RNA genes tend to exhibit lower expression levels 

(Supplementary Table 2). Nonetheless, changes in the 

expression of long non-coding RNAs may be of 

relevance, especially in the brain, liver, muscle, and 

pancreas (Figure 1E). 

Different subsets of co-expressed genes exhibit 

specific age- and sex-related trajectories  

 

As a second approach to defining age-regulated genes, 

we performed weighted gene correlation network 

analysis (WGCNA) to explore age- and sex-associated 

co-expression patterns of gene expression. Similar to 

the regression analysis, WGCNA was performed on 

each tissue independently, with each tissue’s co-

expression network comprising a variable number of 

modules of positively correlated genes (Supplementary 

Table 3).  

 

One of the great advantages of WGCNA is that this 

methodology takes into consideration the inter-

dependency of gene expression. Rather than analyzing 

each gene independently, WGCNA groups together 

correlated genes into modules, taking advantage of a 

power transformation on the pairwise gene correlations 

to accentuate strong correlations and play down weak 

ones. The resulting co-expression modules can then be 

associated with traits of interest (such as age or sex) and 

the strength of the association can be used to select 

modules of interest. WGCNA is also very useful for 

gene prioritization as it allows to rank genes within each 

cluster and identify intramodular hub genes, likely to be 

important for the phenotype [47].  

 

To select the most interesting modules for the aging 

process, as well as sex-dimorphic genes, we followed  

a two-step approach. First, for each module, the 

corresponding gene expression profiles were sum-

marized into a representative - module eigengene (ME; 

see Methods - Identification of significantly age- and 

sex- associated modules, hub genes, and Trendy-

module-hub overlapping genes) - and this illustrative 

profile was correlated with age and sex. All modules 

with a significant (false discovery rate (FDR) < 0.05) 

and at least moderate (≥ 0.5) correlations between their 

ME and age were selected. The brain and the heart both 

exhibited 3 modules significantly associated with age (2 

positive and 1 negative in the brain; 1 positive and 2 

negative in the heart); the liver displayed 4 age-

associated modules (3 positive and 1 negative); the 

muscle exhibited 5 modules correlated with age (3 

positive and 2 negative); and the pancreas did not have 

any modules significantly correlated with age (Figure 

2A). Regarding association with sex, the brain exhibited 

only 1 positively sex-correlated module; the muscle 

showed 4 sex-associated modules (2 positive and 2 

negative) while the heart and the pancreas exhibited 

none (Figure 2A). In line with what we previously 

observed, the liver appears to be the analyzed tissue 

whose gene expression is the most influenced by sex, as 

it displays 8 modules significantly sex-associated (4 

positive and 4 negative) (Figure 2A; Supplementary  
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Figure 2. Weighted gene co-expression network module selection. (A) Correlation between each module’s eigengene (ME) with age 
and sex. Each tissue exhibits a variable number of modules of co-expressed genes (brain: 24; heart: 19; liver: 36; muscle: 21; pancreas: 10), 
and unassigned genes are clustered together in the grey module (not shown). ME is the first principal component of the expression matrix of 
a module, thus being the most representative gene expression profile of that group of correlated genes. Cells are annotated with bicor values 
and corresponding FDR adjusted p-values (inside brackets). Red and blue cells depict positive and negative correlations, respectively. The 
intensity of color represents the degree of correlation. All modules whose ME’s correlation with the trait of interest is significantly equal or 
higher than 0.5 were considered (moderate correlation and above; FDR < 0.05; significant correlations with age marked with * and significant 
correlations with sex marked with º). (B) Correlation between module membership (MM) and gene significance (GS) of the previously 
selected significant modules. MM is obtained by correlating the expression of individual genes to the ME, and GS corresponds to the absolute 
value of the correlation between individual genes and the trait of interest. Only modules with moderate or higher (≥ 0.5) and significant (p-
value < 0.05) correlations with age and sex were considered for subsequent analysis (marked with * and º, respectively). 
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Figure 1). Because the pancreas did not exhibit any age- 

or sex- associated modules, it was not considered for 

further analyses (Figure 2A). Noteworthily, none of the 

age-associated modules overlapped with sex-associated 

ones, with the exception of the Darkgrey module in the 

liver (Figure 2A). Because sex was treated as a binary 

variable, with 0 encoding females and 1 encoding 

males, all positive associations in sex-associated 

modules correspond to over-representation in males, 

while all negative-associations correspond to over-

representation in females. 

 

Next, the gene significance (GS) and module 

membership (MM) measures were analyzed. GS refers 

to the absolute value of individual correlations of genes 

to the trait of interest, whereas MM relates to the 

individual correlations of genes to the ME. High 

correlations between these two measures are indicative 

of genes that are highly significant for the aging process 

and for sex differences in gene expression, being as well 

highly important to the module. Modules exhibiting 

significant (p-value < 0.05) and at least moderate MM-

GS correlations (≥ 0.5) were selected. From the 3 

previously selected age-associated modules in the brain, 

only 1 exhibited significant MM-GS correlations (Tan 

module), and the single selected sex-associated module 

also displayed a significant MM-GS correlation 

(Grey60 module) (Figure 2B). In the heart, 2 out of 3 

age-associated modules displayed significant MM-GS 

correlations (Tan and Blue modules; Figure 2B). As for 

the liver, from the 4 previously selected age-related 

modules, 2 exhibited significant MM-GS correlations 

(Salmon and Darkturquoise modules), while from the 8 

selected sex-associated modules, 7 also passed the MM-

GS correlation criteria (Tan, Red, Darkolivegreen, 

Darkgrey, Cyan, Brown and Blue modules) (Figure 2B). 

Interestingly, the genes in the Darkgrey module did not 

seem to be highly associated with aging as the MM-GS 

correlation is rather small (0.21; Figure 2B). For this 

reason, we will consider the Darkgrey module as only a 

sex-associated module for further analyses. Finally, in 

the muscle, 2 out 5 age-related modules were selected 

based on MM-GS correlations (Magenta and Brown 

modules), and all 4 sex-associated modules also 

exhibited significant MM-GS correlations (Red, Purple, 

Greenyellow and Blue modules) (Figure 2B). These 

selected clusters of genes can be considered the most 

relevant to the aging process and for sex-dimorphic 

gene expression. 

 

In order to evaluate each module’s age- and sex-related 

gene expression, we plotted a heatmap of VST-

normalized expression values of the genes belonging to 

the module, accompanied by a bar plot representing the 

ME expression profile (Figure 3A; Supplementary 

Figure 2). This visualization allowed us to better 

understand the behavior of the age- and sex-related 

genes across time, as well as to identify the lifespan 

periods where shifts in expression occur. The brain 

showed an increasing trend in gene expression with age 

(Tan module; bicor=0.86; p-value=3e-13), with the shift 

from down- to up-regulation occurring around the 

transition from middle- to old-age (15 to 18 months) 

(Figure 3A, upper left panel). Regarding the genes 

present in its sex-associated module – Grey60 

(bicor=0.84; p-value=9e-12), they are over-expressed in 

males, and no obvious trend of increased/decreased 

expression throughout time was observed 

(Supplementary Figure 2, upper left panel). As for the 

heart, the 2 significant age-related modules display 

different expression trends. The Blue module (bicor=-

0.57; p-value=5e-04) exhibits a decreasing trend in gene 

expression with age, and the transition from up- to 

down-regulation happened at old-age (18 to 21 months) 

(Figure 3A, upper left panel). Conversely, the Tan 

module presents an increasing trend in expression 

throughout the lifespan, transitioning from down- to up-

regulation within middle-age (12 to 15 months) (Figure 

3A, upper central panel). Concerning the liver, both 

age-associated modules displayed an increasing trend in 

gene expression over time, the difference being the 

onset of expression change. In the Salmon module 

(bicor=0.71; p-value=1e-06), gene expression starts to 

increase within middle-age (9 to 12 months), whereas in 

the Darkturquoise (bicor=0.54; p-value=0.001) this shift 

is less defined, probably occurring around the transition 

from mature adulthood to middle-age (6 to 9 months) 

(Figure 3A, lower left panels). In the case of modules 

significantly correlated with sex in the liver, the Brown 

(bicor=-0.89; p-value=1e-14), the Darkolivegreen 

(bicor=-0.53; p-value=7e-04) and the Red (bicor=-0.68; 

p-value=2e-06) modules are female-associated, and 

none displayed any obvious trends in gene expression 

changes over time (Supplementary Figure 2, upper right 

and central panels). As for the male-associated modules 

in the liver, all exhibit slightly decreasing trends in the 

expression of their genes, with all shift points in 

expression occurring within old age. Both the Blue 

(bicor=0.84; p-value=1e-11) module and the Darkgrey 

(bicor=0.79; p-value=1e-09) modules exhibited a shift 

between 24 and 27 months (within old age) 

(Supplementary Figure 2, upper right and central 

panels). Moreover, the Cyan module (bicor=0.55; p-
value=6e-04) displayed its shift in gene expression 

around the transition from 18 to 21 months 

(Supplementary Figure 2, upper right and central 

panels), whereas the Tan module’s (bicor=0.55; p-

value=6e-04) expression change occurred between 21 

and 24 months (Supplementary Figure 2, upper right 

and central panels). Concerning the muscle, we 

observed opposite trends in the two age-associated 

modules. In the Magenta module (bicor=0.73; 
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Figure 3. Weighted gene co-expression network significantly age-associated modules. (A) Gene expression profile of each 
significantly age-associated module. The heatmaps (top) display the standardized expression (z-score) of individual genes 
(rows) per sample (columns), whereas the bar plots (below) represent the ME expression profile. Each bar of the bar plot 
corresponds to the same samples of the heatmap. Negative (positive) values of ME expression relate to the under-expression 
(over-expression) of genes in each module’s heatmap (blue and red colors, respectively). (B) Intramodular hub gene 
identification. For each module, genes with individual GS > 0.2 and MM > 0.8 were considered to be the most functionally 
important (inside grey rectangles). 
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p-value=3e-07) we observed increased gene expression 

across the lifespan, whereas in the Brown module 

(bicor=-0.76; p-value=8e-08), the expression tends to 

decrease over time (Figure 3A, lower right panels). 

Interestingly, in both modules the shift in expression 

occurs within middle-age, around the transition from 9 

to 12 months (Figure 3A, lower right panels). Finally, in 

regards to the sex-associated modules in the muscle, 

only the Blue module (bicor=0.5; p-value=0.004), 

which is male-related, displayed a discernible trend of 

increased expression across the lifespan, with the 

transition from down- to up-regulation taking place 

within middle-age (9 to 12 months) (Supplementary 

Figure 2, lower left panel). The other 3 sex-related 

modules in this tissue did not exhibit any obvious trends 

in gene expression over time, with the Red module 

(bicor=0.86; p-value=3e-12) being male-associated, and 

the Greenyellow (bicor=0.85; p-value=4e-12) and 

Purple (bicor=0.76; p-value=2e-08) modules being 

female-associated (Supplementary Figure 2, lower right 

panels).  

 

Furthermore, in each module, we identified the genes 

with the highest MM and GS – Hub genes - as they are 

important elements of the module, as well as the most 

significantly associated with the trait of interest (see 

Methods - Identification of significantly age- and sex-

associated modules, hub genes, and Trendy-module-hub 

overlapping genes; Figure 3B and Supplementary 

Figure 3; and Supplementary Table 4). 

 

Altered genes and biological networks provide 

tissue-specific markers of aging 
 

In order to integrate the results from the two described 

approaches for finding age-dysregulated genes, we 

intersected the resulting gene lists and evaluated their 

functional implications. For each tissue, we compared 

the previously identified Trendy top dynamic genes 

with the gene sets of interest resulting from WGCNA 

(Module and Hub genes) and selected for functional 

analysis the intersection of the Trendy and the  

Hub genes (Figure 4; Supplementary Figure 4; 

Supplementary Table 5). As expected, all Hub genes 

overlapped with the Module genes. Because our interest 

is to explore gene expression dysregulation across the 

lifespan, we performed this analysis on all age-

associated modules and on only the sex-associated 

modules exhibiting discernible trends of increased/ 

decreased gene expression over time (i.e., the Blue, 

Cyan, Darkgrey, and Tan modules in the liver, and the 

Blue module in the muscle). 

 

In the brain Tan module, 34 genes were selected for 

further analysis (Figure 4; Supplementary Table 5). As 

for the heart, the size of the overlap between Trendy 

and Hub genes was 11 and 94, for the Tan and Blue 

modules, respectively (Figure 4; Supplementary Table 

5). In the liver, regarding age-associated, 5 and 9 

intersecting genes were selected from the Salmon and 

Darkturquoise modules, respectively (Figure 4; 

Supplementary Table 5), whereas 92, 12, 20 and 13 

genes were selected from the Blue, Cyan, Darkgrey,  

and Tan sex-associated modules, respectively 

(Supplementary Figure 4; Supplementary Table 5). 

Finally, in the muscle we proceeded the analysis with 9, 

31, and 21 genes from the Magenta, Brown and Blue 

modules, respectively (Figure 4 and Supplementary 

Figure 4; Supplementary Table 5). 

 

To better understand the functions underlying these 

signature gene lists, we performed an enrichment 

analysis on GO BPs and selected the ones with an FDR 

adjusted p-value of less than 0.05 (see Methods - 

Functional characterization of Trendy-module-hub 

genes’ overlap; Supplementary Table 6). To deal with 

the large number of significant BPs exhibited by some 

modules and to provide a clear picture of how they and 

their associated genes relate to each other, we 

constructed a network of these results, with nodes 

representing GO terms and edges corresponding to the 

overlap of genes between any two nodes (see Methods - 

Network visualization of functionally enriched terms). 

After having constructed the network, we addressed GO 

term redundancy by clustering together nodes based on 

gene overlap similarity and then assigning automatically 

created labels from the most frequent words in the 

cluster, as well as words adjacent to the most 

represented ones (see Methods - Network visualization 

of functionally enriched terms; Supplementary Table 6) 

[as seen in 53, and in 54]. To further simplify the 

visualization, we created a summary network based on 

the generated clusters, where all the nodes belonging to 

the same cluster collapsed into a meta-node and all the 

edges connecting the different clusters collapsed into 

meta-edges as well [55] (Supplementary Table 6). 

Selected results are present in Table 1. 

 

Neuronal death and immune response processes are 

upregulated in the aging brain  

 

GO enrichment analysis of the overlap of the brain 

Trendy genes with the Tan module hub genes identified 

233 significantly over-represented BPs, allocated into 9 

meta-nodes (Supplementary Table 6). The largest meta-

node is involved in antigen-mediated immunity and 

comprises 142 GO terms, thus representing more than 

half of all significant processes observed for this set 

(Brain Tan module: Table 1; Supplementary Table 6). 

The genes present in this group exhibit increased 

expression with increasing age, shifting from down- to 

up-regulation around the transition from middle to old  
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Figure 4. Gene overlap between Trendy genes, module genes, and hub genes in the age-associated modules with 
significantly enriched GO terms. Bars represent intersection size and colored circles depict the gene sets involved. Genes in common in 
the Trendy and hub gene sets were considered for further analysis (identified with *). 
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Table 1. Tissue-specific age-dysregulated functions. 

Tissue Module 
Summary network  

meta-node 

Summary 

network FDR 

No. of 

nodes 

Meta-node 

choice 

criteria 

Genes involved 

WGCNA 

expression 

trend 

WGCNA 

expression shift 

Brain Tan 

mediated 

immunoglobulin 

regulation response 

8.06E-03 142 Largest 

B2m, C1qa, C1qb, C1qc, C3, C4b, Csf1, 

Ctsh, Ctss, Ctsz, Cx3cr1, Gfap, H2-D1, 

H2-K1, H2-T23, Hexb, Il33, Irf7, Itgb2, 

Lag3, Lgals3, Neat1, Psmb8, Serpina3n, 

Slc11a1, Tap2, Tapbp  

Increasing 

with age 

Middle to old-age 

- 

15-18 months 

Brain Tan 

neuron death 

activation 

microglial 

6.59E-03 7 
Most 

significant 
C1qa, Csf1, Ctsz, Cx3cr1, Il33, Slc11a1 

Increasing 

with age 

Middle to old-age 

- 

15-18 months 

Heart Blue 

branched-chain 

amino process 

metabolic 

1.57E-02 17 Largest 

Acaa2, Adk, Auh, Ckm, Ckmt2, Cyc1, 

Eno3, Gnpat, Hmgcl, Isca1, Mccc2, 

Nfs1, Pdhb, Suclg1 

Decreasing 

with age 

Old-age 

- 

18-21 months 

Heart Blue 
acid catabolic lipid 

fatty 
4.19E-04 12 

Most 

significant 

Acaa1a, Acaa2, Adipor1, Auh, Eci2, 

Etfb, Gnpat, Hadh, Hmgcl, Mccc2, 

Pgm2, Phyh, Ptges2, Smpd1 

Decreasing 

with age 

Old-age 

- 

18-21 months 

Liver Darkturquoise 
response immune 

regulation cell 
7.07E-03 57 Both 

Cd19, Cd79a, Cd79b, Ighm, Igkc, Igkv3-

5, Iglc2, Jchain, Mzb1 

Increasing 

with age 

Adulthood to 

middle-age 

- 

6-9 months 

Liver Salmon 
regulation assembly 

cell positive 
3.32E-02 184 Both Ccl5, H2-Aa, H2-Eb1, Ntrk2, Slamf7 

Increasing 

with age 

Middle-age 

- 

9-12 months 

Liver Blue 
lipid biosynthetic 

process 
3.43E-02 1 Both 

Cdipt, Elovl2, Elovl3, Hsd17b12, Mecr, 

Pip5k1a, Pisd, Rest, Scp2, Serinc1, 

Smpd1 

Decreasing 

with age 

(males) 

Old-age 

- 

24-27 months 

Liver Cyan 

endoplasmic 

reticulum golgi 

vesicle-mediated 

2.80E-03 4 
Most 

significant 
Arcn1, Copg1, Sec22b, Sec24d 

Decreasing 

with age 

(males) 

Old-age 

- 

18-21 months 

Liver Cyan 

protein 

transmembrane 

response 

development 

1.41E-02 21 Largest 
Arcn1, Copg1, Hspa5, Sdf2l1, Sec22b, 

Sec24d, Sec61a1, Serp1 

Decreasing 

with age 

(males) 

Old-age 

- 

18-21 months 

Muscle Brown 

regulation 

morphogenesis 

negative 

development 

1.12E-02 82 Both 

Angptl1, Anxa2, Cd34, Col3a1, Col5a1, 

Col5a2, Col6a1, Col6a2, Col6a3, Dok2, 

Fn1, Igfbp6, Itgbl1, Lrp1, Ndn, Nid1, 

Pi16, Serpinf1, Serping1, Sparc, Ssc5d, 

Tgfbi, Timp2 

Decreasing 

with age 

Middle-age 

- 

9-12 months 

Muscle Blue 

proteasomal 

ubiquitin-

independent protein 

catabolic 

1.78E-02 1 
Most 

significant 
Psmb1, Psmb3 

Increasing 

with age 

(males) 

Middle-age 

- 

9-12 months 

Muscle Blue 

ribonucleoside 

triphosphate 

metabolic process 

2.89E-02 13 Largest Atp5l, Atp5g3, Cox5a, Ndufa8 

Increasing 

with age 

(males) 

Middle-age 

- 

9-12 months 

The choice of the representative meta-nodes was based on the number of nodes (GO terms) included (Largest) and/or on the 
p-values (Most significant). In the sex-associated modules, the sex in which the genes are enriched is indicated inside 
parentheses. Relates to Supplementary Table 6. 
 

age (15-18 months; Brain Tan module: Figure 3A; 

Table 1). 

 

Furthermore, 7 processes related to neuronal death were 

found to be the most significantly enriched in the aging 

brain (Brain Tan module: Table 1; Supplementary Table 

6). This meta-node also includes genes whose 

expression tend to increase throughout aging with the 

shift from down- to up-regulation occurring from 

middle- to old-age (15-18 months; Brain Tan module: 

Figure 3A; Table 1).  

 

Decline of cardiac ribonucleotide and fatty acid 

metabolism with age 
 

In the heart, we identified 11 clusters of similar GO 

terms, comprising 79 significantly enriched GO BPs 

based on the intersection between the heart top dynamic 
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genes and the heart Blue module hub genes (Heart Blue 

module: Table 1; Supplementary Table 6). The most 

significant meta-node includes processes related to fatty 

acid metabolism, whereas the largest cluster comprises 

BPs related to ribonucleotide metabolism (Heart Blue 

module: Table 1; Supplementary Table 6). The genes 

found to be involved in these processes exhibit 

decreased expression along the lifespan, with the 

transition from up- to down-regulation occurring late in 

life (18-21 months; Heart Blue module: Figure 3A; 

Table 1). 

 

Muscle regeneration is impaired with aging and 

mitochondrial energy metabolism and proteasomal 

activity are altered in the muscle of aged male mice  

 

Over-representation analysis of GO terms in the gene 

set obtained from the overlap of the muscle Trendy 

genes and the muscle Brown module hub genes resulted 

in a highly interconnected network of 82 BPs organized 

into a single meta-node (Supplementary Table 6). This 

cluster includes genes related to muscle tissue 

regeneration (Muscle Brown module: Table 1; 

Supplementary Table 6), which are down-regulated 

across the lifespan. A shift from up- to down-regulation 

occurs in middle age (9-12 months; Muscle Brown 

module: Figure 3A; Table 1).  

 

Additionally, the muscle exhibits one gene module 

whose expression is male-associated where we could 

observe an increasing trend in expression over time 

(Muscle Blue module: Supplementary Figure 2; Table 

1). After performing GO over-representation analysis 

on the overlap of muscle dynamic genes with the 

muscle Blue module hub genes we identified 28 

processes allocated into 4 meta-nodes (Muscle Blue 

module: Supplementary Table 6). The largest cluster is 

related to the metabolism of adenosine triphosphate 

(ATP), while the most significant one is associated with 

proteasomal activity (Muscle Blue module: Table 1; 

Supplementary Table 6). The genes involved in these 

processes exhibit increased expression in aged males, 

with the transition from under- to over-expression 

taking place around middle-age (9-12 months; Muscle 

Blue module: Supplementary Figure 2; Table 1). 

 

Liver aging is characterized by a global 

dysregulation of immune function and sex-specific 

differences in lipid metabolism and stress response 

activity 
 

In the liver, a total of 247 BPs were identified as being 

significantly enriched among the gene lists resulting 

from the overlap of the liver top dynamic genes and the 

age-associated modules hub genes (Liver Darkturquoise 

and Salmon modules: Table 1; Supplementary Table 6). 

In the Trendy-Darkturquoise module gene set, 63 

enriched GO terms were allocated into 2 meta-nodes, 

with the largest and most significant (n = 57) relating to 

immune cell activation, differentiation and proliferation 

(Liver Darkturquoise module: Table 1; Supplementary 

Table 6). The genes involved in these processes exhibit 

increased expression throughout the lifespan, with the 

shift from down- to up-regulation occurring between 

adulthood to middle age (6-9 months; Liver Dark-

turquoise module: Figure 3A; Table 1). Regarding the 

Trendy-Salmon module hub gene overlap, 1 cluster of 

processes also related to immune response was 

identified, comprising 184 GO terms (Liver Salmon 

module: Table 1; Supplementary Table 6). The 

identified genes within this cluster present an increased 

trend in expression with increasing age, shifting from 

down- to up-regulation within middle age (9-12 months; 

Liver Salmon module: Figure 3A; Table 1).  

 

Similar to what we have observed in the muscle, the 

liver also exhibits sex-dimorphism in gene expression 

with aging. In the liver Blue module, GO over-

representation analysis on the overlap of top dynamic 

genes with hub genes allowed for the identification of 1 

BP related to biosynthesis of lipids, whose comprising 

genes exhibit decreased expression over time, shifting 

from up- to down-regulation really late in life, around 

the transition from 24 to 27-months (Liver Blue module: 

Supplementary Figure 2; Table 1; Supplementary Table 

6). Moreover, in the Cyan module, 25 identified 

processes were allocated into 2 meta-nodes, the most 

significant one related to the endoplasmic reticulum (ER) 

transport system, and the largest one associated with ER 

stress response (Liver Cyan module: Table 1; 

Supplementary Table 6). The genes involved in these 

processes exhibit decreased expression in aged males, 

with the transition from over- to under-expression 

taking place within old-age (18-21 months; Liver Cyan 

module: Supplementary Figure 2; Table 1). 

 

Similar biological processes altered across multiple 

tissues 
 

Evidence from other studies have showed that 

differences in gene expression across the lifespan are 

strongly associated with tissue type. For that reason, all 

the analyses were performed in each tissue 

independently. Our data confirmed this trend since few 

players that are associated with aging are shared 

between tissues (5 genes in common between only  

the heart and the liver) (Figure 5 - left panel; 

Supplementary Table 7). Nonetheless, when we 

compared the GO terms enriched between tissues, we 

found a much higher overlap than that observed at the 

gene level (Figure 5 - right panel; Supplementary Table 

8). The highest number of shared BPs (43) was 
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observed between the brain and the liver, followed by 6 

processes shared between the heart and the muscle. The 

brain and the muscle also exhibited 6 GO terms in 

common, while the heart and the liver shared 3 BPs. 

Finally, the muscle and the liver, presented only 1 BP in 

common (Figure 5 – right panel; Supplementary Table 

8). As described above, we organized the GO terms in 

summary networks (Supplementary Table 8) and 

summarized the results in Table 2. 

 

The liver and the brain share 43 GO biological 

processes clustered into 3 meta-nodes (Brain-Liver; 

Table 2; Supplementary Table 8). In line with what we 

observed at the tissue-level, immune processes are 

represented in the intersection of GO terms between 

these two tissues. In both tissues, the genes involved in 

the processes comprising these meta-nodes exhibit an 

increasing trend of expression across the lifespan (Brain 

Tan and Liver Salmon and Darkturquoise modules: 

Figure 3A; Brain-Liver: Table 2; Supplementary Table 

8). However, the dysregulation of the genes involved in 

these processes occurs later in the brain, in the transition 

from middle to old age (15-18 months), than in the liver 

(6-9 months and 9-12 months; Brain Tan and Liver 

Salmon and Darkturquoise modules: Figure 3A; Brain-

Liver: Table 2; Supplementary Table 8).  

 

Interestingly, in the brain and the muscle the commonly 

affected BPs are related to tissue regeneration, with the 

6 identified GO terms allocated to 4 clusters (Brain-

Muscle: Table 2; Supplementary Table 8). In the brain, 

the genes comprised by these meta-nodes display 

increased expression across the lifespan, whereas the 

corresponding muscle genes displayed a down-

regulation trend (Brain Tan and Muscle Brown 

modules: Figure 3A; Brain-Muscle: Table 2). Moreover, 

the shifts in regulation occurred late in life in the brain, 

around the transition from middle to old age, whereas in 

the muscle they are observed earlier, within middle age 

(15-18 and 9-12 months, respectively; Brain Tan and 

Muscle Brown modules: Figure 3A; Brain-Muscle: 

Table 2).  

 

In the case of the heart and muscle, the 6 age-related 

dysregulated processes are related to energy metabo-

lism, particularly to the synthesis of ATP (Heart-

Muscle: Table 2; Supplementary Table 8). Notably, the 

overlap of these processes is observed between the 

hearts of both male and female mice, and the muscle of 

only male mice. In the heart, the genes related to these 

processes exhibit a decreasing trend in expression, 

transitioning from over- to under-expression within old 

age (18-21 months; Heart Blue module: Figure 3A; 

Heart-Muscle: Table 2; Supplementary Table 8). As for 

the genes in the muscle they tend to increase their 

expression in males over time, shifting from down- to 

up-regulation within middle age (9-12 months; Muscle 

Blue module: Supplementary Figure 2; Heart-Muscle: 

Table 2; Supplementary Table 8).  

 

The liver and the heart share 3 biological processes, all 

related to glucocorticoid signaling (Liver-Heart: Table 2; 

 

 
 

Figure 5. Overlap of genes and biological processes between the brain, heart, liver, and muscle. Upset plots depicting the gene 
overlap between Trendy genes, module genes, and hub genes per tissue (left), as well as the overlap of the enriched GO terms in the same 
tissues (right). Bars represent intersection size and colored circles depict the gene/GO term sets involved. Each tissue's gene list results from 
the intersection of Trendy, module, and hub genes. For this plot we considered all significantly age-associated modules and the significantly-
sex associated modules with an observable increase/decrease in gene expression over time (i.e., liver tan, blue, cyan and Darkgrey modules, 
and muscle blue module). In tissues with more than one significant module (i.e. the heart, the muscle and the liver), the gene list results from 
the combination of each module's intersection, and the GO term list results from the combination of each module's GO terms. GO terms in 
common at least in two tissues were considered for further analysis (identified with *). 
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Table 2. Inter-tissue age-dysregulated functions.  

Brain-Liver 

Related 

function 

Summary 

network 

description 

No. of 

nodes 
Genes involved - Brain Genes involved - Liver 

WGCNA 

expression 

trend - 

Brain 

WGCNA 

expression 

trend - Liver 

WGCNA 

expression shift - 

Brain 

WGCNA 

expression shift - 

Liver 

Immune 

response 

Response immune 

mediated 

immunoglobulin 

13 

B2m, C1qa, C1qb, C1qc, 

C3, C4b, Ctsh, Gbp3, H2-

D1, H2-K1, H2-T23, Il33, 

Irf7, Itgb2, Lag3, Lgals3, 

Lyz2, Slc11a1, Tap2 

Cd19, Cd79a, Cd79b, 

H2-Aa, H2-Eb1, Ighm, 

Igkc, Iglc2, Jchain, 

Slamf7 

Increase Increase 

Middle to old-age 

- 

15-18 months 

Adulthood to 

Middle-age 

- 

6-9 months and 

9-12 months 

regulation 

production cell 

proliferation 

26 

B2m, C1qa, C1qc, C3, Csf1, 

Ctsz, Cx3cr1, H2-D1, H2-

K1, H2-T23, Il33, Itgb2, 

Lag3, Lgals3, Slc11a1, 

Tap2 

Ccl5, Cd19, Cd79a, H2-

Aa, Ighm, Igkv3-5, Mzb1, 

Ntrk2, Slamf7 

Increase Increase 

Middle to old-age 

- 

15-18 months 

Middle-age 

- 

9-12 months 

processing 

presentation 

peptide antigen 

4 

B2m, Ctss, H2-D1, H2-K1, 

H2-T23, Psmb8, Slc11a1, 

Tap2, Tapbp 

H2-Eb1, H2-Aa Increase Increase 

Middle to old-age 

- 

15-18 months 

Middle-age 

- 

9-12 months 

Brain-Muscle 

Related 

function 

Summary 

network 

description 

No. of 

nodes 
Genes involved - Brain 

Genes involved - 

Muscle 

WGCNA 

expression 

trend - 

Brain 

WGCNA 

expression 

trend - 

Muscle 

WGCNA 

expression shift - 

Brain 

WGCNA 

expression shift - 

Muscle 

Tissue 

regeneration 

angiogenesis 1 
C3, Lgals3, Itgb2, Ctsh, 

Cx3cr1 

Fn1, Serpinf1, Sparc, 

Cd34, Anxa2 
Increase Decrease 

Middle to old-age 

- 

15-18 months 

Middle-age 

- 

9-12 months 

glial cell 

migration 
1 Csf1, Hexb Fn1, Ndn, Lrp1 Increase Decrease 

Middle to old-age 

- 

15-18 months 

Middle-age 

- 

9-12 months 

extracellular 

structure 

organization 

response 

3 
C3, Ctss, Gfap, Lgals3, 

Neat1, Slc11a1 

Anxa2, Cd34, Col3a1, 

Col5a1, Col5a2, Fn1, 

Lrp1, Nid1, Serping1, 

Tgfbi 

Increase Decrease 

Middle to old-age 

- 

15-18 months 

Middle-age 

- 

9-12 months 

regulation 

peptidase activity 
1 

Serpina3n, Ctsh, Psmb8, 

Ctsd 

Serpinf1, Pi16, Serping1, 

Timp2 
Increase Decrease 

Middle to old-age 

- 

15-18 months 

Middle-age 

- 

9-12 months 

Heart-Muscle 

Related 

function 

Summary 

network 

description 

No. of 

nodes 
Genes involved - Heart 

Genes involved - 

Muscle 

WGCNA 

expression 

trend – 

Heart 

WGCNA 

expression 

trend - 

Muscle 

WGCNA 

expression shift - 

Heart 

WGCNA 

expression shift - 

Muscle 

Energy 

metabolism 

respiratory 

electron transport 

atp 

6 

Coq9, Cyc1, Eno3, 

Ndufa10, Ndufs2, Sdhd, 

Slc25a12, Uqcrc1 

Atp5l, Atp5g3, Cox5a, 

Ndufa8 
Decrease 

Increase 

(males) 

Old-age 

- 

18-21 months 

Middle-age 

- 

9-12 months 

Liver-Heart 

Related 

function 

Summary 

network 

description 

No. of 

nodes 
Genes involved - Liver Genes involved - Heart 

WGCNA 

expression 

trend – 

Liver 

WGCNA 

expression 

trend - 

Heart 

WGCNA 

expression shift - 

Liver 

WGCNA 

expression shift - 

Heart 

Glucocortic

oid 

signaling 

receptor signaling 

pathway 

glucocorticoid 

3 Ntrk2 Ppp5c, Phb Increase Decrease 

Middle-age 

- 

9-12 months 

Old-age 

- 

18-21 months 

Liver-Muscle 

Related 

function 

Summary 

network 

description 

No. of 

nodes 
Genes involved - Liver 

Genes involved - 

Muscle 

WGCNA 

expression 

trend – 

Liver 

WGCNA 

expression 

trend - 

Muscle 

WGCNA 

expression shift - 

Liver 

WGCNA 

expression shift - 

Muscle 

Response to 

amino acid 

stimulus 

cellular response 

to amino acid 

stimulus 

1 Ntrk2 Col3a1, Col5a2, Col6a1 Increase Decrease 

Middle-age 

- 

9-12 months 

Middle-age 

- 

9-12 months 

In the sex-associated modules, the sex in which the genes are enriched is indicated inside parentheses.  Relates to 
Supplementary Table 8. 



 

www.aging-us.com 18164 AGING 

Supplementary Table 8). Interestingly, the genes enriched 

in these GO terms display opposite trends in expression 

throughout life. In the liver, we have observed increased 

expression with age, with a shift point within middle age 

(9-12 months; – Liver Salmon module: Figure 3A; Liver-

Heart: Table 2; Supplementary Table 8), whereas in the 

heart, we found gene expression to decrease across the 

lifespan, transitioning from up- to down-regulation later 

in life (18-21 months; Heart Blue module: Figure 3A; 

Liver-Heart: Table 2; Supplementary Table 8). 

 

As for the liver and the muscle, we found only 1 process 

in common between these tissues involving the 

response to amino acid stimulus (Liver-Muscle: Table 

2; Supplementary Table 8). Despite the genes 

comprised in this single meta-node changing their 

expression within middle age (9-12 months) in both 

tissues, they present opposite expression trends, 

increasing in the liver and decreasing in the muscle 

(Liver Salmon and Muscle Brown modules: Figure 3A; 

Liver-Muscle: Table 2; Supplementary Table 8). 

 

DISCUSSION 
 

In this work, we provide an in-depth characterization of 

the age-associated alterations in gene expression 

throughout the murine lifespan, through the re-analysis 

of publicly available mouse aging transcriptomic data 

(GSE132040). We have combined, for each tissue, a 

segmented regression model fitted to each gene to select 

the top dynamic genes over time with a network-based 

approach to establish tissue-specific clusters of co-

expressed genes correlated with increasing age and to 

identify sex-dimorphic gene expression patterns. By 

integrating the results of these two methodologies, we 

were able to both prioritize aging genes and establish 

gene expression signatures of aging with greater 

confidence. Among the selected tissues, the liver 

showed the highest percentage of dynamic genes across 

the lifespan, which is in line with recent works from 

other laboratories [20] and may be related to its high 

metabolic activity and protein synthesis rate [56, 57]. 

Nevertheless, these observations do not consider the 

magnitude of the dysregulation so conclusions must be 

drawn carefully as only one aspect of age-related gene 

expression dysregulation was addressed. We have also 

observed that most alterations in gene expression occur 

between 12 and 15 months in all tissues but the muscle, 

where the majority of changes took place in old age. 

Interestingly, Schaum and colleagues also observed a 

late-life gene expression dysregulation in this tissue, 

with the largest number of differentially expressed 

genes (DEGs) occurring in the 24 and 27 month age 

groups [6]. Additionally, the pancreas appeared to be 

largely unaffected by aging since it displayed the  

lowest amplitude of dysregulation and no significantly 

age-associated gene co-expression modules, also 

corroborating the findings of Schaum et al. [6]. The 

reason for this is not clear and data analysis does  

not highlight technical issues with the pancreas  

RNA-Seq dataset, however, these results should be 

interpreted with caution since RNA isolation may be 

affected by the high level of ribonucleases present in 

this tissue [58, 59]. 

 

The observed gene expression alterations across the 

lifespan generally reflect loss of tissue function and 

homeostasis (Supplementary Discussion), with different 

tissues exhibiting diverse onsets of gene expression 

dysregulation, as has been described before [6, 20]. We 

have also observed the existence of significant sex-

dimorphic expression patterns in the brain, muscle, and 

liver, with the former exhibiting the lowest number of 

sex-biased modules, and the latter displaying the 

highest. This observation is concordant with previous 

research in mice that showed the highest dimorphic 

gene expression to occur in the liver, followed by the 

muscle, and then by the brain [36]. These findings are 

also in line with those from the original study of the 

dataset re-analyzed in this work, which described 

prominent sex effects in gene expression in the liver and 

other tissues, not mentioning, however, neither the brain 

nor the muscle [6]. Sex-differences in gene expression 

have already been reported for the heart [60] and the 

pancreas [61] in healthy humans and mice, respectively, 

however, we did not find modules significantly 

correlated with sex in the heart and in the pancreas. One 

limitation of our study, which is inherent to the dataset, 

is the unbalanced number of subjects from both sexes 

that may mask more subtle, but existing, sex-differences 

in gene expression in these tissues. 

 

Genes involved in proteostasis-related pathways were 

significantly enriched in males over females and 

exhibited expression differences over time in the liver 

and the muscle of only male mice. For instance, in the 

liver, we observed sex-dimorphism in the expression of 

genes related to ER stress response, with decreased 

expression in males within old age (18-21 months). 

Notably, a recent study focusing on sex differences in 

hepatic ER stress described an increase in markers of 

the unfolded protein response (UPR) in the liver of male 

rats in the transition from the prepubertal phase to 

adulthood [62]. In line with these findings, we observed 

a peak in the expression of ER-stress related genes in 

the adult age prior to the described decrease throughout 

the lifespan. For that reason, further studies addressing 

sex-differences in these markers in a larger number of 

time points would be very important for deepening the 

knowledge on age-related ER-stress. As for the muscle, 

genes encoding subunits of the proteasome were found 

to be enriched in males and exhibited increased 
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expression with aging, shifting from under- to over-

expression around middle-age (9-12 months). A recent 

study has reported females as having significantly 

higher proteasomal activity in several tissues [63], 

however, this study did not include muscle tissue.  

 

One major implication from our results is that sex-

specific alteration in genes involved in proteostasis-

related processes can be detrimental to male survival 

and longevity since these pathways maintain protein 

quality control and prevent aberrant protein aggregation 

and proteotoxic stress [recently reviewed by us in 64]. It 

is well known that proteostasis decline is a hallmark of 

aging [65], leading to proteome imbalances and 

contributing to protein aggregation, including of 

amyloid-like aggregates [66–69], particularly in the 

muscle [70, 71]. Nonetheless, despite past studies 

having reported age-related declines in proteostasis in 

mammals, sex-dimorphism in these processes across the 

lifespan has been less explored, making this a very 

interesting subject to address in future research. 

 

Additionally, during liver aging there was a decreased 

male-enriched expression of genes involved in the 

biosynthesis of lipids (shift point within old age; 24-27 

months) while the muscle showed increased male-

biased expression (shift point within middle age; 9-12 

months) of genes related to energy metabolism, 

particularly to the synthesis of ATP (Supplementary 

Discussion). 

 

Although very few commonalities in age-related 

dysregulation were observed at the gene-level, we 

realized that the studied tissues could be grouped 

according to shared biological processes affected by 

aging. For the most part, the observed shifts in gene 

expression occurred within middle-age (9-12 months), 

as seen in the muscle and liver, however, in the brain 

and the heart these shifts occurred later in life (15-18 

months and 18-21 months, respectively). The brain and 

the liver had common age-related activation of immune 

responses, with increased expression of immune-related 

genes occurring later in the brain (15-18 months) than 

in the liver (6-9 months and 9-12 months). This 

activation pattern is consistent with the findings of 

Schaum et al. [6], while also being implicated in age-

related neurodegeneration, as well as in several hepatic 

age-related diseases, such as non-alcoholic fatty liver 

disease (NAFLD) and hepatocellular carcinoma (HCC) 

(Supplementary Discussion). Interestingly, a recent 

study comparing age-related transcriptomic alterations 

between different tissue-resident macrophages has 

shown that the most prominent dysregulation occurred 

in microglia, followed by Kupffer Cells (KC), the brain 

and the liver’s resident macrophages, respectively [72; 

preprint]. 

Another major implication from our observations is 

that, similarly to the shift points, the direction of 

dysregulation varies between tissues, despite shared 

biological pathways. For instance, the brain exhibits an 

up-regulation of genes involved in regeneration 

processes at old age, while the muscle shows an earlier 

(middle-age) down-regulation of these processes. 

Interestingly, serpin family genes are altered in both 

tissues, with the downregulation of Serpinf1 (serine (or 

cysteine) peptidase inhibitor, clade F, member 1) and 

Serping1 (serine (or cysteine) peptidase inhibitor, clade 

F, member 1) in the muscle contrasting with the up-

regulation of Serpina3n (serine (or cysteine) peptidase 

inhibitor, clade A, member 3N) in the brain. Serpins are 

a family of serine (or cysteine) protease inhibitors 

involved in several biological functions including 

homeostasis control [73]. In the muscle, both Serpinf1 

and Serping1 are involved in muscle growth and 

function through regulation of Akt and FoxO signaling 

pathways [74–76] whereas Serpina3n, which has been 

linked with increased immune response activity, is 

upregulated in aging astrocytes throughout the brain 

[77], as well as in a Prion disease mouse model [78], 

and has been implicated in Alzheimer’s disease (AD) 

[addressed in 79] and in Multiple Sclerosis (MS) 

disease progression [80].  

 

Alterations in signaling and cellular response processes 

were also shared between tissues, with opposing 

regulation over time in each tissue-pair (Supplementary 

Discussion). For example, the liver and the heart both 

showed alterations in genes involved in glucocorticoid 

signaling, with an early (9-12 months) increase in 

expression in the liver contrasting with a late life (18-21 

months) decrease in expression in the heart. Moreover, 

the liver and the muscle shared dysregulation of cellular 

responses to amino acid stimuli with the increase in 

gene expression in the liver opposing to the decrease in 

the muscle, albeit the shift point occurring around the 

same time (9-12 months). Interestingly, the aging heart 

exhibits a late life (18-21 months) decreased expression 

of respiratory metabolism genes, while the muscle 

showed an earlier increased expression of genes 

involved in the same processes (9-12 months), but only 

for male mice. 

 

In conclusion, this work opens new research avenues as 

it highlights many unexplored genes and mechanisms  

in the context of healthy aging and temporally 

contextualizes gene expression alterations. We identified 

tissue-specific key players of aging and addressed the 

functional implications of their age-related alterations 

and sex differences in gene expression throughout the 

lifespan. We also identified groups of tissues based on 

shared age-affected processes, potentially uncovering 

tissue axes of common age-related functional dys-
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regulation. We found that proteostasis impairment is a 

common feature of aging in the muscle and liver of 

male mice and may dictate sex-differences in lifespan. 

Because these alterations occur at a transcriptional level 

and protein abundances can be post-transcriptionally 

regulated, we are currently working on integrating these 

results with translatomic and proteomic data to further 

explore these findings. Additionally, expanding this 

approach to the other tissues present in the dataset 

would be pivotal to comprehensively understand this 

phenomenon and successfully promote healthy aging 

strategies. 

 

MATERIALS AND METHODS 
 

Dataset characterization 

 

The mouse bulk RNA-Seq data used in this study was 

made publicly available by the Tabula Muris 

Consortium [6, 45], and is deposited in NCBI’s Gene 

Expression Omnibus (GEO) under the GEO Series 

accession number GSE132040 [44]. The original 

dataset consists of transcriptomic data from 17 male and 

female mouse tissues across 10 time points (1, 3, 6, 9, 

12, 15, 18, 21, 24, and 27 months). For this study, we 

excluded the 1-month-old samples to avoid the 

influence of developmental genes [34], and selected the 

brain, heart, muscle, liver, and pancreas for further 

analysis (Supplementary Table 9). The RNA extraction, 

cDNA library preparation, RNA sequencing, read 

quality control, pre-processing and alignment, trans-

criptome reconstruction, and expression quantification 

steps are reported in the original study, in the GEO 

webpage (GSE132040 entry), and in the protocols.io 

repository (2uvgew6 entry) [6, 44, 81]. Briefly, libraries 

were sequenced on the NovaSeq 6000 Sequencing 

Systems (Illumina) and originated 100-bp paired-end 

reads which were then de-multiplexed with bcl2fastq 

(v.2.20.). Read alignment to the GRCm39.p6 (Mus 

musculus) reference genome with Gencode (v.M19) 

annotations was performed using STAR (v. 2.5.2b). 

Transcript reconstruction and gene expression 

quantification was performed with HTSeq (v. 0.6.1p1). 

 

Data pre-processing and normalization 

 

Similar to what was described in the original study [6], 

we discarded samples with library size smaller than 

4.000.000 reads across all genes (Supplementary Table 

7). We further carried out outlier sample identification 

and removal, which was not performed in the original 

analysis. Outlier samples were identified based on the 

sample network approach [82, 83] and excluded if their 

standardized connectivities (z.K) were more than  

2 standard deviations away from the mean z.K 

(Supplementary Table 9; Supplementary Figure 5). 

Gene symbols were associated with Ensembl (release 99) 

biotype annotations [84] (Mus musculus reference 

genome GRCm39) using the R package biomaRt (v. 

2.44.0) [85, 86]. Low count genes were pre-filtered and 

only genes with total read count higher than 10 in at least 

n samples were kept, with n corresponding to each 

tissue’s minimum group size, whereas in the original 

study no information regarding gene filtering is provided. 

Read count data was normalized across samples  

and transformed with DESeq2’s (v. 1.28.1) [87] 

estimateSizeFactors and vst functions [88], respectively, 

as described by Schaum and colleagues [6]. PCA based 

on the 500 genes with highest row-wise variance (i.e., 

across all samples) was performed to identify the highest 

contributing sources of variance, but only for the 5 

selected tissues. In line with the observations of Schaum 

et al. [6], since all samples segregated mainly by tissue 

(Figure 1A), the subsequent analyses were carried out 

separately for the brain, heart, liver, muscle, and pancreas 

(see Methods - Dataset characterization). 

 

Trendy segmented regression analysis 

 

Segmented regression analysis was carried out in 

normalized expression data (see Methods – Data pre-

processing and normalization) using Trendy (v. 1.8.2) 

[46]. For each gene, a set of segmented regression 

models were fit, with gene expression as a function of 

time. We also included ‘Sex’ in the model. Each model 

comprised a varying number of breakpoints, 

representing a dynamic change in the gene expression 

profile, and ranging from 0 (linear regression) to 8 

(maxK parameter). We also determined a minimum 

number of samples present in a segment (expression 

profile interrupted by a breakpoint), based on the 

minimum group size in each tissue (brain: 3, heart: 4, 

liver: 3, muscle: 2, pancreas: 2). Then, the method 

selected the fitted model having the optimal number of 

breakpoints by identifying the one with the smallest 

Bayesian information criterion (BIC) value. We defined 

top dynamic genes based on the adjusted R
2
 values 

(indicative of the goodness of fit of a model) and on the 

segment slope p-values. The cutoff for the adjusted R
2
 

was defined for each tissue independently (brain: 0.2, 

heart: 0.2, liver: 0.1, muscle: 0.3, pancreas: 0.3) and 

chosen as the value above which less than 1% of the 

genes were kept after a permutation procedure [as 

performed in 48]. Thus, a gene was considered to be top 

dynamic (Trendy) if the adjusted R
2
 was higher than the 

tissue-specific established cutoff and if at least one 

segment was significant (segment slope p-value < 0.1). 

For the comparison of breakpoint distribution between 

the tissues, we performed a Kruskal-Wallis test, 

followed by a Dunn’s test of multiple comparisons 

using the kruskal.test and dunnTest functions, from the 

R packages stats (v. 4.1.0) and FSA (v. 0.8.32), 
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respectively. For testing biotype enrichment, we 

performed the Fisher’s Exact Test using the R function 

chisq.test, from the stats (v. 4.1.0) package. 

 

Gene co-expression network construction and module 

construction 

 

The WGCNA R package (v. 1.69) [47] was used to 

construct co-expression networks for the VST-

transformed data (see Methods – Differential gene 

expression analysis). Due to the large size of the 

datasets, an automatic block-wise network construction 

and module detection approach was chosen [89]. 

 

First, genes with zero variance across all samples were 

flagged and excluded. Then, for each filtered dataset a 

correlation matrix was calculated based on biweight 

midcorrelation (bicor) values and raised to specific soft 

thresholding powers (β; brain: 7; heart: 7; liver: 5; 

muscle: 6; pancreas: 7; Supplementary Figure 6). In the 

cases where the scale-free topology fit index failed to 

reach values above 0.8, the soft-threshold power was 

chosen based on the number of samples and mean 

connectivity values [90]. The resultant signed adjacency 

matrices were used to compute measures of topological 

overlap between each pair of genes, present in 

Topological Overlap Matrices (TOM). Next, genes in 

each dataset were hierarchical clustered (average 

linkage method) based on topological overlap dis-

similarity (1- TOM). Modules of co-expressed genes 

were constructed accounting for a minimum size of 50 

genes, a dendrogram branch merge cut height of 0.15, 

and default module detection sensitivity (deepsplit = 2) 

for all datasets except for the liver (deepsplit = 4). 

 

Identification of age- and sex-associated modules, hub 

genes, and Trendy-module-hub overlapping genes 
 

An initial selection of modules was based on the 

association of each module eigengene (ME) with age and 

sex. Age was treated as a continuous variable, while sex 

was transformed into a binary variable, with 0 encoding 

females and 1 encoding males. ME is the first principal 

component of the expression matrix of a module and is 

usually considered to be the most representative gene 

expression profile of that group of correlated genes. The 

association between a given module and the trait of 

interest was calculated using bicor values. All modules 

whose ME displays a significant (FDR adjusted p-values 
< 0.05), moderate or higher (≥ 0.5) correlation with age 

were selected for subsequent analyses. Next, for each of 

the selected modules, module membership (MM) and 

gene significance (GS) measures were calculated. MM 

results from correlating the expression of individual 

genes to the ME, whereas GS corresponds to the absolute 

value of the correlation between individual genes and the 

trait of interest. Similar to the previous step, only 

modules with moderate or higher (≥ 0.5) and significant 

(p-values < 0.05) correlations were considered to be 

relevant. Lastly, for each selected module, genes with 

individual GS > 0.2 and MM > 0.8 were considered to be 

the most functionally important, i.e. hub genes (as seen in 

[91–93]). The R package UpSetR (v. 1.4.0) [94] was used 

to calculate and visualize the overlap between Trendy, 

module, and hub genes. 

 

Functional characterization of Trendy-module-hub 

genes’ overlap 

 

To functionally characterize the gene lists corresponding 

to the intersection of Trendy, module, and hub genes per 

tissue, we performed over-representation analysis of GO 

BPs using the R package clusterProfiler (v. 3.16.0) [95]. 

Because this package requires NCBI’s Entrez Gene IDs 

as input, we converted gene symbols into EntrezIDs  

panelwith the org.Mm.eg.db R package (v. 3.11.4) [96]. 

We considered each tissue’s expressed genes (after 

filtering; see Methods – Data pre-processing and 

normalization) as the universe for over-representation 

analysis. GO terms with an FDR adjusted p-value less 

than 0.05 were selected for subsequent analyses. 

 

Network visualization of functionally enriched terms 
 

Network visualization of the enriched GO terms used 

the enrichmentMap plugin (v. 3.3.0) [97] of Cytoscape 

(v. 3.8.0) [98], with nodes representing GO terms, and 

edges depicting similarity scores based on the number 

of genes in common between nodes. To construct our 

networks, we set an edge similarity cutoff of 0.7. GO 

term redundancy was addressed with the AutoAnnotate 

(v. 1.3.3) [55], clusterMaker2 (v. 1.3.1) [99], and 

WordCloud (v. 3.1.3) [100] plug-ins from Cytoscape. 

Similar GO terms were clustered together using the 

Markov Clustering Algorithm (MCL), also with an edge 

similarity cutoff of 0.7, and cluster labels were  

created with the default label algorithm Adjacent 

Words, with 4 maximum words per label and an 

adjacent word bonus of 8.  

 

Code availability 
 

All analyses in the R statistical environment were 

performed using R (v. 4.0.3) and RStudio (v. 1.1.463). 

All R code is available at https://github.com/ 

mmccferreira/Aging_2021. 

 

Abbreviations 
 

AD: Alzheimer’s Disease; ATP: Adenosine triphosphate; 

Bicor: Biweight Midcorrelation; BP: Biological Process; 

DEGs: Differentially Expressed Genes; ER: endoplasmic 

https://github.com/mmccferreira/Aging_2021
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reticulum; FDR: False Discovery Rate; GEO: Gene 

Expression Omnibus; GO: Gene Ontology; GS: Gene 

Significance; HCC: hepatocellular carcinoma; KC: 

Kupffer cells; ME: Module Eigengene; MHCI:  

Major Histocompatibility Complex I; MM: Module 

Membership; MS: Multiple Sclerosis; NAFLD: Non-

alcoholic fatty liver disease; PCA: Principal Component 

Analysis; RNA-Seq: RNA Sequencing; Serpina3n: serine 

(or cysteine) peptidase inhibitor, clade A, member 3N; 

Serpinf1: serine (or cysteine) peptidase inhibitor, clade F, 

member 1; Serping1: serine (or cysteine) peptidase 

inhibitor, clade F, member 1; TOM: Topological Overlap 

Matrices; VST: Variance Stabilizing Transformation; 

WGCNA: Weighted Gene Correlation Network 

Analysis; z.K: Standardized Connectivity. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Discussion 
 

Tissue-specific aging expression signatures reflect an 

age-related loss of tissue function and homeostasis 

 

In the brain, we reported an increase in the expression 

of genes encoding for components of the Major 

Histocompatibility Complex (MHC) I (H2-T23 (H-2 

class I histocompatibility antigen D-37 alpha chain), 

H2-D1 (histocompatibility 2, D region locus 1), H2-K1 

(histocompatibility 2, K1, K region) and B2m (beta 2 

microglobulin)). These observations are concordant 

with the available literature, indicating that genes 

involved in immune responses, especially in MHC 

antigen processing and presentation, are increasingly 

expressed during aging in the brains of C57BL/6 mice, 

and probably constitute early markers of age-related 

neurodegeneration. Apart from H2-T23, all of the 

MHCI genes identified have been recently shown to be 

upregulated with age in several regions of the central 

nervous system (CNS) in the mouse [1]. Interestingly, 

higher levels of MHCI components have been linked 

with limited synapse density in the mouse hippocampus 

[2], as well as age-related synaptic loss in murine 

neuromuscular junctions [3], while other evidence 

points to an important role of MHCI in maintaining 

synaptic plasticity in healthy aging brain 

[4].  Importantly, our results are consistent with 

observations made in long-lived primate species and 

human fibroblasts that showed increased expression of 

MHC antigen presentation pathway genes with age, 

particularly B2m [5]. Furthermore, increased expression 

of B2m has also been shown to result in impaired 

hippocampal neurogenesis in aged mice, thus 

contributing to cognitive decline [6].  

 

Regarding the heart, we observed the downregulation of 

genes involved in energy metabolism, including Pdhb 

(pyruvate dehydrogenase (lipoamide) beta) and Acaa2 

(acetyl-Coenzyme A acyltransferase 2 (mitochondrial 3-

oxoacyl-Coenzyme A thiolase)). Pdhb is involved in the 

irreversible oxidative decarboxylation of pyruvate, as it 

encodes for a catalytic enzyme (E1β subunit) of the 

pyruvate dehydrogenase complex (PDC) [7, 8]. 

Although its role in the aging heart remains unclear, 

PDC is crucial in mitochondrial energy production with 

its end products acetyl-CoA and NADH being central 

molecules in the Krebs cycle and mitochondrial 

respiration, respectively [7, 9]. Interstingly, higher 

efficiency of PDC activity has been reported in older 

F344 rats [10] and, more recently, heart failure patients 

reportedly showed increased PDC activity in the left 

ventricular myocardium, characterized by greater 

expression levels of PDC catalytic enzymes, including 

E1β [11]. It has also been shown that PDC activation is 

able to improve cardiac function in murine hearts [12], 

with the beneficial effects of PDC activity on heart 

function probably being due to increasing energy 

production under large energetic demand conditions. 

Furthermore, Acaa2 is involved in fatty acid beta-

oxidation, which also generates acetyl-CoA and NADH 

[13–15]. Despite not being studied in the context of 

aging, this gene has been shown to play a role in 

maintaining proper cardiac function, with possible 

implications for age-associated heart dysfunction. In 

heart failure-induced rats, a treatment successfully 

improved myocardial energy metabolism through the 

upregulation of the expression of genes involved in fatty 

acid metabolism, including Acaa2 [16]. Additionally, an 

aging-induced decline in fatty acid oxidation has also 

been reported in the hearts of aging mice [17]. We also 

observed the decrease in expression of other genes 

involved in fatty acid oxidation in this tissue, 

particularly of Acaa1a (acetyl-Coenzyme A acyl-

transferase 1A), Adipor1 (adiponectin receptor 1), Auh 

(AU RNA binding protein/enoyl-coenzyme A 

hydratase), Eci2 (enoyl-Coenzyme A delta isomerase 

2), Etfb (electron transferring flavoprotein, beta 

polypeptide), and Hadh (hydroxyacyl-Coenzyme A 

dehydrogenase), which corroborates previous reports of 

age-related cardiac dysfunction mediated by cardiac 

lipotoxicity as a result of impaired oxidation of fatty 

acids [recently reviewed in 18]. Together, these 

observations indicate a general impairment of cardiac 

energy substrate metabolism and suggest that the energy 

requirements of the aging heart are severely 

compromised.  

 

As for the muscle, we found a general decline in the 

expression of genes mainly involved in regulating 

muscle hypertrophy, regeneration, and homeostasis, 

as is the case of Anxa2 (annexin A2), Lrp1 (low 

density lipoprotein receptor-related protein 1) and Fn1 

(fibronectin 1). Regarding Annexin A2, it encodes for 

a protein belonging to the annexin family and is 

known to play an important role in plasma membrane 

repair of skeletal muscle cells [19–21].  Loss of Anxa2 

is associated with impaired myofiber repair and 

regeneration as well as progressive muscle weakening 

with age [22]. Interestingly, and contrary to our 

observations, Anxa2 expression has been found to 

increase with age both in healthy humans [23] and in 

ad libitum fed rats [24]. Lrp1 is a large endocytic 

receptor involved in muscle fibrosis, where Lrp1-

Decorin pathway leads to activation of TGF-β, 

promoting the expression of pro-fibrotic molecules 

[25, 26]. Additionally, Lrp1 depletion impairs fracture 

repair in the bones of old mice, while overexpression 
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improves it [27]. Notwithstanding these observations, 

the role of Lrp1 should be further elucidated in the 

context of skeletal muscle aging. Finally, fibronectin 

is an extracellular matrix component that has been 

shown to be an important player in muscle fiber 

regeneration by interacting with satellite cells, the 

muscle’s stem cells [28]. Our observations of 

decreased levels of Fn1 with aging are in line with 

previous findings reporting not only that the aged 

stem cell niche displays substantially lower 

fibronectin mRNA and protein levels, as well as that 

the knock-out of Fn1 results in decreased numbers of 

muscle stem cells [29]. Overall, our results indicate 

that skeletal muscle structure and functioning declines 

with age, where key genetic players in muscle 

regeneration are found to be downregulated. However, 

the exact role and underlying mechanisms of these 

genes in the aging mammalian skeletal muscle 

remains a marker of interest to be explored in future 

studies. 

 

Lastly, we observed an overall increase in gene 

expression associated with immune responses during 

hepatic aging, with significantly dysregulated genes 

including the inflammatory chemokine Ccl5 

(chemokine (C-C motif) ligand 5), Cd79a (CD79A 

antigen (immunoglobulin-associated alpha)) and 

Cd79b (CD79B antigen), and H2-Aa 

(histocompatibility 2, class II antigen A, alpha) and 
H2-Eb1 (histocompatibility 2, class II antigen E beta). 

Ccl5 is a chemokine – chemotactic cytokine – 

involved in directing leukocyte migration [30]. In 

agreement with our observations, Ccl5 mRNA levels 

were reported to be significantly increased in aged 

mice, and accompanied by other markers of chronical 

inflammation [31]. Moreover, up-regulation of Ccl5 
expression has been linked to several hepatic diseases, 

many of them having age as an important risk factor, 

such as non-alcoholic fatty liver disease (NAFLD) 

and hepatocellular carcinoma (HCC) [32–34]. Cd79a 

and Cd79b encode for components of the B cell 

antigen receptor, whose expression is important for B 

cell maturation [35]. In line with our observations of 

increased expression with aging of these genes, 

Schaum et al., the authors of the original study, report 

high numbers of B cells in the livers of old mice (18-

30m) based on Cd79a expression [36]. Moreover, a 

different study of the same authors reported age-

related overexpression of MHC II antigens H2-Aa and 

H2-Eb1 in the same tissue [37]. Up-regulation of 

these genes has also been found in a NAFLD mouse 

model [38]. Taken together, these findings are in 

agreement with the notion that exacerbation or 

dysregulation of inflammatory response is associated 

with liver pathology [addressed in 39], expanding it to 

the aging process. 

Sex-dimorphic expression of genes involved in 

metabolic-related pathways 

 

We also reported a decreased male-enriched expression 

of genes involved in the biosynthesis of lipids in the 

aging liver (shift point within old age; 24-27 months), 

including Elovl2 and Elovl3 (elongation of very long 

chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 2 

and 3), encoding for fatty acid elongase enzymes. These 

observations are in agreement with a previously found 

male bias of genes enriched in functions related to fatty 

acid metabolism in the liver of mammals [40], even 

though the dynamics of their expression over time 

haven’t been addressed. Interestingly, a recent critical 

review on sex-differences in NAFLD has pinpointed the 

male sex as a positive risk factor for the occurrence of 

this disease that, not only is age-related, but also is 

characterized by hepatic lipid accumulation [41]. 

Together, this evidence suggest a male-biased impair of 

lipid metabolism with aging, most likely mediated by 

intensification of lipid biosynthesis, however, more 

studies are needed to enlighten the potential 

mechanisms behind these observations. 

 

Furthermore, we observed an increased male-biased 

expression with aging (shift point within middle age; 9-

12 months) of genes related to energy metabolism, 

particularly to the synthesis of adenosine triphosphate 

(ATP), in the muscle. In line with our findings, a 

previous study regarding sex-differences in gene 

expression in human skeletal muscle reported higher 

expression of genes encoding mitochondrial proteins in 

men, albeit the influence of age was not explored [42]. 

More indirectly, an age-related increase in oxidative 

damage in human skeletal muscle was observed and 

was more prominent in males than in females [43], 

which may be explained by increased ATP production 

with aging in this group. Nevertheless, despite sex-

differences in muscle energy metabolism being reported 

[reviewed in 44], and some evidence regarding age-

related sexual dimorphism in these processes existing 

[addressed in 45], these differences have not been well 

characterized and more research is needed to improve 

our understanding on this matter. 

 

Alterations in signaling and cellular response 

processes between the aging heart, liver and muscle 
 

Alterations in signaling and cellular response processes 

are also shared between tissues. For example, the liver 

and the heart both show alterations in genes involved in 

glucocorticoid signaling, with an early (9-12 months) 

increase in expression in the liver contrasting with a late 

life (18-21 months) decrease in expression in the heart. 

Moreover, the liver and the muscle share dysregulation 

of cellular responses to amino acid stimuli with the 
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increase in gene expression in the liver opposing to the 

decrease in the muscle, albeit the shift point occurring 

around the same time (9-12 months).  

 

Interestingly, only one gene is involved in both cases in 

the liver – Ntrk2 (neurotrophic tyrosine kinase, receptor, 

type 2). Ntrk2 encodes for tyrosine receptor kinase B 

(TrkB), one of the three tropomyosin kinase receptors, 

that are mainly expressed in the brain and known to 

play an essential role in the homeostasis of this tissue as 

it is involved in neuronal differentiation and survival 

and synaptic formation and plasticity, among others 

[reviewed in 46]. This gene has also been reported to be 

expressed in the murine liver, being probably involved 

in the innervation of this tissue [47]. Notably, recent 

evidence has implied the over-expression of one 

isoform of TrkB (TRKB-T1) in the pathogenesis of 

non-alcoholic steatohepatits (NASH), an advance form 

of NAFLD, through the promotion of inflammatory 

signaling in hepatocytes and stress-induced cell death 

[48]. Furthermore, increased expression of Ntrk2 has 

also been suggested to contribute to the exacerbation of 

hepatocarcinogenesis in a mouse model of hepato-

cellular carcinoma [49]. Despite the lack of direct 

evidence establishing a link between the aging liver and 

TrkB signaling, our observations of increased Ntrk2 

expression across the lifespan suggest a role of this gene 

in age-related liver dysfunction, albeit further studies 

are needed. 

 

Additionally, in the heart, we observed the decreased 

expression of genes involved in both the positive 

(Ppp5c - protein phosphatase 5, catalytic subunit) [50] 

and negative (Phb - prohibitin) [51] regulation of 

glucocorticoid signaling, evincing an age-related 

dysregulation of this pathway in the heart, potentially 

impacting cardiac function, in line with previous reports 

[addressed in 52]. In the muscle, we also report an age-

related decrease in the expression of genes encoding 

some collagen proteins (Col3a1, Col5a2, Col6a1 – 

collagen type III, V and VI, alpha 1 and 2), which is in 

agreement of recent study reporting the down-regulation 

of fibrillar, fibril-associated and networking collagen 

genes in aged skeletal muscle of C57BL/6 mice [53]. 

 

Dysregulation of respiratory metabolism genes in the 

aging heart and in the muscle of aged males  
 

Interestingly, the aging heart shares dysregulation of 

respiratory metabolism genes with the muscle tissue of 

male mice. Age-related mitochondrial dysfunction in 

the heart has been widely studied and reported [for 

reviews, see 54–57], being characterized, among other 

markers, by decreased mitochondrial respiration activity 

[57], which is in agreement with our observations of 

decreased expression of genes involved in this process. 

As for the muscle, sex-differences in energy metabolism 

have already been addressed (see Sex-dimorphic 

expression of genes involved in metabolic-related 

pathways), with the conclusion that more studies are 

needed to better understand the mechanisms behind 

sexual dimorphism in mitochondrial respiration 

dysregulation, and potential implications for the aging 

process. 
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Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Transcript variance per tissue of interest after outlier removal. PCA of selected tissues based on the top 
500 most variable genes and colored by age and sex. Because sex is a considerable contributor to sample segregation it was included in the 
regression model as a co-variable. 
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Supplementary Figure 2. Gene expression profiles of the significantly sex-associated modules. Gene expression profile of each 
significantly sex-associated module. The heatmaps (top) display the standardized expression (z-score) of individual genes (rows) per sample 
(columns), whereas the bar plots (below) represent the ME expression profile. Each bar of the bar plot corresponds to the same samples of 
the heatmap and are ordered by increasing age (3 to 27 months). Negative (positive) values of ME expression relate to the under-expression 
(over-expression) of genes in each module’s heatmap (blue and red colors, respectively). 
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Supplementary Figure 3. Intramodular hub gene identification in the significantly sex-associated modules. For each module, 

genes with individual GS > 0.2 and MM > 0.8 were considered to be the most functionally important (inside grey rectangles).  
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Supplementary Figure 4. Gene overlap between Trendy genes, module genes, and hub genes in the significant sex-associated 
modules with discernible trends in expression throughout the lfiespan. Bars represent intersection size and colored circles depict the 
gene sets involved. Genes in common in the Trendy and hub gene sets were considered for further analysis (identified with *). 
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Supplementary Figure 5. Outlier detection by sample network approach [1]. Sample dendrograms were produced by hierarchical 
clustering using average linkage as the clustering method and 1-A (network adjacency) as the distance between samples. Samples were 
considered outliers (depicted in red) if their standardized connectivities (z.K, see [1]) were more than 2 standard deviations away from the 
mean z.K. 
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Supplementary Figure 6. Soft-thresholding power determination. Analysis of scale-free fit indexes (left panels) and mean 
connectivities (right panels) for different soft-thresholding powers (x-axes; red numbers). In cases where there is a lack of fit of scale-free 
topology, soft-thresholding powers were chosen based on sample number, as proposed by the authors [2]. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 3–6, 8, 10. 

 

Supplementary Table 1. Inter-tissue differences in breakpoint distribution. 

 Brain Heart Liver Muscle Pancreas 

Brain - - - - - 

Heart 5.60e-01 - - - - 

Liver 9.99e-01 5.03e-01 - - - 

Muscle 5.14e-13* 1.22e-27* 4.26e-26* - - 

Pancreas 5.50e-01 9.58e-02 4.50e-01 3.44e-21* - 

Kruskal-Wallis p-value < 2.2e-16. 
*depicts statistical significancy (adjusted p-value < 0.05). 
Statistical testing was performed using the non-parametric Kruskal Wallis test, followed by post-hoc Dunn’s multiple 
comparison test, and adjusted p-values are presented. p-value adjustment was performed using the Benjamini-
Hochberg method. H0 states no difference between tissues. Relates to Figure 1C. 
 

Supplementary Table 2. Enrichment of protein coding and long non-coding RNAs (lncRNAs) in each 
tissue’s top dynamic (Trendy) genes. 

Tissue 

Proportion of 

PC genes 

within 

Trendy genes 

Proportion 

of PC genes 

within 

reference 

genome 

PC enrichment 

p-value 

Proportion 

of lncRNAs 

within 

Trendy genes 

Proportion 

of lncRNAs 

within 

reference 

genome 

lncRNA 

under-

enrichment p-

value 

Brain 0.86 

0.43 

8.277036e-124 0.07 

0.18 

1.736139e-15 

Heart 0.83 3.558923e-245 0.07 5.160152e-34 

Liver 0.9 0.000000e+00 0.05 1.643966e-89 

Muscle 0.9 1.141175e-199 0.06 1.568121e-24 

Pancreas 0.88 1.450038e-61 0.07 8.077910e-08 

PC – protein coding. 
lncRNAs – long non-coding RNAs. 
Statistical testing was performed using Fisher’s Exact Test; H0 implies the proportion of each biotype being equal to the 
proportion of that biotype in the reference genome’s annotation. Relates to Figure 1E. 

 

Supplementary Table 3. Global characterization of WGCNA modules. 

 

Supplementary Table 4. Hub genes present in modules significantly associated with age and sex, and respective 
gene significance and module membership values. 

 

Supplementary Table 5. Gene overlap between the top dynamic genes (Trendy) and the genes present in the 
significant modules. 

 

Supplementary Table 6. Gene ontology (GO) over-representation and network analysis. 



 

www.aging-us.com 18188 AGING 

Supplementary Table 7. Genes in common between tissues. 

Tissue overlap Genes in common 

Heart-Liver Map1lc3b, Phyh, Psmc4, Smpd1, Yipf3 

Genes considered resulted from the overlap between Trendy genes 
with hub genes in each tissue. In tissues with more than one 
significant module (i.e., the heart, the liver, and the muscle), the gene 
lists consist in the combination of each module's intersection. Relates 
to the left panel of Figure 5. 

 

Supplementary Table 8. Gene ontology (GO) term overlap between the brain, heart, liver, and muscle. 
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Supplementary Table 9. Sample characterization. 

Brain 

Age 

(mo.) 

Initial no. of samples  
No. of samples after removal of low 

coverage samples 
 

No. of samples after removal of 

outlier samples 

Male Female Total  Male Female Total  Male Female Total 

3 4 2 6  4 2 6  4 2 6 

6 4 2 6  4 2 6  4 2 6 

9 4 2 6  4 2 6  4 1 5 

12 4 2 6  4 2 6  4 2 6 

15 4 2 6  4 2 6  4 1 5 

18 4 2 6  4 2 6  4 2 6 

21 4 2 6  3 2 5  3 2 5 

24 4 0 4  4 0 4  4 0 4 

27 4 0 4  3 0 3  3 0 3 

Heart 

Age 

(mo.) 

Initial no. of samples  
No. of samples after removal of low 

coverage samples 
 

No. of samples after removal of 

outlier samples 

Male Female Total  Male Female Total  Male Female Total 

3 4 1 5  4 1 5  4 1 5 

6 4 2 6  4 1 5  4 1 5 

9 4 2 6  4 2 6  4 2 6 

12 4 2 6  4 2 6  4 1 5 

15 4 2 6  4 2 6  4 2 6 

18 3 2 5  3 2 5  3 1 4 

21 4 2 6  4 2 6  4 2 6 

24 4 0 4  4 0 4  4 0 4 

27 4 0 4  4 0 4  4 0 4 

Liver 

Age 

(mo.) 

Initial no. of samples  
No. of samples after removal of low 

coverage samples 
 

No. of samples after removal of 

outlier samples 

Male Female Total  Male Female Total  Male Female Total 

3 4 2 6  4 2 6  4 2 6 

6 4 2 6  4 2 6  4 2 6 

9 4 2 6  3 1 4  3 1 4 

12 4 2 6  4 2 6  4 2 6 

15 4 2 6  4 2 6  4 2 6 

18 4 2 6  3 2 5  3 2 5 

21 4 2 6  4 2 6  4 1 5 

24 3 0 3  3 0 3  3 0 3 

27 4 0 4  4 0 4  3 0 3 

Muscle 

Age 

(mo.) 

Initial no. of samples  
No. of samples after removal of low 

coverage samples 
 

No. of samples after removal of 

outlier samples 

Male Female Total  Male Female Total  Male Female Total 

3 4 2 6  4 2 6  4 2 6 

6 3 2 5  3 2 5  3 1 4 

9 4 2 6  4 2 6  4 2 6 

12 4 2 6  4 2 6  3 2 5 

15 4 2 6  4 2 6  4 2 6 

18 4 2 6  4 2 6  4 2 6 

21 4 2 6  3 2 5  3 2 5 

24 3 0 3  3 0 3  2 0 2 

27 4 0 4  4 0 4  3 0 3 

Pancreas 

Age 

(mo.) 

Initial no. of samples  
No. of samples after removal of low 

coverage samples 
 

No. of samples after removal of 

outlier samples 

Male Female Total  Male Female Total  Male Female Total 

3 4 2 6  3 0 3  3 0 3 

6 4 2 6  3 1 4  3 1 4 
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9 4 2 6  2 2 4  2 2 4 

12 4 2 6  3 2 5  3 2 5 

15 4 2 6  4 1 5  3 1 4 

18 4 2 6  2 2 4  2 1 3 

21 4 2 6  2 1 3  2 1 3 

24 4 0 4  2 0 2  2 0 2 

27 4 0 4  4 0 4  3 0 3 

mo. – months; no. – number. 

 

 

Supplementary Table 10. Tissue-specific estimated parameters of the Trendy fitted model for each top dynamic 
gene. 


