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ABSTRACT 
 

DNA methylation analysis is becoming increasingly useful in biomedical research and forensic practice. The 
discovery of differentially methylated sites (DMSs) that continuously change over an individual’s lifetime has 
led to breakthroughs in molecular age estimation. Although semen samples are often used in forensic DNA 
analysis, previous epigenetic age prediction studies mainly focused on somatic cell types. Here, Infinium 
MethylationEPIC BeadChip arrays were applied to semen-derived DNA samples, which identified numerous 
novel DMSs moderately correlated with age. Validation of the ten most age-correlated novel DMSs and three 
previously known sites in an independent set of semen-derived DNA samples using targeted bisulfite massively 
parallel sequencing, confirmed age-correlation for nine new and three previously known markers. Prediction 
modelling revealed the best model for semen, based on 6 CpGs from newly identified genes SH2B2, EXOC3, 
IFITM2, and GALR2 as well as the previously known FOLH1B gene, which predict age with a mean absolute error 
of 5.1 years in an independent test set. Further increases in the accuracy of age prediction from semen DNA will 
require technological progress to allow sensitive, simultaneous analysis of a much larger number of age 
correlated DMSs from the compromised DNA typical of forensic semen stains. 
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INTRODUCTION 
 

Modification of DNA methylation (DNAm) is an 

important mechanism of epigenetic gene regulation. 

Dysregulation of DNAm has been observed in 

numerous diseases and consequently testing 

methylation patterns may have clinical value [1–3]. 

Moreover, the usefulness of DNAm analysis has also 

been recognized in forensic (epi)genetics, and practical 

forensic applications include identification of body 

fluids [4, 5], authentication of DNA samples [6, 7], 

differentiation of monozygotic twins [8, 9], prediction 

of lifestyle habits such as smoking and other 

forensically relevant extrinsic factors [10, 11], and in 

particular, the use of DNAm patterns to predict a 

person’s age [12–14]. 

 

The analysis of DNAm in forensic epigenetics can 

complement currently available methods of human 

identification and increase the use of DNA mainly for 

investigative intelligence purposes. DNA intelligence is 

applied to criminal cases without known suspects and 

allows the use of DNA to help find unknown suspects 

that cannot be identified with forensic STR profiling 

because their profiles are not already known to the 

investigators. The predictive power of information 

contained in the DNA is increasingly used in forensics, 

which has led to the establishment of the subfield of 

forensic DNA phenotyping [15]. Intelligence data 

obtained from DNA provides not only sex 

determination, but also inference of bio-geographic 

ancestry [16], prediction of some appearance traits - 

most notably pigmentation traits [17], and more 

recently, prediction of age [18]. All this information 

can be used to characterize an unknown person and 

provide investigative leads to focus and guide police 

investigation in their search for unidentified 

perpetrators [19]. 

 

Amongst DNA-based intelligence tools, predicting a 

person’s age from DNA can be particularly useful. Age 

information not only directly helps to trace unknown 

suspects, but can be an important factor in interpreting 

the results of appearance trait prediction, as several 

appearance traits such as hair loss in men are age-

dependent. The discovery of differentially methylated 

sites (DMSs) that continuously change throughout an 

individual’s lifetime has led to the development of 

accurate methods of age prediction [12–14]. In terms of 

accuracy, these approaches far exceed DNA methods 

previously developed for predicting age in forensics, 

based on telomere length or sjTREC analysis [20, 21]. 

In addition, it has been shown that DNAm patterns are 

highly stable and thus allow age prediction in forensic 

material typically subjected to degradation [22–24]. 

However, the wider use of epigenetic age estimation in 

the forensic field is hampered by DNAm differences 

between cell types, and different DNAm marker sets, 

models and tools have become necessary to predict age 

in various forensically relevant tissues and body fluids 

[25–27]. Semen samples are frequently used for genetic 

testing in forensic DNA laboratories, particularly in 

sexual assault cases. However, previous epigenetic age 

prediction studies mainly focused on somatic cell types, 

while reports of age predictors for semen are few in 

number to date [28, 29]. Even in a large set of 353 

carefully selected CpG markers, the groundbreaking 

work of Horvath showed the accuracy of predicting 

epigenetic age between different somatic tissues, with a 

median absolute difference error ranging between 1.5 

years for the occipital cortex and 18 years for muscle. In 

sperm cells, no significant correlation was found, and 

the epigenetic clock predicted age at a significantly 

lower value than the true chronological age of the sperm 

donors [12]. 

 

Some studies indicate sperm cells have a very different 

pattern of age-related DNAm compared to somatic cells 

[30, 31]. In sperm cells, not only does DNAm evidently 

decrease with age in most genes, but telomere length 

does not decrease, in contrast to patterns observed in 

somatic cells [32]. In a recent study, Infinium 

HumanMethylation450 BeadChip array data were used 

to investigate semen samples collected from 329 

donors. The final linear regression model included 

averaged DNAm levels across CpGs from 51 age-

related regions and showed prediction accuracy in the 

test data set of MAE = 2.37 years [29]. Quantitative 

measurement of DNAm levels is technically 

challenging and DNA samples usually analysed in 

forensic laboratories are of low quality and quantity, 

which is further compromised by bisulfite conversion. 

Therefore, choosing the right technology for forensic 

applications is crucial. In particular, the use of 

microarray technology cannot efficiently analyze 

biological traces due to the low quality and small 

amount of DNA they yield. 

 

The development of practical forensic methylation 

analysis tests that ensure high sensitivity is further 

hindered by the limited multiplexing capacity of current 

targeted DNAm detection technologies. Hence, 

analyzing the numerous CpGs from 51 regions 

suggested by Jenkins et al. [29] is currently impossible 

from crime scene DNA due to the lack of suitable 

technologies. In the search for efficient age DNA 

predictors from semen for forensic applications, aiming 

to reduce the number of DNA predictors to a minimal, 

Lee et al. (2015) conducted a marker discovery analysis 

in DNA from 12 sperm donors from 20 to 59 years of 

age. Lee used the Infinium HumanMethylation450 

BeadChip array and discovered 24 potential epigenetic 
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age predictors. The study proposed a predictive system 

based on analysis of three markers using a SNaPshot 

single base extension (SBE) protocol and a linear 

regression prediction model. These best semen age 

predictors were cg06304190 in the TTC7B gene, 

cg06979108 in FOLH1B (named NOX4 on the Infinium 

HumanMethylation450 BeadChip array), and 

cg12837463 in LOC401324 (no gene on the 

HumanMethylation450 array). The 3-CpG model 

predicted age with an error of ~5 years [28]. The 

prediction accuracy obtained with this model and tool in 

a follow-up forensic validation study was similar, with 

an MAE of 4.8 years [33]. 

 

In the current study, we first performed discovery of 

suitable semen age predictors via epigenome-wide 

screening for age-correlated DMSs using the Infinium 

MethylationEPIC BeadChip arrays (targeting over 

850,000 CpGs), in bisulfite converted DNA from 40 

semen samples collected from healthy men at age 24–58 

years. The ten most promising candidate loci were 

validated together with the 3 markers reported by Lee et 

al. (2015) in an independent set of semen-derived DNA 

samples from 125 additional males using targeted 

massively parallel sequencing (MPS) technology. These 

data were used to develop a prediction model for age in 

semen. A third independent set of semen-derived DNA 

samples from 54 men tested the prediction model’s 

performance. 

 

RESULTS 
 

MethylationEPIC 850K BeadChip array analysis 
 

Methylation data were collected from MethylationEPIC 

850K BeadChip array analysis in a discovery set of 40 

bisulfite-converted DNA samples extracted from semen 

of volunteers with a mean age of 36.0 years ± 7.4 (SD). 

Two DNA samples failed quality control of bisulfite 

conversion efficiency and were excluded from further 

analyses, leading to a mean age of the 38 discovery 

samples of 35.8 years ± 7.5 (SD) (Supplementary 

Figure 1). Correlation analysis of the EPIC microarray 

data indicated very strong demethylation in promoter 

regions in comparison to the whole set of CpG sites 

analyzed (median level 8.8% vs 76.7%, Supplementary 

Figure 2). Analysis of all 866,091 CpG sites showed 

that age-related demethylation occurs inside gene 

regions more frequently than expected and is 

characteristic of 14,916 (60.6%) significantly age-

correlated DMSs (P-value < 0.05, Supplementary Table 

1). It is worth noting that 17,367 (70.6%) significantly 

age-correlated DMSs (P-value < 0.05) were identified 

among sites with a high level of mean methylation. 

However, when strongly correlated DMSs (P-value < 

0.00001) was considered, the hypermethylated sites 

were only slightly more frequent than hypomethylated 

sites (41% vs 59%) (Supplementary Table 2). 

 

In the first step, Pearson’s r correlation analysis (P-

value < 0.00001) and use of false discovery rate (FDR) 

≤ 0.05 allowed the selection of 31 candidate CpG age 

markers for semen (Supplementary Table 3). 

Multivariable linear regression on power transformed 

DNAm data, supported by Bayesian Information 

Criterion was used to identify the best age correlated 

DMSs and allowed the identification of the optimal set 

of ten age predictors for semen. Among these ten 

selected markers, univariable linear regression on power 

transformed DNAm data revealed the highest age 

correlation (Pearson’s r = 0.77 and r = 0.76) and the 

highest statistical significance in TUBB3 and EXOC3, 

(P-value = 1.12×10
-8

 and P-value = 3.64×10
-8

, 

respectively). In this set, only the TBX4 gene showed 

negative correlation with age (P-value = 3.37×10
-7

, 

Pearson’s r = -0.72, Table 1). 

 

A preliminary prediction model using the ten best 

DMSs developed from Pearson’s r coefficient analyses 

after power transformation, showed high prediction 

accuracy with MAE of 1.2 years (RMSE = 1.5) and 

together these ten CpGs explained 94% of the age 

variation in the dataset (Supplementary Figure 3). This 

overestimated value was caused by the small number of 

samples used to train and test the model, and was 

verified by further validation testing and predictive 

modeling in independent samples. 

 

Given that the ejaculates used for DNA extraction 

contain spermatozoa as well as somatic cells, such as 

epithelial cells, we checked for potential somatic cell 

interference in the discovery data set (N = 40) for which 

EPIC microarray analysis was performed, by assessing 

DNAm levels in RTL1 (DLK1 on the Infinium 

HumanMethylation450 BeadChip array) and INS-IGF2 

(IGF2 on the HumanMethylation450 array). In contrast 

to white blood cells and epithelial cells, sperm cells 

show hypomethylation of RTL1 and hypermethylation 

of INS-IGF2 [31, 34, 35]. Analysis of 14 CpG sites in 

RTL1 and 4 CpG sites in INS-IGF2 revealed 

methylation levels typical of sperm cells in 77.5% of the 

samples (Supplementary Table 4). In the remaining 

samples, the DNAm data indicated a slight admixture of 

somatic cells. Therefore, we repeated all statistical 

analyses for selection of the optimal set of age 

predictors by only considering samples from which no 

signal of somatic cells was seen. This analysis revealed 

that 30 out of 31 previously identified markers remained 

significantly age-related with FDR ≤ 0.05. The marker 

cg19862839 (TBX4) lost statistical significance, 

indicating a potential significance for age prediction in 

the somatic fraction of ejaculates. Since our study 



 

www.aging-us.com 19148 AGING 

Table 1. Age correlation results of the univariable linear regression analysis for the ten best age correlated CpG 
markers selected from Infinium Methylation EPIC BeadChip array analysis of semen-derived bisulfite converted 
DNA samples from 38 men. 

Gene Probe ID Power transformation Pearson's r Pearson's r P-value Pearson's Benjamini-Hochberg FDR 

PPP2R2C cg02766173 -4.00 0.72 3.63×10-7 0.03 

EXOC3 cg10528482 -4.00 0.76 3.64×10-8 0.01 

SH2B2 cg00018181 -1.17 0.71 7.44×10-7 0.04 

IFITM2 cg01886988 -4.00 0.71 5.67×10-7 0.04 

SYT7 cg17147820 -1.49 0.73 1.60×10-7 0.02 

ARHGEF17 cg09855959 -4.00 0.71 6.72×10-7 0.04 

TUBB3 cg18701351 -4.00 0.77 1.12×10-8 0.01 

TBX4 cg19862839 0.36 -0.72 3.37×10-7 0.03 

GALR2 cg07909178 -0.20 0.71 7.46×10-7 0.04 

PALM cg17704154 -4.00 0.69 1.467×10-6 0.04 

 

aimed to develop a predictive model for age analysis in 

semen, which may contain small amounts of somatic 

cells, this marker was not removed from further 

modeling. 

 

Validation of the discovered age-correlated 

candidate DMSs 

 

Validation of the ten selected CpG sites was divided 

into two stages. First, using pyrosequencing, we 

confirmed a statistically significant age correlation of 

the GALR2, ARHGEF17, TUBB3, and PALM genes 

identified by MethylationEPIC Microarray BeadChip 

data analysis, by analyzing semen samples from the 

independent validation dataset (N = 162 semen samples 

not used for marker discovery) (Supplementary Table 

5). This allowed us to verify correctness of the 

microarray analyses. In the second part of the 

validation, the whole set of ten age-correlated DMSs 

selected at the discovery stage and 3 previously known 

semen age markers from Lee et al. (2015) [28] were 

analyzed via targeted MPS in semen-derived, bisulfite 

converted DNA samples of 125 independent male 

donors aged 26 to 56 years (mean age 40.5 ± 8.2 (SD)) 

which had not been used for marker discovery. This 

data collection method was chosen because targeted 

MPS is now the forensic technology with the highest 

multiplexing capacity, while using a different DNAm 

data collection method may affect predictive model 

accuracy, i.e., from method-to-method bias [36]. In 

addition, amplicon-based targeted MPS allowed us to 

extend the analysis of the 13 candidate CpG sites and 

additionally investigate adjacent CpG sites, allowing 

detection of 36 CpGs in total (Supplementary Table 6). 

 

Univariable linear regression analysis revealed 

significant association (P-value < 0.05) with age, in 28 

of the 36 (77.8%) analyzed CpG sites (Supplementary 

Table 6). Nine out of ten newly identified loci were 

successfully validated. The TBX4 gene was the only 

locus not statistically significant in validation analysis. 

We also successfully replicated the age association of 

FOLH1B, TTC7B and LOC401324 loci reported by Lee 

et al. (2015) [28]. Beta value analysis showed that, 

except for FOLH1B (standardized β value = 0.59), all 

statistically significant loci were negatively correlated 

with age (Supplementary Table 6). The highest 

statistical significance and strongest correlation with 

age (standardized β coefficient ≥ |0.5|) was detected in 

sites: FOLH1B C1 (β = 0.59, P-value = 3.40×10
-13

); 

SH2B2 C2 (β = -0.58, P-value = 1.03×10
-12

); IFITM2 

C1 (β = -0.57, P-value = 3.35×10
-12

); IFITM2 C2 (β = -

0.57, P-value = 3.39×10
-12

); SH2B2 C1 (β = -0.54, P-

value = 1.00×10
-10

) and GALR2 C8 (β = -0.5, P-value = 

2.86×10
-9

) (Supplementary Table 6 and Figure 1). In 

univariable analyses, each of these DMSs explained 25–

35% of the age variation observed in the analyzed 

semen samples (Supplementary Table 6). The highest 

statistical significance (P-value ≤ 5×10
-8

) was achieved 

for previously known genes FOLH1B (R
2
 = 0.35) and 

TTC7B (R
2
 = 0.24) plus newly identified genes SH2B2 

(R
2
 = 0.34), IFITM2 (R

2
 = 0.33) and GALR2 (R

2
 = 

0.25). The LOC401324 gene from Lee et al. (2015) was 

very close to this threshold (P-value = 5.08×10
-8

, R
2
 = 

0.22, Supplementary Table 6). 

 

Age prediction modeling 
 

The dataset of 36 CpGs in thirteen independent loci 

obtained with 125 test samples in stage 2 validation 

testing, was further used for training purposes. Stepwise 

multivariable linear regression was used for variables 

selection and model building. Among the 36 CpGs, 

statistical analysis selected the six best age predictive 

DMSs from five genes (Table 2). The final age 

prediction model for semen included five DMSs from 
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four novel genes SH2B2, EXOC3, IFITM2 and GALR2, 

and one DMS from the previously identified FOLH1B 

gene [28]. These six markers together explained 60% of 

the age variation observed in the training dataset (Figure 

2). The correlation with age of the six CpG sites 

included in the final model is shown in Figure 1. This 

model was then validated in a third independent model 

testing dataset of 54 semen-derived DNA samples 

collected from individuals aged 26–57 years (mean age 

40.6 ± 8.5 (SD)) not previously used in the marker 

discovery, marker validation, or model building steps 

(Figure 2). The developed model predicted age in the 

training set with MAE of 4.3 years (RMSE = 5.2) and in 

the test set with MAE of 5.1 years (RMSE = 6.3) (Table 

3 and Figure 2). 

 

In addition, we checked the accuracy of the  

model based on the three CpGs originally described by 

Lee et al. (2015) [28] in our test set and obtained MAE 

of 5.7 years. An alternative age prediction model based 

solely on our five new markers showed the same 

prediction error as the model covering all six DMSs 

(with MAE of 4.3 years) in the training set, but 

predicted age with slightly less accuracy in the test 

dataset (MAE of 5.2 years, Table 3). 

 

DISCUSSION 
 

Standard STR profiling used in forensic DNA testing 

cannot resolve cases of sexual assault when the semen 

contributor’s STR profile is unknown (no suspects) to 

investigators, or the STR profile is not matched in the 

criminal DNA database. Mass DNA testing in these 

cases has previously proved to be useful but is difficult, 

especially when a large number of people are eligible 

for screening [37–40]. Directed by forensic DNA 

 

 
 

Figure 1. Correlation between DNA methylation and chronological age in the model training dataset (N = 125) for six CpG 
sites included in the final age prediction model for semen. 
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Table 2. Final set of age predictive CpGs in semen and characteristics of the multivariable linear regression 
model for semen. 

Gene CpG no. Probe ID GRCh38 Standardized coefficient β t P-value Adjusted R
2 

SH2B2 C2 - chr7:102288454 -0.43 -3.95 1.38×10-4 0.36 

FOLH1B C1 cg06979108 chr11:89589683 0.42 6.23 8.73×10-9 0.55 

EXOC3 C1 - chr5:525617 0.25 3.09 3.00×10-3 0.54 

IFITM2 C1 cg05432003 chr11:312518 -0.30 -2.66 9.00×10-3 0.55 

GALR2 C1 - chr17:76077680 0.74 3.56 1.00×10-3 0.57 

GALR2 C5 - ch17:76077748 -0.61 -2.85 5.00×10-3 0.60 

 

intelligence, such as epigenetic age prediction, mass 

DNA testing would be much more effective. Age is 

considered amongst the most useful items of 

information that can be used to narrow down the 

number of potential suspects. Several studies have 

demonstrated the potential of age prediction using DNA 

methylation analysis, but most have focused on 

predicting age in somatic cells, mainly blood [18, 41]. 

The available data indicate that developing epigenetic 

age methods for semen is more demanding. It has been 

shown that sperm DNAm levels increase with age 

across the genome [30], which is the opposite to 

observations in somatic cells [42]. Additionally, it has 

been reported that age markers discovered and validated 

in somatic tissues do not have predictive value in male 

germline cells [12]. 

 

Discovery analysis 
 

Use of the high-density MethylationEPIC BeadChip 

array in the present study enabled what is currently the 

most comprehensive screening of the entire epigenome, 

adding a large number of sites previously unavailable 

with HumanMethylation27 BeadChip and 

HumanMethylation450 BeadChip microarrays. This 

study led to the discovery of numerous age-correlated 

 

 
 

Figure 2. Epigenetically predicted vs. chronological age in semen samples based on the model training (N = 125) and model 
test (N = 54) datasets, respectively. The accuracy of prediction achieved with the developed epigenetic age prediction model for semen 
equals a MAE of 4.3 years (RMSE = 5.2) in the training set and a MAE of 5.1 years (RMSE = 6.3) in the test set. The six CpGs included in the 
model explained 60% of the age variation observed in the training set. 
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Table 3. Age prediction accuracy in semen using different epigenetic prediction models. 

Age prediction model 

MAE (years) 

 

RMSE (years) 

Training set 

(N = 125) 

Test set 

(N = 54) 

Training set 

(N = 125) 

Test set 

(N = 54) 

Current model (6 CpGs from 5 loci) 4.3 5.1  5.2 6.3 

Lee et al. 2015 (3 CpGs from the TTC7B, 

FOLH1* and LOC401324 genes) 
4.9 5.7  5.8 7.0 

Current model with novel markers only (5 

CpGs from 4 loci) 
4.3 5.2  5.5 6.3 

*Present in the current model (6 CpGs from 5 loci). 
 

loci as candidate markers for epigenetic age prediction 

in semen. We have highlighted ten DMSs that showed 

the strongest correlation with age and had not been 

reported in previous studies [28, 29]. It is noteworthy 

that cg09855959 (ARHGEF17), cg18701351 (TUBB3), 

and cg17704154 (PALM) are not detected by 

HumanMethylation27 or HumanMethylation450 

BeadChip microarrays and none of the ten markers 

selected by EPIC analysis are present on the 27K 

Infinium array. Lee et al. (2015) reported three age-

correlated DMSs, while Jenkins et al. (2018) used 

DNAm data from their earlier studies [31, 43, 44] to 

select fifty-one age correlated regions in semen [29]. 

Our marker validation study involved 36 DMSs from 

thirteen regions in an independent dataset that was then 

used for model training. In addition to ten novel 

markers, we included three DMSs previously reported 

by Lee et al. (2015) [28]. The primary method of 

validation was MPS-based bisulfite amplicon 

sequencing. Using targeted MPS instead of using 

microarray data for marker validation and prediction 

modeling circumvents method-to-method bias 

associated with DNAm analysis - provided MPS is 

applied to future sample-of-interest analysis, such as 

forensic crime scene stains. 

 

Prediction modeling 

 

The DNAm data obtained were used as the basis for 

developing an age predictive model for semen with six 

DMSs from SH2B2, FOLH1B, EXOC3, IFITM2, and 

GALR2, which predicted age with MAE of 5.1 years 

(RMSE = 6.3) in the model test dataset. The developed 

model is based on men aged 26-56 years and the test set 

had a similar age range (26-57 years). In real case 

analyses, younger and older people may be present, but 

as the model allows extrapolation these predictions can 

still be made. The error obtained is similar to that 

reported by Lee et al. (2015) (MAE 4.7 years) for their 

3-CpG model. However, we used our data to develop a 

model based on 3 CpGs from [28] and this model 

predicted age in our test set with MAE of 5.7 years 

(Table 3). The difference may be related to the inter-

population differences in DNAm variability [45]. An 

alternative model based solely on the five newly 

discovered DMSs revealed MAE of 5.2 years, which is 

only 0.1 year less accurate than the original model that 

includes a CpG from FOLH1B. This finding suggests 

FOLH1B provides important age information but is not 

crucial for epigenetic age prediction when used in the 

same model as the five novel age markers. It should be 

emphasized that apart from FOLH1B, the genes TTC7B 

and LOC401324 selected by Lee et al. (2015), achieved 

very good results in our marker validation testing, 

providing independent confirmation of these gene’s 

correlation with age in sperm cells [28]. The MAE of 

our model is more than twice as inaccurate as the model 

reported by Jenkins et al. (2018) with MAE of 2.04 

years in the training dataset, and a MAE of 2.37 years in 

the test set (N=10). [29]. However, Jenkins et al. used a 

much larger number of CpGs at 51 regions, requiring 

analyses for DNA methylation estimation at a much 

higher level than is viable from forensic DNA using 

current methods. The primary aim of our study was to 

develop a minimal marker model of practical utility in 

routine forensic analyses. In addition, our test set 

contained more samples over a wider age range, which 

could impact the accuracy estimate. 

 

The discovered age markers for semen 
 

FOLH1B is the only gene in our final model previously 

described as an age predictor in semen [28]. Its 

usefulness has been recently confirmed in a Chinese 

sample set [46] and our study confirmed the utility of 

FOLH1B in a European population. The chromosome 11 

FOLH1B gene encodes folate hydrolase 1b, also known 

as prostate-specific membrane antigen-like protein. 

Studies suggest FOLH1B may play an important role in 

the development and progression of prostate cancer [47]. 

Interestingly, FOLH1B is expressed in kidney and liver, 

but not in any other normal tissue, including prostate 

[48]. This gene is the top marker on our list of predictors 

and alone explains 35% of the variation (Supplementary 
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Table 6). The remaining five genes included in the final 

model have not been previously correlated with age. The 

chromosome 7 SH2B2 (also called APS) is the strongest 

age-correlated locus among the novel markers and is 

identified as a c-Kit-binding protein. Expression of 

SH2B2 is restricted mainly to skeletal muscle, adipose 

tissue, and heart, while it may play an important role in 

insulin signaling [49, 50]. Notably, SH2B2 has shown a 

differentially methylated CpG site in testicular injury in 

rats [51]. Univariable linear regression analysis revealed 

that SH2B2 explains 34% of the variation 

(Supplementary Table 6). The chromosome 11 IFITM2 

gene encodes Interferon-induced transmembrane protein 

2 and is activated against multiple viruses. Its IFN-

stimulated gene expression is part of the response to 

infection with influenza A virus, SARS coronavirus 

(SARS-CoV), Marburg virus (MARV), Ebola virus 

(EBOV), and human immunodeficiency virus type 1 

(HIV-1) [52, 53]. The chromosome 5 exocyst complex 

component 3 EXOC3 gene is essential for the biogenesis 

of epithelial cell surface polarity [54–56]. This gene 

encodes a protein that is a component of the exocyst 

complex responsible for targeting vesicles to specific 

docking sites on the plasma membrane. The remaining 

two DMSs in the model are from the Galanin receptor 

type 2 (GALR2) gene and have R
2
 values of 0.18 and 

0.11. The chromosome 17 GALR2 gene encodes a 

protein involved in binding the hormone galanin and 

GALP, which results in signal transduction across the 

cell membrane in cooperation with G proteins [57, 58]. 

Its expression is mainly linked with the gastrointestinal 

tract, but is also detected in the testes [59]. 

 

Possibility of epigenetic age prediction in semen 
 

The moderate levels of age correlation and amount of 

age variation explained by the newly discovered DMSs 

confirms that epigenetic age prediction in semen is 

more complicated compared to age estimation in 

somatic cells. The individual effects of age predictors 

for semen as assessed by univariable linear regression 

analysis are smaller than those of somatic age markers 

in corresponding tissues. For instance, the highest R
2
 

values for FOLH1B (R
2
 = 0.35) and SH2B2 (R

2
 = 0.34) 

in our study are significantly lower than the strongest 

DNAm age predictor for blood ELOVL2. This predictor 
has shown consistently high R

2
 values ranging from 

0.66 to 0.86 and correlation with age ranging from 0.85 

to 0.92 in blood DNAm data [24, 60]. Notably, our 

results are consistent with those of Lee et al. (2015) for 

FOLH1B, who reported R
2
 = 0.44 for this gene. 

However, results for TTC7B and LOC401324 in our 

data were weaker than those reported by Lee et al. (R
2
 = 

0.24 vs. 0.61 and 0.22 vs. 0.60, respectively). It is 

important to highlight that Lee used East Asian samples 

and we studied Europeans. In addition, different values 

were reported by Li et al. (2020) for FOLH1B (R
2
 = 

0.74) and LOC401324 (R
2
 = 0.46) in Chinese and thus 

future research could reveal such inconsistencies are 

due to inter-population differences in DNAm levels. 

Consequently, age predictive models for blood based on 

just 4 to 7 CpGs show high accuracy with R
2
 = 0.94–

0.96 and MAE = 3.1–3.9 years [13, 26, 61, 62]. In the 

case of sperm cells, a similar R
2
 = 0.89 and MAE = 2.37 

was achieved by Jenkins et al. (2018), based on a 

predictive model from numerous CpGs in 51 regions 

[29]. Our 6-CpG model predicted sperm age with R
2
 = 

0.60 and MAE = 5.1 years (RMSE = 6.3). Further 

research should evaluate our system and other age-

related differentially methylated CpGs as potential 

markers of epigenetic age prediction of semen in 

different populations and using larger study cohorts [28, 

29, 43, 63]. One drawback of our research is the lack of 

data in the youngest age group (under 26), where 

involvement in sexual offences is common. However, 

as discussed earlier, the model allows for extrapolation 

and age predictions in groups of younger individuals. 

Additional research samples will provide further 

improvements in our system. The discovery of age 

predictors in semen with stronger effects than those 

identified in this or previous studies, and by others 

before [28, 29], seems unlikely based on the current 

limited data. Therefore, increasing the accuracy of an 

age prediction model for semen will only progress by 

using much larger numbers of CpGs independently 

correlated with age in semen. This will require future 

technological advances in DNAm analysis for 

simultaneous typing of larger numbers of CpGs from 

low quality and low quantity forensic DNA. 

 

In conclusion, we identified novel age correlated CpGs 

in ten genes previously not known to contain age-related 

DMSs, nine of which we successfully validated in an 

independent sample set. Our best model for predicting 

age from semen used six DMSs from five genes, of 

which four (SH2B2, EXOC3, IFITM2, and GALR2) were 

newly identified and FOLH1B was previously known. 

These six DNAm markers together explained ~60% of 

the age variation in the validation dataset, and the 6-CpG 

prediction model had an MAE of 5.1 years in our test 

dataset. The novel markers and model introduced here 

will be useful when applied to forensic cases, where 

knowledge of a semen donor’s age is unavailable but can 

be predicted with a practical and sensitive system from 

the crime scene semen samples. 

 

MATERIALS AND METHODS 
 

Semen samples 
 

A total of 288 semen samples from volunteers were 

divided into four sets. The discovery set (N = 40, age 
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range 24–58 years) was used for marker searches with 

the MethylationEPIC BeadChip array, with selections 

evaluated with the validation set (N = 162 samples, age 

range 26–60 years). Model building was made using 125 

samples in the training set (age range 26–56 years), 

subsequently tested on a test set of 54 samples (age 

range 26–57 years). The validation set shared 67 

samples with the training set and 26 with the test set 

(Supplementary Figure 1). Seventy-five semen samples 

were collected from patients from two Polish fertility 

centers: Medical Center Macierzyństwo and PARENS 

Fertility Center. Patients with severe 

oligoasthenoteratozoospermia were excluded from the 

study because of possible effects of this condition on 

DNA methylation patterns. Samples were collected 

based on the consent of the Bioethics Committee of the 

Jagiellonian University in Kraków no. 122.6120.78.2017 

and 1072.6120.132.2018. All participants were informed 

about the goal of the study and signed consent forms to 

use the material for research purposes. Each semen 

sample was frozen and stored at -20° C until DNA 

extraction. DNA was extracted from 150 µl of semen 

using Sherlock AX Kits (A&A Biotechnology, Gdansk, 

Poland) according to the manufacturer’s protocol. The 

quality and quantity of DNA isolates were measured 

using NanoDrop 8000 UV-Vis Spectrophotometer 

(Thermo Fisher Scientific, Waltham, Massachusetts, 

USA, herein TFS) and Qubit 4 Fluorometer (TFS). An 

additional set of 213 DNA isolates was provided by the 

Institute of Human Genetics at the Julius Maximilians 

University in Würzburg, Germany. These samples were 

collected based on the consent of the ethics committee at 

the medical faculty of the University of Würzburg no. 

212/15. 

 

MethylationEPIC 850K BeadChip array analysis 
 

Whole-genome methylation profiles were obtained for 

the discovery set (N = 40) from men aged from 24 to 58 

years old. All DNA samples were subjected to a quality 

check using 0.7% agarose gel electrophoresis. Bisulfite 

conversion and further epigenome-wide methylation 

analysis of these DNA samples was carried out using 

Illumina’s Infinium MethylationEPIC BeadChip array 

by the specialized Human Genomics Facility of 

Erasmus MC University Medical Center Rotterdam, 

The Netherlands. The data have been deposited in 

NCBI's Gene Expression Omnibus and are accessible 

through GEO Series accession number GSE179181 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE179181). 

 

Validation of age prediction markers for semen 
 

In the first stage, four of the top ten markers selected 

based on microarray experiments were analyzed using 

the PyroMark Q96 MD pyrosequencing system in the 

validation sample set (N = 162) at the Julius 

Maximilians University in Würzburg. The statistical 

significance and correlation between chronological age 

and methylation percentage were calculated using linear 

regression with PS IMAGO PRO 5.1 (IBM SPSS 

Statistics 25). This analysis confirmed their correlation 

with age, and thus, in the next step, DNA methylation 

data was collected for the entire set of ten CpG 

candidates and the three CpG markers described in [28], 

using the VISAGE Enhanced Tool for age estimation 

from semen based on bisulfite amplicon MPS as 

described in Heidegger et al. (2021). The whole set of 

13 candidate markers was analyzed in the training and 

test sets from donors aged 26 to 57 years (average age 

40.5 ± 8.3 (SD)) from Würzburg (N = 144) and Kraków 

(N = 35). Briefly, 200 ng or 500 ng DNA was bisulfite 

converted with the EZ DNA Methylation-Direct Kit 

(Zymo Research, Irvine, CA, USA, herein ZR) 

according to the manufacturer’s protocol (DNA was 

eluted with 10 µl or 25 µl elution buffer, respectively). 

Amplification of the 13 markers was performed in two 

multiplex PCR assays using 4 µl of bisulfite converted 

DNA eluate, followed by a clean-up step with 1.5X 

Agencourt AMPure XP beads (Beckman Coulter, Brea, 

California, USA, herein Roche). Library preparation 

was performed using the KAPA HyperPrep Kit with the 

KAPA Library Amplification Primer Mix and KAPA 

Unique-Dual Indexed (UDI) Adapters (all Roche, Basel, 

Switzerland, herein Roche), as described in Heidegger 

et al. (2021). Library quantification was performed 

using KAPA Library Quantification Kit (Roche) and the 

QuantStudio 12K Flex Real-Time PCR System (TFS). 

Additionally, the specificity of PCR reaction and library 

preparation was checked with the 2100 Bioanalyzer 

Instrument (Agilent Technologies, Santa Clara, CA, 

USA). Finally, libraries were sequenced with two extra 

0% and 100% methylation controls, Human Methylated 

and Non-Methylated WGA DNA Set (ZR), that were 

processed simultaneously. For sequencing, libraries 

were divided into two batches, pooled and prepared 

according to the MiSeq System Denature and Dilute 

Libraries Guide, Protocol A. A PhiX Sequencing 

Control (Illumina, San Diego, CA, USA, herein 

Illumina) in a final concentration of 5% was added to 12 

pM of library pool for compensation of unbalanced 

nucleotide composition caused by bisulfite conversion. 

Sequencing was performed using the MiSeq FGx 

platform (Illumina). 

 

Data and statistical analyses 

 

Infinium MethylationEPIC Array BeadChip data were 

pre-processed with R Bioconductor packages: “minfi”, 

“IlluminaHumanMethylationEPICanno.ilm10b4.hg19” 

and “lluminaHumanMethylationEPICmanifest” [64]. In 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179181
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179181
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the next step, methylation data were normalized with 

the SWAN method [65]. The DNA methylation data 

generated with MethylationEPIC 850K BeadChip array 

were subjected to statistical analysis. The preliminary 

candidate marker set was selected based on Pearson’s r 

correlation after application of the power 

transformation. Next, multivariable stepwise linear 

regression on power transformed data, supported by 

Bayesian Information Criterion was conducted within 

the R environment to identify the best semen age 

marker candidates [66]. Bioinformatic analysis of MPS 

data included quality assessment using FastQC, 

mapping of the bisulfite-seq reads to a custom-targeted 

reference with bwa-meth, SAM files sorting, 

conversion of the SAM files to BAM, and BAM 

indexing using Samtools. Depth of coverage in target 

regions was assessed using GATK (Genome Analysis 

Toolkit) [67] and each CpG’s methylation level was 

called based on the number of reads designated with 

the use of bam-readcount (with a minimum mapping 

quality of 30) (https://github.com/genome/bam-

readcount). For this purpose, the number of C reads 

was divided by the sum of C and T reads. Only CpG 

sites with the minimum number of 1000 reads were 

accepted for further analyses, including the prediction 

modeling that followed. The generated DNA 

methylation data were subjected to statistical analysis, 

including univariable association testing and 

construction of the age predictive models with 

multivariable stepwise linear regression in cross-

validation schema using PS IMAGO PRO 5.1 (IBM 

SPSS Statistics 25). Bayesian Information Criterion 

was used for model selection. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Marker selection workflow and model development. 



 

www.aging-us.com 19160 AGING 

 
 

Supplementary Figure 2. Methylation profile in various genome regions. 
 

 
 

Supplementary Figure 3. Parameters of the initial predictive model based on 10 CpG markers. F-stat = 47.7; P- value = 3.56×10-

14; R2
adjusted= 0.94; Absolute error for age prediction: Range: [0.06. 3.42]. Mean value: 1.20; Standard deviation: 0.93; RMSE = 1.5. 
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Supplementary Tables 
 

Supplementary Table 1. Age-related DNA demethylation correlation analysis 
with regard to genomic regions. 

Region 
CpG sites  

Significant association 

(P-value < 0.05) 
 

Strong association 

(P-value < 0.00001) 

[N] [%]  [N] [%]  [N] [%] 

Promoter 63.666 7.35  1.830 7.44  5 6.41 

Inside 505.926 58.41  14.916 60.62  52 66.67 

Upstream 140.149 16.18  3.417 13.89  7 8.97 

Downstream 155.512 17.96  4.408 17.91  14 17.95 

Close to 3’ 838 0.10  36 0.14  0 0.0 

Total 866.091 100  24.607 100  78 100 

 

Supplementary Table 2. Correlation analysis of age-related CpG sites with regard to 
DNA methylation level. 

Methylation level 
CpG sites  

Significant association 

(P-value < 0.05) 
 

Strong association 

(P-value < 0.00001) 

[N] [%]  [N] [%]  [N] [%] 

Low (β ≤ 0.5) 317.618 36.67  7.240 29.42  32 41.03 

High (β > 0.5) 548.473 63.33  17.367 70.58  46 58.97 

Total 866.091 100  24.607 100  78 100 
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Supplementary Table 3. 31 CpG preliminary candidate 
markers identified based on Pearson’s r and after 
power transformation calculated for 38 semen 
samples. 

Probe ID Gene Region Pearson's r 

cg03650729 TAL1 inside 0.70 

cg22820188 LMNA inside 0.72 

cg13502080 ZAP70 inside 0.69 

cg02766173 PPP2R2C inside 0.72 

cg10528482 EXOC3 downstream 0.76 

cg24603113 C7orf50 inside 0.69 

cg00018181 SH2B2 inside 0.71 

cg12108337 FUT10 downstream 0.71 

cg07212803 ARID3C promoter 0.70 

cg08967938 LHX3 inside 0.70 

cg13977355 NRARP downstream 0.70 

cg09899914 NRARP downstream 0.75 

cg11231500 NRARP downstream 0.70 

cg01886988 IFITM2 downstream 0.71 

cg16543948 AMBRA1 downstream 0.72 

cg17147820 SYT7 inside 0.73 

cg09855959 ARHGEF17 inside 0.71 

cg11703701 HBQ1 promoter 0.73 

cg26939539 SSTR5-AS1 inside 0.70 

cg23640964 SSTR5-AS1 inside 0.74 

cg08958168 SLC12A4 inside 0.70 

cg01420159 OTX2-AS1 inside -0.72 

cg18701351 TUBB3 inside 0.77 

cg13006202 TUBB3 inside 0.76 

cg18874912 SMTNL2 downstream 0.69 

cg19862839 TBX4 inside -0.72 

cg07909178 GALR2 downstream 0.71 

cg17704154 PALM inside 0.69 

cg12995604 ZBTB7A inside -0.71 

cg01094301 KLK6 inside 0.70 

cg06446412 MIRLET7BHG inside 0.70 
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Supplementary Table 4. DNA methylation results from Infinium MethylationEPIC BeadChip array data (shown as 
average beta values) for 14 CpG sites from the RTL1 gene and 4 CpG sites from the INS-IGF2 gene calculated for 
the 40 tested samples. 

Sample no. RTL1 INS-IGF2 Sample no. RTL1 INS-IGF2 Sample no. RTL1 INS-IGF2 Sample no. RTL1 INS-IGF2 

1 0.20 0.90 11 0.12 0.89 21 0.12 0.89 31 0.13 0.89 

2 0.13 0.90 12 0.12 0.88 22 0.15 0.89 32* 0.52 0.74 

3 0.11 0.88 13* 0.64 0.73 23* 0.46 0.81 33* 0.59 0.75 

4 0.15 0.90 14 0.14 0.91 24* 0.39 0.78 34 0.12 0.88 

5 0.22 0.89 15 0.19 0.90 25 0.14 0.87 35* 0.35 0.80 

6 0.14 0.87 16 0.29 0.87 26 0.13 0.89 36* 0.45 0.78 

7 0.15 0.89 17 0.14 0.89 27 0.10 0.87 37* 0.31 0.84 

8 0.18 0.89 18 0.10 0.89 28 0.18 0.89 38 0.12 0.85 

9* 0.47 0.78 19 0.14 0.88 29 0.16 0.91 39 0.18 0.87 

10 0.11 0.90 20 0.13 0.90 30 0.14 0.89 40 0.22 0.88 

*Samples with a slight admixture of somatic cells. 

 

Supplementary Table 5. Univariable correlation testing of a subset of CpG candidates using pyrosequencing. 

Gene  GRCh38 Probe ID Standardized Coefficient β F stat F stat P-value R
2
 No of samples 

PALM chr19:718608 cg17704154 -0.10 1.63 0.20 0.01 162 

PALM chr19:718625 - -0.25 10.62 1.00×10-3 0.06 162 

GALR2 chr17:76077748 - -0.29 15.01 1.56×10-4 0.09 162 

GALR2 chr17:76077752 cg19022866 -0.26 11.31 1.00×10-3 0.07 162 

GALR2 chr17:76077761 - -0.23 9.08 3.00×10-3 0.05 162 

GALR2 chr17:76077795 cg07909178 -0.36 24.07 2.00×10-6 0.13 162 

ARHGEF17 chr11:73311506 cg09855959 -0.18 5.35 0.02 0.03 162 

ARHGEF17 chr11:73311510 - -0.16 3.95 0.05 0.02 161 

ARHGEF17 chr11:73311527 - -0.26 11.02 1.00×10-3 0.07 161 

TUBB3 chr16:89921897 cg18701351 -0.29 15.15 1.45×10-4 0.09 162 

TUBB3 chr16:89921901 cg13006202 -0.30 16.08 9.30×10-5 0.09 162 

TUBB3 chr16:89921921 - -0.26 11.78 1.00×10-3 0.07 162 
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Supplementary Table 6. Univariable correlation testing of CpG candidates using MPS technology. 

Gene CpG no. GRCh38 Probe ID 
Univariable association testing 

Standardized Coefficient β t P-value R
2
 

ARHGEF17 C1 chr11:73311483 - -0.01 -0.11 0.92 0.00 

ARHGEF17 C2 chr11:73311489 - -0.02 -0.24 0.81 0.00 

ARHGEF17 C3 chr11:73311506 cg09855959 -0.29 -3.39 9.38×10-4 0.09 

ARHGEF17 C4 chr11:73311510 - 0.07 0.80 0.43 0.01 

ARHGEF17 C5 chr11:73311527 - 0.13 1.44 0.15 0.02 

EXOC3* C1 chr5:525617 - -0.32 -3.73 2.89×10-4 0.10 

EXOC3 C2 chr5:525656 cg10528482 -0.41 -4.94 2.48×10-6 0.17 

EXOC3 C3 chr5:525673 - -0.44 -5.36 4.00×10-7 0.19 

EXOC3 C4 chr5:525680 - 0.04 0.49 0.63 0.00 

GALR2* C1 chr17:76077680 - -0.33 -3.89 1.65×10-4 0.11 

GALR2 C2 chr17:76077692 - -0.29 -3.40 9.05×10-4 0.09 

GALR2 C3 chr17:76077717 cg08035416 -0.34 -4.07 8.44×10-5 0.12 

GALR2 C4 chr17:76077721 - -0.40 -4.78 4.99×10-6 0.16 

GALR2* C5 chr17:76077748 - -0.43 -5.22 7.54×10-7 0.18 

GALR2 C6 chr17:76077752 cg19022866 -0.41 -5.00 1.97×10
-6

 0.17 

GALR2 C7 chr17:76077761 - -0.37 -4.40 2.30×10-5 0.14 

GALR2 C8 chr17:76077795 cg07909178 -0.50 -6.41 2.86×10-9 0.25 

IFITM2* C1 chr11:312518 cg05432003 -0.57 -7.73 3.35×10-12 0.33 

IFITM2 C2 chr11:312560 cg01886988 -0.57 -7.72 3.39×10-12 0.33 

LOC401324 C1 chr7:35260617 cg12837463 -0.46 -5.69 8.71×10-8 0.21 

LOC401324 C2 chr7:35260674 - -0.46 -5.81 5.08×10-8 0.22 

FOLH1B* C1 chr11:89589683 cg06979108 0.59 8.16 3.40×10-13 0.35 

PALM C1 chr19:718608 cg17704154 -0.20 -2.24 0.03 0.04 

PALM C2 chr19:718625 - 0.10 1.09 0.28 0.01 

PPP2R2C C1 chr4:6473419 - -0.40 -4.71 6.93×10-6 0.16 

PPP2R2C C2 chr4:6473429 cg07867360 -0.17 -1.97 0.05 0.03 

PPP2R2C C3 chr4:6473455 cg02766173 -0.36 -4.28 3.68×10-5 0.13 

SH2B2 C1 chr7:102288444 cg00018181 -0.54 -7.07 1.00×10-10 0.29 

SH2B2* C2 chr7:102288454 - -0.58 -7.95 1.03×10-12 0.34 

SYT7 C1 chr11:61554783 cg17147820 -0.41 -4.97 2.22×10-6 0.17 

TBX4 C1 chr17:61466365 cg19862839 0.15 1.69 0.09 0.02 

TTC7B C1 chr14:90817262 cg06304190 -0.49 -6.22 7.22×10-9 0.24 

TUBB3 C1 chr16:89921880 - -0.29 -3.36 1.00×10-3 0.08 

TUBB3 C2 chr16:89921897 cg18701351 -0.28 -3.21 2.00×10-3 0.08 

TUBB3 C3 chr16:89921901 cg13006202 -0.28 -3.22 2.00×10-3 0.08 

TUBB3 C4 chr16:89921921 - -0.27 -3.05 3×10-3 0.07 

*Included in the final semen age model. 


