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INTRODUCTION 
 

Vascular endothelium releases several factors involved 

in the local regulation of vascular tone and modulation 

of pro-inflammatory molecule production [1]. Among 

them are endothelium-derived relaxing factors in 

particular nitric oxide (NO) as well as endothelium-

derived contracting factors such as prostaglandins and 

superoxide anion [2, 3]. Constitutive expression of 

endothelial nitric oxide synthase (eNOS) is mainly 

responsible for NO production in endothelial cells of 

conduit arteries [4, 5]. On the other hand, cyclo-

oxygenase (COX) is a rate-limiting enzyme in the 

biosynthesis of prostaglandins. COX1 is constitutively 

expressed and plays an important role in vascular 

homeostasis, while COX2 is considered an inducible 

enzyme in mouse conduit arteries [6].  

Aging of blood vessels are major contributors to the 

development of cardiovascular disease [7]. Existing 

evidence obtained in human and animal studies suggest 

that the earliest detectable vascular phenotype in aging 

involves the development of endothelial dysfunction, 

which is commonly characterized by the reduced 

endothelial production of NO and by the increased 

production of COX-derived vasoconstrictor factors [8–

10]. Moreover, clinical studies have reported that 

endothelium-dependent vasodilatation progressively 

declines with age and occurs earlier in men than in 

women [11, 12].  

 

Amyloid-β precursor protein (APP) is an evolutionarily 

conserved protein and is implicated in the development 

of Alzheimer's disease [13–15]. However, the exact 

function of APP outside the central nervous system, 
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ABSTRACT 
 

The physiological function of amyloid precursor protein (APP) in the control of endothelial function during aging 
is unclear. Aortas of young (4-6 months old) and aged (23-26 months old) wild-type (WT) and endothelium-
specific APP-deficient (eAPP−/−) mice were used to study aging-induced changes in vascular phenotype. 
Unexpectedly, aging significantly increased protein expression of APP in aortas of WT mice but not in aortas of 
eAPP−/− mice thereby demonstrating selective upregulation APP expression in vascular endothelium of aged 
aortas. Most notably, endothelial dysfunction (impairment of endothelium-dependent relaxations) induced by 
aging was significantly exacerbated in aged eAPP−/− mice aortas as compared to age-matched WT mice. 
Consistent with this observations, endothelial nitric oxide synthase (eNOS) protein expression was significantly 
decreased in aged eAPP−/− mice as compared to age matched WT mice. In addition, protein expression of 
cyclooxygenase 2 and release of prostaglandins were significantly increased in both aged WT and eAPP−/− mice. 
Notably, treatment with cyclooxygenase inhibitor, indomethacin, normalized endothelium-dependent 
relaxations in aged WT mice, but not in aged eAPP−/− mice. In aggregate, our findings support the concept that 
aging-induced upregulation of APP in vascular endothelium is an adaptive response designed to protect and 
preserve expression and function of eNOS. 
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particularly in peripheral tissues, remains poorly 

understood [16–18]. We and others have shown that 

APP is expressed in cultured endothelial cells as well as 

in vascular wall of wild-type mice [19–24]. Under 

physiological conditions, APP is constitutively cleaved 

at the cell surface by α-secretase via non-amyloidogenic 

processing pathway. Alpha-processing of APP causes 

release of soluble APP alpha (sAPPα) ectodomain in the 

lumen of blood vessel wall [25–30]. Recently, we 

showed that endothelium-specific inactivation of APP 

(eAPP
−/−

) caused endothelial dysfunction in mice 

cerebral arteries [29]. However, no previous studies 

tested the effects of aging on vascular APP expression 

in systemic large conduit arteries. In the present study, 

we advance the hypothesis that APP exerts vascular 

protective effects on endothelial function during aging. 

 

RESULTS 
 

Characterization of mice 

 

Body weight was increased in both aged wild-type 

(WT) and eAPP
−/−

 mice (P<0.05 vs. respective young 

mice; Table 1). Blood pressure measurements revealed 

that systolic blood pressure (SBP), mean blood pressure 

(MBP), and diastolic blood pressure (DBP) were 

unchanged in young and aged WT and eAPP
−/−

 mice 

(P>0.05; Table 1). Blood glucose was also not different 

between eAPP
−/−

 mice and their WT irrespective of age 

(Table 1). Lipid profile was unchanged in plasma of 

young WT and eAPP
−/−

 mice (P>0.05; Table 1). Aging 

caused a slight but significant increase in circulating 

levels of cholesterol in WT mice (P<0.05 vs. young 

WT; Table 1). In contrast, levels of triglycerides were 

decreased in aged eAPP
−/−

 mice (P<0.05 vs. young 

eAPP
−/−

 mice; Table 1). Plasma levels of 

norepinephrine were significantly increased in aged WT 

and eAPP
−/−

 mice (P<0.05 vs. respective young mice; 

Table 1). Aging significantly increased plasma levels of 

sAPPα in both WT and eAPP
−/−

 mice however, levels of 

sAPPα remained significantly decreased in eAPP
−/−

 

mice as compared to age-matched WT mice (P<0.05; 

Table 1). However, plasma levels of amyloid-β 1-40 

(Aβ1-40) were unaltered in young and aged WT and 

eAPP
−/−

 mice (P>0.05; Table 1).  

 

APP expression and processing in aorta 
 

Western blot analyses revealed that APP expression was 

significantly lower (by 27%) in the aorta of young 

eAPP
−/−

 mice (P<0.05 vs. young WT; Supplementary 

Figure 1). Aging caused increase in APP expression in 

WT mice aortas (P<0.05 vs. young WT; Figure 1A) 

while APP expression was unchanged in aged eAPP
−/−

 

mice aortas (P>0.05 vs. young eAPP
−/−

 mice; Figure 

1A). Release of sAPPα from the aorta was significantly 

increased in aged WT mice (P<0.05 vs. young WT 

mice; Figure 1B). In contrast, sAPPα release was not 

significantly affected by aging of eAPP
−/−

 mice (P>0.05 

vs. young eAPP
−/−

 mice; Figure 1B). Release of Aβ1-40 

from the aorta was not altered in young and aged WT 

and eAPP
−/−

 mice (P>0.05; Supplementary Figure 2). 

Moreover, protein expressions of a disintegrin and 

metalloproteinase domain-containing protein 10 

(ADAM10) and beta-site APP cleaving enzyme 1 

(BACE1) were unaltered in WT and eAPP
−/−

 mice 

irrespective of age (P>0.05; Figures 1C, 1D, 

respectively).  

 

Vascular contraction responses 
 

Contractions to KCl were significantly increased in 

aged WT and eAPP
−/−

 mice aortas as compared to 

young mice (P<0.05; Table 2) while there were no 

differences between age-matched WT and eAPP
−/−

 mice 

(P>0.05; Table 2).  

 

Sensitivity to prostaglandin F2α (PGF2α)-induced 

contractions was slightly lower in aortas of young and 

aged eAPP
−/−

 mice (P<0.05 as compared to their 

respective WT mice; Figures 2A, 2B, respectively; 

Table 2). In contrast, PGF2α potency was significantly 

increased in aged WT and eAPP
−/−

 mice (P<0.05 vs. 

respective young mice; Table 2), and efficacy of PGF2α 

was significantly decreased in aged WT and eAPP
−/−

 

mice (P<0.05 vs. respective young mice; Table 2).  

 

While no significant differences between age-matched 

WT and eAPP
−/−

 mice were observed, the potency of 

phenylephrine was reduced in aged WT and eAPP
−/−

 

mice (P<0.05 vs. respective young mice; Table 2; 

Figure 2C, 2D). Furthermore, the efficacy was 

significantly reduced in aged WT mice (P<0.05 vs. 

young WT mice; Table 2) while it tended to be reduced 

in aged eAPP
−/−

 mice (P=0.088; Table 2).  

 

Vascular endothelial function 

 

Acetylcholine (ACh)-induced endothelium-dependent 

relaxations were unaltered in young mice with 

endothelial-specific APP deletion (P>0.05 vs. young 

WT littermates; Figure 3A and Table 3). Aging caused a 

significant impairment to ACh in WT mice (P<0.05 vs. 

young WT mice; Table 3) while the efficacy was 

unaltered (Table 3). Furthermore, relaxations to ACh 

were further decreased in aged eAPP
−/−

 mice (P<0.05 

vs. aged WT mice; Figure 3B and Table 3).  

 

Incubation of aortas with indomethacin did not affect 

relaxations to ACh in young mice (P>0.05; Figure 3C). 

In contrast, indomethacin significantly improved 

endothelium-dependent relaxations to ACh in both aged 
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Table 1. Characteristics of young and aged eAPP−/− mice. 

Parameters 
Young  Aged 

WT littermates eAPP
−/−

  WT littermates eAPP
−/−

 

Body weight (g) 30±1 (10) 29±1 (10)  32±1 (12) * 33±1 (12) * 

SBP (mmHg) 121±2 (9) 119±2 (9)  120±2 (9) 121±2 (11) 

MBP (mmHg) 93±1 (9) 92±1 (9)  94±2 (9) 95±2 (11) 

DBP (mmHg) 79±1 (9) 78±1 (9)  81±2 (9) 82±2 (11) 

Glucose (mg/dL) 147±8 (10) 156±11 (10)  133±7 (12) 155±10 (12) 

Cholesterol (mg/dL) 63±2 (11) 63±3 (11)  88±14 (11) * 72±3 (11) 

HDL (mg/dL) 54± 2 (11) 52± 3 (11)  68±13 (11) 54±4 (11) 

Triglycerides (mg/dL) 85± 5 (11) 91± 6 (11)  74±8 (11) 63±5 (11) * 

Norepinephrine 

(pg/mL) 
1599±222 (16) 1898±280 (16)  3601±1019 (9) * 3371±399 (7) * 

sAPPα (pg/mL) 549±39 (10) 244±27 (10) †  734±72 (12) * 428±55 (12) *† 

Aβ1-40 (pg/mL) 90±8 (10) 88±10 (10)  93±11 (8) 92±20 (8) 

SBP indicates systolic blood pressure; MBP, mean blood pressure; DBP, 
diastolic blood pressure; HDL, high-density lipoprotein; WT, wild-type. Data are 
means ± SEM and the numbers of mice are indicated in the parentheses. * 
P<0.05 vs. young mice of same strain; † P<0.05 vs. age-matched WT littermates 
(two-way ANOVA followed by Tukey’s HSD test). 

 

 

 

Figure 1. (A) Effects of aging on protein expression of APP in the aortas of wild-type (WT) littermates and eAPP−/− mice (n=10 per group). (B) 
Effects of aging on ex-vivo sAPPα secretion from wild-type (WT) littermates and eAPP−/− mice aortas. The supernatants were collected and 
analyzed for sAPPα levels. Results were normalized against tissue protein levels (n=12 per group for young WT littermates and eAPP−/− mice 
and n=15 per group for aged WT littermates and eAPP−/− mice). (C) Effects of aging on protein expression of ADAM10 in the aortas of wild-
type (WT) littermates and eAPP−/− mice (n=6 per group). (D) Effects of aging on protein expression of BACE1 in the aortas of wild-type (WT) 
littermates and eAPP−/− mice (n=6 per group). Western blot results are the relative densitometry compared with β-actin protein. All results 
are representing box plots with whiskers showing the median, 25th to 75th percentiles, and min-max range. * P<0.05 versus young mice of 
same strain; † P<0.05 versus age-matched WT littermates (two-way ANOVA followed by Tukey’s HSD test). 
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Table 2. Efficacy and potency of vasoconstrictors in young and aged eAPP−/− mice aortas. 

Parameters 
Young 

 
Aged 

WT littermates eAPP
−/−

 
 

WT littermates eAPP
−/−

 

KCl (g): 1.95±0.06 (18) 1.87±0.04 (18)  2.53±0.11 (16) * 2.38±0.08 (16) * 

PGF2α:      

Emax (%) 139±4 (9) 137±3 (9) 
 

123±3 (8) * 124±4 (8) * 

pEC50 (−log mol/L) 5.49±0.03 (9) 5.34±0.04 (9) †  5.69±0.03 (8) * 5.57±0.04 (8) * † 

Phenylephrine:      

Emax (%) 63±6 (9) 50±5 (9)  41±8 (8) * 33±9 (8) 

pEC50 (−log mol/L) 7.03±0.02 (9) 6.98±0.02 (9)  6.74±0.07 (8) * 6.68±0.05 (8) * 

Emax indicates maximal efficacy; pEC50, potency; WT, wild-type. Data are means ± SEM and the numbers of mice are 
indicated in the parentheses. * P<0.05 vs. young mice of same strain; † P<0.05 vs. WT littermates of same age 
(two-way ANOVA followed by Tukey’s HSD test). 

 

 
 

Figure 2. Concentration-dependent contractions to PGF2α (A, B) and phenylephrine (C, D) in isolated aortic rings derived from young and 
aged eAPP−/− mice and their respective wild-type (WT) littermates. Results are shown as mean ± SEM (n=9 per group for young WT 
littermates and eAPP−/− mice and n=8 per group for aged WT littermates and eAPP−/− mice) and contractions are expressed as percentage of 
response to a second KCl (80 mmol/L). No significant differences were detected between WT littermates and eAPP

−/−
 mice at same age 

(ANOVA with Bonferroni's correction). 
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WT and eAPP
−/−

 mice (P<0.05 vs. aortas without 

indomethacin; Table 3). However, the efficacy is still 

significantly reduced in aged eAPP
−/−

 mice in the 

presence of indomethacin (P<0.05 vs. aged WT mice 

with indomethacin; Figure 3D and Table 3). Blockade 

of NOS with N
ω
-nitro L-arginine methyl ester (L-

NAME) in the presence of indomethacin completely 

blocks relaxations to ACh in both young and aged WT 

and eAPP
−/−

 aortas (Supplementary Figure 3).  

 

Ex-vivo production of prostaglandins in aorta 
 

We next determined whether age-related changes in 

vascular prostaglandins contribute to the observed 

decline in endothelial function of aortas, we measured 

release of prostaglandins in conditioned medium. 

Thromboxane B2 (TXB2) and prostaglandin E2 (PGE2) 

productions were significantly increased in both aged 

WT and eAPP
−/−

 mice (P<0.05 vs. young mice; Figure 

4A, 4B) while production of PGF2α was significantly 

increased only in aged WT mice (P<0.05 vs. young 

WT; Figure 4C). In contrast, production of 6-keto 

PGF1α (a stable metabolite of prostaglandin I2) was not 

different among young and aged WT and eAPP
−/−

 mice 

(P>0.05; Figure 4D).  

 

We also performed western blot analyses for protein 

expression of COX isoforms in aortas. COX1 

expression was not different between WT and eAPP
−/−

 

mice irrespective of age (P>0.05; Figure 5A). In 

contrast, protein expression of COX2 was significantly 

increased in both aged WT and eAPP
−/−

 mice (P<0.05 

vs. young mice; Figure 5B). Moreover, the increase in 

COX2 was significantly reduced in aged eAPP
−/−

 mice 

(P<0.05 vs. aged WT mice; Figure 5B). 

 

Protein expression of eNOS 
 

Expression of eNOS was significantly decreased in the 

aorta of aged eAPP
−/−

 mice (P<0.05 vs. young eAPP
−/−

 

 
 

Figure 3. Endothelium-dependent relaxations to ACh in isolated aorta from young (A; n=9 per group) and aged (B; n=8 per group) wild-type 
(WT) littermates and eAPP−/− mice aortas. Effects of indomethacin (Indo; 10-5 mol/L) on responses to ACh in young (C; n=9 per group) and 
aged (D; n=7 per group) WT littermates and eAPP−/− mice aortas. Results are shown as mean ± SEM and expressed as percent relaxation from 
submaximal contractions induced by PGF2α. * P>0.05 versus wild-type littermates (ANOVA with Bonferroni's correction). 
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Table 3. Efficacy and potency of endothelium-dependent relaxations in young and aged eAPP−/− mice aortas. 

Parameters 
Young 

 
Aged 

WT littermates eAPP
−/−

 
 

WT littermates eAPP
−/−

 

Emax (%):      

ACh 78±2 (9) 76±4 (9) 
 

83±2 (8) 69±5 (8) † 

ACh + Indomethacin  81±6 (9) 73±4 (9) 
 

84±2 (7) 70±3 (7) † 

pEC50 (−log mol/L):      

ACh 7.18±0.04 (9) 7.16±0.05 (9) 
 

6.75±0.01 (8) * 6.61±0.05 (8) * † 

ACh + Indomethacin  7.33±0.08 (9) 7.25±0.04 (9) 
 

7.17±0.03 (7) # 7.04±0.06 (7) * # 

Emax indicates maximal efficacy; pEC50, potency; WT, wild-type. Data are means ± SEM and the numbers of mice are 
indicated in the parentheses. * P<0.05 vs. young mice of same strain; † P<0.05 vs. WT littermates of same age (two-way 
ANOVA followed by Tukey’s HSD test); # P<0.05 vs. without indomethacin treatment (unpaired t-test). 

 

mice; Figure 6). Furthermore, eNOS protein tended to 

be reduced in aged WT mice but it did not reach 

statistical significance (Figure 6).  

 

Superoxide anion 
 

To investigate whether endothelial dysfunction in aging 

was caused by increased superoxide anion production in 

aorta, we performed HPLC-based assay of 2-hydro-

xyethidium. Levels of superoxide anion were significant- 

ly enhanced in aged eAPP
−/−

 mice (P<0.05 vs. young 

eAPP
−/−

 mice; Figure 7) while superoxide anion levels 

were unaltered in aged WT mice (P>0.05 vs. young WT 

mice; Figure 7). 

 

Intracellular cGMP levels 

 

Under basal conditions, cyclic guanosine 3',5'-

monophosphate (cGMP) were unchanged in aortas of 

WT and eAPP
−/−

 mice irrespective of age (P>0.05;

 

 
 

Figure 4. Effects of aging on ex-vivo secretion of prostaglandins from wild-type (WT) littermates and eAPP
−/−

 mice aortas. The 
supernatants were collected and analyzed for TXB2 (A; n=11 per group for young mice and n=9 per group for aged mice), PGE2 (B; n=11 per 
group for young mice and n=9 per group for aged mice); PGF2α (C; n=8 per group for young mice and n=8 per group for aged mice); and 6-
keto PGF1α (D; n=11 per group for young mice and n=7-9 per group for aged mice). All results were normalized against tissue protein levels 
and are representing box plots with whiskers showing the median, 25th to 75th percentiles, and min-max range. * P<0.05 versus young mice of 
same strain (two-way ANOVA followed by Tukey’s HSD test). 
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Figure 5. Protein expressions of COX1 (A) and COX2 (B) in the aortas of wild-type (WT) littermates and eAPP−/− mice. Western blot results 
are the relative densitometry compared with β-actin protein (n=10 per group for COX1 and n=8 per group for COX2). All results are 
representing box plots with whiskers showing the median, 25th to 75th percentiles, and min-max range. * P<0.05 versus young mice of same 
strain; † P<0.05 versus age-matched WT littermates (two-way ANOVA followed by Tukey’s HSD test). 

 

 
 

Figure 6. Effects of aging on protein expression of eNOS in the aortas of wild-type (WT) littermates and eAPP
−/−

 mice. 
Western blot results are the relative densitometry compared with β-actin protein (n=10 per group). All results are representing box plots with 
whiskers showing the median, 25

th
 to 75

th
 percentiles, and min-max range. * P<0.05 versus young mice of same strain (two-way ANOVA 

followed by Tukey’s HSD test). 
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Figure 8). ACh stimulated cGMP levels were 

significantly increased in young and aged WT and 

eAPP
−/−

 mice (P<0.05 vs. basal levels; Figure 8). How-

ever, ACh stimulated cGMP levels were significantly 

decreased in aged WT and eAPP
−/−

 mice (P<0.05 young 

mice in the presence of ACh; Figure 8). In contrast, 

cGMP levels did not differ between WT and eAPP
−/−

 

mice groups under basal and stimulated conditions 

(P>0.05; Figure 8).  

 

Ex-vivo studies with cytokines 
 

We next attempted in different experimental conditions 

to provide insight into the effects of APP deletion on

 

 
 

Figure 7. Quantitative HPLC analysis of superoxide anion in aortas from young and aged wild-type (WT) littermates and 
eAPP−/− mice aortas. All results were normalized against tissue protein levels and are representing box plots with whiskers showing the 
median, 25th to 75th percentiles, and min-max range (n=8 per group for young WT littermates and eAPP−/− mice and n=10 per group for aged 
WT littermates and eAPP−/− mice). * P<0.05 versus young mice of same strain; † P<0.05 versus age-matched WT littermates (two-way ANOVA 
followed by Tukey’s HSD test). 

 

 
 

Figure 8. Quantitative analysis of cGMP in aortas from young and aged wild-type (WT) littermates aortas (A) and eAPP−/− mice aortas (B) 
under basal and ACh (10 µM) stimulated conditions. All results were normalized against tissue protein levels and are representing box plots 
with whiskers showing the median, 25th to 75th percentiles, and min-max range (n=13 per group for young WT littermates and eAPP−/− mice 
and n=10 per group for aged WT littermates and eAPP−/− mice). * P<0.05 versus basal levels; † P<0.05 versus young WT mice (two-way 
ANOVA followed by Tukey’s HSD test). 
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eNOS expression in vascular endothelium. Young WT 

and eAPP
−/−

 mice aortas were used to examine the 

effects of pro-inflammatory cytokines cocktail on 

expression of APP and eNOS. Western blot analysis 

revealed that APP protein was significantly increased in 

young WT mice treated with cytokines (P<0.05 vs. PBS 

treatment; Figure 9A) while APP expression was not 

significantly affected in young eAPP
−/−

 mice (P>0.05; 

Figure 9A). In contrast, eNOS expression was 

significantly reduced in young eAPP
−/−

 but not in young 

WT aortas after cytokines treatment (P<0.05 vs. PBS 

treatment; Figure 9B). Expressions of iNOS and COX2 

were equally increased in both groups of mice (P<0.05 

vs. PBS treatment; Supplementary Figure 4). 

 

DISCUSSION 
 

There are several major findings in this study. First, 

protein expression of endothelial APP and production of 

sAPPα in endothelium of aged WT mice are increased 

as compared to aged eAPP
−/−

 mice. Second, impairment 

of endothelium-dependent relaxations to acetylcholine 

induced by aging is exacerbated in eAPP
−/−

 mice aortas. 

Third, eNOS expression was decreased whereas levels 

of superoxide anion were enhanced in aortas of aged 

eAPP
−/−

 mice. Fourth, pro-inflammatory cytokines in-

creased APP protein expression only in isolated aortas 

of young WT mice. In contrast, pro-inflammatory 

cytokines decreased expression of eNOS exclusively in 

young eAPP
−/−

 mice. Taken together, the results suggest 

that during aging endothelial APP exerts vascular 

protective effects. These effects appear to be mediated 

by preservation of eNOS and endothelium-dependent 

vasodilator function. 

 

In the present study we demonstrated for the first time 

that APP expression and sAPPα release were increased 

in aged wild-type mice aortas. Importantly, these age-

induced changes in expression and processing of APP 

were not observed in the aorta of eAPP
−/−

 mice thus 

demonstrating that endothelial cells are a major site of 

increased APP expression and production of sAPPα. Of 

note, Austin and colleagues reported that APP 

expression is increased mainly in intimal layer of both 

human and apolipoprotein E-deficient mice athero-

sclerotic aortas [21]. Importantly, protein expression of 

mature α-secretase ADAM10 was unchanged in aged 

aortas. Whether enhanced α-processing of APP could be 

explained by the increased enzymatic activity of 

ADAM10, or some other α-secretases, remains to be 

determined [27].  

 

Prior study reported that hypertension causes  

shift towards amyloidogenic APP β-processing and

 

 
 

Figure 9. Effects of ex-vivo treatment for 24 hours with cytokines cocktail on protein expressions of APP (A) and eNOS (B) in the aortas of 
young wild-type (WT) littermates and eAPP−/− mice. Western blot results are the relative densitometry compared with β-actin protein (n=9 
per group). All results are representing box plots with whiskers showing the median, 25th to 75th percentiles, and min-max range. * P<0.05 
versus control PBS treatment (two-way ANOVA followed by Tukey’s HSD test). 



 

www.aging-us.com 19174 AGING 

development of cerebral amyloid angiopathy [31]. 

However, we detect neither blood pressure increases nor 

changes of aortic protein expression of β-secretase, 

BACE1, and production of Aβ1-40 in aged wild-type and 

eAPP
−/−

 mice indicating that amyloidogenic processing 

of APP in aorta is not affected by aging. Thus, our study 

demonstrates that upregulation of APP expression in 

aged wild-type mice is not induced by alterations of 

arterial blood pressure.  

 

It is not clear what are the exact mechanisms 

responsible for increased expression and α-processing 

of APP in large conduit arteries of aged WT mice. 

Relevant to our observations, it is well known that aging 

is characterized by a state of chronic, low-grade 

inflammation [32, 33]. Moreover, expression of 

inflammatory cytokines such as TNFα, INFγ, and/or IL-

1ß have been reported to be elevated in arteries of aged 

mice [34–37]. We speculate that the presence of 

proinflammatory stimuli is the most likely explanation 

for increased expression and non-amyloidogenic 

processing of APP. Consistent with this hypothesis, 

TNFα and IL-1ß increase APP expression and secretion 

of sAPPα from endothelial cells [19–21, 38]. In the 

present study, we also demonstrated that ex-vivo 

treatment of isolated aortas with cocktail of 

inflammatory cytokines led to increased APP 

expression in young WT mice but not in eAPP
−/−

 mice 

again indicating that endothelium is a major source of 

APP. The concentrations of cytokines used for ex-vivo 

studies were higher than published serum cytokines 

levels detected in-vivo in young control mice [39]. 

Whether aging significantly increases circulating levels 

of cytokines tested in our study remains to be 

determined. Nevertheless, it is conceivable that the 

observed upregulation of APP represents an 

adaptative/protective response of endothelial cells to 

aging-induced inflammation [40, 41].  

 

Although plasma levels of sAPPα were lower in 

eAPP
−/−

 mice as compared to WT mice, aging increased 

sAPPα levels not only in WT mice but also in eAPP
−/−

 

mice. This indicates that other cell types besides 

endothelial cells must contribute to elevation of 

circulating sAPPα. It is well known that APP is  

also expressed in platelets and cleaved by non-

amyloidogenic APP processing thereby releasing 

sAPPα upon activation [38, 42, 43]. Notably, platelets 

count is significantly increased in aged wild-type 

C57BL/6J mice [44]. Increased release of sAPPα from 

platelets may help explain elevated circulating levels of 

sAPPα in aged eAPP
−/−

 mice.  

 

Circulating levels norepinephrine were increased in 

both aged WT and eAPP
−/−

 mice despite normal blood 

pressure. This may explain the observed reduced 

responsiveness to phenylephrine in aging. Chronic 

exposure of the peripheral vasculature to high 

circulating levels of norepinephrine causes 

compensatory downregulation of reactivity to phenyl-

ephrine. Indeed, similar observations were made in 

healthy human subjects showing that α-adrenergic 

vasocontraction responsiveness to increased circulating 

norepinephrine levels is reduced with age in healthy 

men [45].  

 

Aging also alters arachidonic acid metabolism in 

endothelial cells and these alterations can profoundly 

affect vasomotor function [46, 47]. Human and animal 

studies have established that enhanced production of 

vasoconstrictor prostaglandins can impair endothelium-

dependent relaxations during aging [8, 10]. In subjects 

older than 60 years, the treatment with COX-inhibitor, 

indomethacin, potentiates endothelium-dependent 

vasodilation to ACh thus demonstrating that vaso-

constrictor prostaglandins contribute to impairment of 

endothelium-dependent relaxations in humans [10]. In 

line with these studies, we presented evidence that 

indomethacin significantly improved endothelium-

dependent relaxations in response to ACh in both aged 

WT and eAPP
−/−

 mice aortas. Consistent with these 

observations, production of TXA2 and PGE2 was 

significantly increased in both aged WT and eAPP
−/−

 

mice. The reason why the production of PGF2α was 

increased only in aged WT littermates is unclear and 

remains to be determined. However, this could be 

related to different expression levels of COX2 between 

aged WT and eAPP
−/−

 mice (see below). In contrast, the 

production of 6-keto PGF1α remained unchanged in 

aged conduit arteries demonstrating that the metabolism 

of prostaglandin I2, which causes direct vasodilation in 

smooth muscle cells, is unaffected.  
 

Interestingly, our study revealed that protein expression 

of COX2 was significantly increased in both aged wild-

type and eAPP
−/−

 mice while protein expression of 

COX1 remained unchanged. Although COX1 primarily 

contributes to basal vascular production of prost-

aglandins, COX2 also contributes to the production of 

prostaglandins [48]. Indeed, it has been reported that 

COX2 is expressed in endothelial cells and that 

inhibition of eNOS unmasks the ability of ACh to elicit 

endothelium-dependent contractions which are sensitive 

to inhibition of COX2 [49]. Thus, increased production 

of vasoconstrictor prostaglandins by COX2 appears to 

be responsible for reduced endothelium-dependent 

relaxations in aged mice. Notably, this phenomenon 

was not affected by genetic deletion of APP in 

endothelium.  
 

To determine the reason why endothelium-dependent 

relaxations to ACh were still impaired in aged eAPP
−/−
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mice despite treatment with indomethacin, we studied 

eNOS protein expression. Interestingly, eNOS protein 

was decreased in the aorta of aged eAPP
−/−

 mice but not 

in young eAPP
−/−

 mice. In contrast, expression of eNOS is 

unchanged in aged WT mice aortas and this is in line with 

the previous reports [50, 51]. Moreover, eNOS expression 

is not altered in conduit and resistance arteries of different 

mouse models of cardiovascular disease despite presence 

of inflammatory cytokines [52–54]. These observations 

are confirmed and further extended by our ex-vivo studies 

of isolated aortas treated with cytokines cocktail showing 

that eNOS expression was downregulated in young 

eAPP
−/−

 mice, but not in young WT mice. From these 

findings we concluded that during aging, the presence of 

APP in aortic vascular endothelium is essential for normal 

expression and function of eNOS. 

 

Superoxide anion levels were increased in aged eAPP
-/-

 

aortas but not in aged WT aortas. Increased ROS 

generation and/or reduced antioxidant capacity could 

contribute to the increased levels of superoxide anion. 

However, insufficient NO production in aged eAPP
-/-

 

mice can also lead to enhanced production of 

superoxide anion thereby further exacerbating 

impairment of endothelium-dependent relaxations 

(Figure 10). Indeed, several studies provided evidence 

that NO inactivated superoxide anion by rapid 

nonenzymatic reaction with superoxide anion [55–58].  

 

We were unable to observe any changes in superoxide 

anion production in conduit arteries derived from aged 

WT mice under basal conditions and this is in line with 

existing literature [37, 51, 59]. In contrast, several 

studies reported increased levels of superoxide anion in 

aged wild-type mice arteries [50, 60, 61]. The reason for 

this discrepancy is unclear. One possible explanation is 

that vascular superoxide production is increased in very 

old (31 months old) wild-type mice [37, 61].  

 

Elevation of aortic cGMP levels induced by ACh are 

decreased in both aged WT and eAPP
−/−

 mice as 

compared to young mice aortas while basal cGMP 

levels were not different between WT and eAPP
−/−

 

mice. As mentioned earlier, the endothelium is a 

major source not only of NO but of prostaglandins 

 as well [3]. Relevant to our observations, endogenous 

prostaglandins have been shown to decrease cGMP 

levels and to induce contractions in response to 

 ACh in the aorta [62, 63] thus suggesting that 

exaggerated production of prostaglandins during 

aging can impair ACh-stimulated production of 

cGMP. At the present time we do not have an 

explanation as to why levels of cGMP were not 

decreased in aged eAPP
−/−

 mice.  

 

In aggregate, the present study demonstrates that 

endothelial dysfunction (loss of NO) is more 

pronounced in aged eAPP
−/−

 mice than in aged WT 

littermates. We also provide evidence that the absence 

of APP in endothelial cells causes downregulation of 

eNOS expression in eAPP
−/−

 mice. Our findings support 

the concept that up-regulation of endothelial APP and 

production of sAPPα are adaptive mechanisms designed 

to protect blood vessel wall from detrimental effects of 

inflammation associated with aging. In this regard, 

preservation of NO production in endothelium of aged 

aortas appears to be critically important function of 

endothelial APP. 

 

 
 

Figure 10. Schematic summary of the effects of aging on endothelial function in wild-type (WT) mice (A) and endothelium-specific amyloid 
precursor protein-deficient (eAPP−/−) mice (B). Please note that expression of APP is increased in aged wild-type mice (A) but not in aged 
eAPP−/− mice (B) aortas. ↑ = increase; ↓ = decrease; ↔ = no change; eNOS = endothelial nitric oxide synthase; ROS = reactive oxygen 
species; COX2 = cyclooxygenase 2; TXB2 = thromboxane B2; PGE2 = prostaglandin E2; ACh = acetylcholine. 
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MATERIALS AND METHODS 
 

Experimental animals 

 

APP
flox/flox

;Tie2-Cre
−
 mice (wild-type [WT] 

littermates) and APP
flox/flox

;Tie2-Cre
+
 (eAPP

−/−
) mice 

were generated and genotyped in our laboratory as 

described previously [29]. All mice were maintained 

on 12h/12h light/dark cycle and on standard chow 

with free access to drinking water. Institutional 

Animal Care and Use Committee of the Mayo Clinic 

reviewed and approved the experimental design. In 

addition, the protocols complied with the guidelines 

of ARRIVE and NIH for care and use of laboratory 

animals. Young male mice (4-6 months old) and  

aged male mice (23-26 months old) were 

anaesthetized with overdose of pentobarbital (200-250 

mg/kg BW, i.p.) and were exsanguinated using 

cardiac puncture method for collection of blood 

samples. The aortas were carefully harvested and 

were thereafter dissected free from surrounding 

connective tissues in cold (4° C) Krebs solution 

[composition (in mmol/L): NaCl 118.6; KCl 4.7; 

CaCl2 2.5; MgSO4 1.2; KH2PO4 1.2; NaHCO3 25.1; 

glucose 10.1; EDTA 0.026]. Age-matched WT 

littermate mice served as controls in studies designed 

to determine vascular phenotype characteristics of 

eAPP
−/−

 mice.  

 

Blood pressure  
 

A tail-cuff technique (Harvard Apparatus Ltd., Kent, 

England) was used to monitor SBP and MBP [64]. DBP 

was calculated through the formula: DBP = [(3xMBP) - 

SBP]/2. 

 

Glucose and lipid levels 
 

Blood was collected through cardiac puncture and was 

transferred to a tube containing EDTA. Glucose was 

determined immediately using Accu Check
®

 (Roche 

Diagnostics, Indianapolis, IN). Thereafter, blood 

samples were centrifuged for 10 min at  

2000 rpm (4° C) and plasma was obtained and  

stored at -80° C. Plasma levels of cholesterol, HDL, 

and triglyceride were measured as described 

previously [24].  

 

Determination of plasma norepinephrine levels 
 

Blood was placed in a tube containing EGTA with 

reduced glutathione. After centrifugation, plasma was 

stored at -80° C until assayed. After extraction with 

activated alumina norepinephrine levels were 

determined by HPLC with electrochemical detection as 

described [65]. 

Determination of plasma sAPPα and Aβ1-40 levels 
 

A highly sensitive sAPPα mouse/rat ELISA kit 

(Immuno-Biological Laboratories America, 

Minneapolis, MN) and Aβ1-40 mouse ELISA kit 

(Invitrogen, Camarillo, CA) were used to determine 

sAPPα and Aβ1-40 levels, respectively. 

 

Determination of ex-vivo release of sAPPα and Aβ1-40 

 

Ten millimeters long aortas were opened longitudinally 

and were incubated in minimal essential medium 

(MEM) in the presence of bovine serum albumin 

(0.1%), penicillin (100 U/mL) and streptomycin (100 

µg/mL; GIBCO
®
 Thermo Fischer Scientific Inc., 

Waltham, MA) for 24 hours at 37° C in CO2 incubator. 

Thereafter, the cultured medium was collected and 

stored at -80° C until assayed. Levels sAPPα and Aβ1-40 

in conditioned medium were determined using the 

ELISA kits as described above and all results were 

normalized against protein levels of aortas.  

 

Organ chamber studies in isolated aortas 
 

An isometric force measurement was used to study 

vasomotor function of isolated thoracic aortic rings as 

previously described [66]. Aortic rings were stretched 

to optimal force of 1.5 grams. Thereafter, the rings 

were contracted twice with KCl (80 mmol/L) and 

washed out. Concentration-dependent response curves 

to PGF2α (10
-8

−3x10
-5

 mol/L; Cayman, Ann Arbor, 

MI) and L-phenylephrine (10
-9

−10
-5

 mol/L; Sigma, St. 

Louis, MO) were cumulatively obtained. After 

washing out, concentration-dependent responses to 

ACh (10
-9

−10
-5

 mol/L; Sigma) were recorded in 

parallel in the absence and in the presence of 

indomethacin (10
-5

 mol/L, 30 minutes; Sigma) and 

indomethacin + L-NAME (3x10
-4

 mol/L, 30 minutes; 

Sigma). Various concentrations of PGF2α (3x10
-6

–

8x10
-6

 mol/L) were used in order to achieve similar 

submaximal contractions in young WT and eAPP
−/−

 

mice (57±5% and 61±5%, respectively; P>0.05; n=9) 

as well as in aged WT and eAPP
−/−

 mice (66±4% and 

69±3%, respectively; P>0.05; n=8).  

 

Determination of ex-vivo release of prostaglandins  
 

Ten millimeters long thoracic aortas were opened 

longitudinally and were incubated in modified MEM in 

the presence of 0.1% BSA, 100 U/mL penicillin and 

100 µg/mL streptomycin for 24 hours (37° C in CO2 

incubator). Thereafter, the cultured medium was 

collected and stored at -80° C. Commercially available 

colorimetric ELISA kits (Cayman, Ann Arbor, MI) 

were used for measurements of TXB2 (a stable 

metabolite of TXA2), PGE2, PGF2α, and 6-keto PGF1α 
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concentrations in the medium. All results were 

normalized against aortic protein levels.  

 

Determination of intracellular superoxide anions 
 

Intracellular levels of superoxide anion were quantified 

in fresh aortic rings using 2-hydroxyethidium standard 

by HPLC-based fluorescence detection and normalized 

against tissue protein levels as described in detail in 

previous studies [67, 68]. 

 

Determination of cGMP 

 

Twelve millimeters long aortas were incubated for 2 

hours at 37° C in MEM containing bovine serum 

albumin (0.1%), penicillin (100 U/mL) and 

streptomycin (100 µg/mL). A phosphodiesterase 

inhibitor 3-isobutyl-1-methylxanthine (100 µmol/L; 

Sigma) was also added to prevent degradation of cyclic 

nucleotides. At the end of incubation time, ACh (10 

µM) was added for 2 minutes. Thereafter, all samples 

were immediately placed in liquid N2 and stored at  

-80° C until assayed. Colorimetric cGMP ELISA 

immunoassay (Cell Biolabs Inc., San Diego, CA) was 

used to determine cGMP levels and the results were 

normalized against aortic protein concentrations. 

 

Ex-vivo studies with cytokines  

 

Ten millimeters long thoracic aortas were opened 

longitudinally and were incubated with control solution 

(PBS) or cytokines cocktail composing 20 ng/mL 

recombinant mouse tumor necrosis factor α (TNFα; 

R&D Systems, Minneapolis, MN), 50 ng/mL 

recombinant mouse interferon γ (INFγ; R&D Systems), 

and 1 ng/mL recombinant mouse interleukin-1ß (IL-1ß; 

R&D Systems) in MEM in the presence of bovine 

serum albumin (0.1%), penicillin (100 U/mL) and 

streptomycin (100 µg/mL) for 24 hours at 37° C in CO2 

incubator [69]. Thereafter, the aortas were homogenized 

in lysis buffer for western blot analysis (see below). 

 

Western blot analysis 
 

Dissected aortas were homogenized in lysis buffer using 

glass grinder and pestle 20 as previously described [68]. 

After centrifugation, protein levels were determined in 

supernatants using DC protein assay kit (BioRad, 

Hercules, CA). For each sample, 50 µg protein was 

loaded on 7.5% or 10% TGX SDS-PAGE gels (BioRad). 

Antibodies against APP (1:250; cat# 51-2700, Invitrogen, 

Carlsbad, CA), BACE1 (1:250; cat# S5606, Cell 

signaling, Danvers, MA), ADAM10 (1:500; cat# 

AB19026, Millipore, Burlington, MA), eNOS (1:250, 

cat# 610297, BD Biosciences, San Jose, CA), inducible 

nitric oxide synthase (iNOS; 1:250, cat# 610333, BD 

Biosciences), COX1 (1:500; cat# 35-8100, Invitrogen), 

and COX2 (1:250; cat# 610204, BD Biosciences) were 

used. The antibody specificities for APP, BACE1, and 

eNOS were verified in knockout mice obtained from The 

Jackson Laboratory (stock #004133, stock #004714, and 

stock #002684, respectively; Supplementary Figure 5). In 

addition, C57BL/6J mouse heart was used as positive 

control for COX1, and whole cell lysate RAW 264.7 (cat# 

ab7187, Abcam) was used to identify COX2 and 

ADAM10 bands (Supplementary Figure 6). All blots 

were reprobed with β-actin antibody (1:50,000, A5316, 

Sigma). Densitometry analyses were performed in 

Odyssey Fc imaging system with Image Studio
™

 5.2 

software (Li-Cor Biotechnology, Lincoln, NE). 

 

Statistical analysis 
 

All results are presented as mean ± standard error of 

mean (SEM; n indicates the number of mice used per 

experiment). The efficacy and potency of the drugs 

were determined using LabChart Pro Dose Response 

Module (ADInstruments Inc., Colorado Springs, CO). 

Concentration-response curves were compared by 

analysis of variance (ANOVA) for repeated 

measurements followed by Bonferroni's correction as 

described [29]. Two-way ANOVA followed by Tukey’s 

HSD test and unpaired t-test were used for multiple and 

single comparison, respectively (JMP Pro 14.1 

software; SAS Institute, Cary, NC). Differences of 

P<0.05 were considered statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. APP expression in the aortas of young wild-type (WT) littermates and eAPP−/− mice. Western blots 
were performed in separate studies, and results are the relative densitometry compared with β-actin protein. All data are representing box 
plots with whiskers showing the median, 25th to 75th percentiles, and min-max range (n=8). *P<0.05 vs. WT littermates (unpaired t-test). 

 

 
 

Supplementary Figure 2. Effects of aging on ex-vivo amyloid-β 1-40 (Aβ1-40) secretion from wild-type (WT) littermates and 
eAPP−/− mice aortas. The supernatants were collected and analyzed for Aβ1-40 levels. The results were normalized against tissue protein 
levels (n=12 per group for young WT littermates and eAPP−/− mice and n=15 per group for aged WT littermates and eAPP−/− mice. All data are 
representing box plots with whiskers showing the median, 25

th
 to 75

th
 percentiles, and min-max range. P>0.05 (two-way ANOVA followed by 

Tukey’s HSD test). 
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Supplementary Figure 3. Effects of L-NAME (3x10−4 mol/L) on endothelium-dependent relaxations to acetylcholine in young (A; n=9 per 

group) and aged (B; n=7 per group) wild-type (WT) littermates and eAPP
−/−

 mice aortas in the presence of indomethacin (10−5 mol/L). Results 
are shown as mean ± SEM and expressed as percent relaxation from submaximal contractions to PGF2α (3x10−6-8x10−6 mol/L). 

 

 
 

Supplementary Figure 4. Effects ex-vivo treatment for 24 hours with cytokine cocktail (consisting TNFα, IFNγ, and IL-1β) on iNOS (A, n=8 

per group) and COX2 (B, n=8 per group) protein expressions of young wild-type (WT) littermates and eAPP
−/−

 mice aortas. Western blot 
results are the relative densitometry compared with β-actin protein. All results are representing box plots with whiskers showing the median, 
25th to 75th percentiles, and min-max range. * P<0.05 versus young mice of same strain (two-way ANOVA followed by Tukey’s HSD test). 



 

www.aging-us.com 19184 AGING 

 
 

Supplementary Figure 5. Western blot analyses for validation of primary antibodies. (A) The selectivity of APP antibody was 

examined in APP
−/− 

mice aortas (Stock no. 004133, The Jackson Laboratory). (B) The selectivity of eNOS antibody was examined in eNOS
−/−

 

mice aortas (Stock no. 002684, The Jackson Laboratory). (C) The selectivity of BACE1 antibody was examined in BACE1
−/−

 mice aortas (Stock 
no. 004714, The Jackson Laboratory). As loading controls, all blots were reprobed with β-actin. 
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Supplementary Figure 6. Western blot analyses for validation of primary antibodies. (A) Wild-type mouse heart was used as 
positive control to identify COX1 band. (B) RAW264.7 whole cell lysate (no. ab7187, Abeam) was used as positive control for COX2 antibody. 
C57BL/6J aorta was incubated with cytokine cocktail (consisting TNFα, IFNγ, and IL-1β) for 24 hours (see method section for details) to induce 
COX2 expression. (C) Positive control RAW264.7 whole cell lysate (no. ab7187, Abeam) was used for selectivity of pro- and mature forms of 
ADAM10 bands. 


