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INTRODUCTION 
 

Head and neck squamous cell carcinoma (HNSCC) 

affects more than 800,000 people each year worldwide, 

leading patients with HNSCC about sixth in global 

incidence [1, 2]. HNSCC is a collection of malignancies 

with complex local autonomy, given that it originates 

from the squamous epithelium of the upper aero-
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ABSTRACT 
 

The ubiquitin-proteasome system (UPS) with a capacity of degrading multiple intracellular proteins is an 
essential regulator in tumor immunosurveillance. Tumor cells that escape from recognition and destruction of 
immune system have been consistently characterized an important hallmark in the setting of tumor 
progression. Little know about the exact functions of UPS-related genes (UPSGs) and their relationships with 
antitumor immunity in head and neck squamous cell carcinoma (HNSCC) patients. In this study, for the first 
time, we comprehensively identified 114 differentially expressed UPSGs (DEUPSGs) and constructed a 
prognostic risk model based on the eight DEUPSGs (BRCA1, OSTM1, PCGF2, PSMD2, SOCS1, UCHL1, UHRF1, and 
USP54) in the TCGA-HNSCC database. This risk model was validated using multiple data sets (all P < 0.05). The 
high-risk score was found to be an independently prognostic factor in HNSCC patients and was significantly 
correlated with T cells suppression. Accordingly, our risk model can act as a prognostic signature and provide a 
novel concept for improving the precise immunotherapy for patients with HNSCC. 
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digestive tract [3], attributing to this malignancy with 

high morbidity and mortality. Although advances in 

therapeutic strategies on local control have been 

improved, the 5-year overall survival (OS) rate remains 

40%-50% [4, 5]. In this regard, there is a potential to 

identify novel biomarkers to broaden current treatment 

and enhance survival for patients with HNSCC. 

 

The ubiquitin-proteasome system (UPS) is responsible 

for the degradation of more than 80% of intracellular 

proteins, such as short-lived and misfolded or non-

essential proteins [6, 7]. UPS is involved in multiple 

biological functions, including gene transcription, 

translation and repair, cell cycle, cell proliferation, 

apoptosis, and antigen presentation [8, 9]. As UPS is 

involved in multitudinous critical functions, dysfunction 

of UPS may result in various diseases, such as nervous 

system diseases and cancers [10–14]. The UPS is a 

complex system encompassing a huge number of genes, 

including those encoding 10 ubiquitin (Ub)-activating 

enzymes (E1s), approximately 40 Ub-conjugating 

enzymes (E2s), over 600 validated Ub-protein ligases 

(E3s), approximately 100 deubiquitinating enzymes 

(DUBs), and nearly 50 proteasome subunits [15–18]. 

Accumulating studies have demonstrated that aberrant 

expression of UPS members altered proteolysis, 

facilitating the tumorigenesis and progression of 

HNSCC [19]. For instance, UBE2C (ubiquitin-

conjugating enzyme E2 C), an E3s that overexpressed 

in various cancers and served as an inhibitor of p53 by 

facilitating its ubiquitination-mediated degradation. It is 

an agonist of ZEB1/2, ABCG2, and ERCC1 by 

promoting their transcript, which played an essential 

role in increasing cell proliferation and invasion, 

inducing epithelial-mesenchymal transitions (EMT), 

and chemotherapeutic resistance [20–23]. In addition, 

abnormal expression of PSMD2 (proteasome 26S 

subunit ubiquitin receptor, non-ATPase 2), a subunit of 

the 19S regulatory particle (RP) of the proteasome, has 

been reported in lung adenocarcinoma, breast cancer, 

and hepatocellular carcinoma [24–26]. The clinical 

significance of UPS genes has not been systematically 

investigated in patients with HNSCC. Therefore, the 

mechanism underlying the relationship between UPS-

related genes (UPSGs) and the prognosis of HNSCC 

patients still needs to be further determined. 

 

The Gene Expression Omnibus (GEO) and The Cancer 

Genome Atlas (TCGA) provide potent resources for 

directly obtaining gene expression profiles from patient 

tissues. Therefore, this study aims to provide a 

systematic investigation of the expression patterns via 

bioinformatics analysis and a prognostic risk model 

based on the UPSGs. We proposed that UPSGs are 

associated with the prognosis of patients with HNSCC. 

Importantly, our finding demonstrated that HNSCC 

patients with poor prognoses have high-risk scores that 

are associated with impaired T cell antitumor responses. 

 

RESULTS 
 

Identification of differentially expressed UPSGs in 

HNSCC tissues 
 

We analyzed the expression of 804 UPSGs 

(Supplementary Table 1) that were distributed through 

all chromosomes in 498 head and neck tumor tissues 

and 44 adjacent tissues. 114 differentially expressed 

UPSGs (DEUPSGs) were identified, as shown in 

Supplementary Figure 1, where 97 upregulated and 17 

downregulated DEUPSGs were observed (FDR < 0.05 

and |Fold change| > 1.5, Figure 1A, 1B). The genomic 

information of DEUPSGs was shown in Supplementary 

Table 2. 

 

Functional analysis of DEUPSGs in HNSCC 

 

To assess the potential functions of DEUPSGs, Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway were analyzed using the 

TCGA database. The most significant GO terms were 

enriched for determining DEUPSGs functions, with 

respect to biological process (BP), cellular component 

(CC), and molecular function (MF), were shown in 

Figure 2A–2C. Enriched terms were significantly 

correlated with the proteasomal protein catabolic 

process, proteasome complex, and ubiquitin-like protein 

transferase activity. The KEGG pathway enrichment 

analysis indicated that ubiquitin-mediated proteolysis 

and proteasome pathways may play essential roles in 

the formation and development of HNSCC (Figure 2D). 

 

Construction and identification of the prognostic 

risk model 
 

To identify the prognostic value of DEUPSGs in 

HNSCC patients, Univariate Cox regression analysis 

was used to confirm the expression patterns of 114 

DEUPSGs in the TCGA training set. The forest plots 

displayed the eight prognosis-related DEUPSGs in 

HNSCC (Figure 1C). The prognostic risk model  

was established based on the eight prognosis-related 

DEUPSGs using LASSO regression analysis 

(Supplementary Figure 2). The coefficient values of the 

eight DEUPSGs were shown in Table 1. The risk score 

was calculated for each sample as the following 

equation:  

 

Risk score = BRCA1 * (-0.037) + OSTM1 * 0.0294 + 
PCGF2 * 0.0502 + PSMD2 * 0.0058 + SOCS1 * (-

0.0157) + UCHL1 * 0.0022 + UHRF1 * (-0.0496) + 

USP54 * (-0.0887) 
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Samples were classified into two groups based on the 

median risk score (0.0622) of the training set. OS 

analysis indicated that the low-risk group has a 

markedly better prognosis than the high-risk group (P < 

0.0001, Figure 3A). The receiver operating 

characteristic (ROC) curve indicated that the area under 

the ROC (AUC) value was 0.664 (Figure 3B). The risk 

scores and OS were performed by risk plots and scatter 

 

 
 

Figure 1. Differential expression of UPS-related genes (UPSGs) and identification of 8 UPSGs with prognostic value in HNSCC 
samples. (A) 114 differentially expressed UPSGs (DEUPSGs) are depicted as a heat map. (B) 97 upregulated and 17 downregulated DEUPSGs 
are shown as a volcano plot (FDR < 0.05 and |Fold change| > 1.5). (C) The eight risk DEUPSGs in the prognostic risk model are shown using a 
forest plot. 
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plots (Figure 3C, 3D). Expression patterns of risk genes 

in the high- and low-risk groups were depicted in Figure 

3E, showing that high expression levels of PSMD2, 

OSTM1 (Osteoclastogenesis associated transmembrane 

protein 1), PCGF2 (polycomb group ring finger 2), and 

UCHL1 (ubiquitin C-terminal hydrolase L1) can be 

considered as risk factors were correlated with a high-

risk score. Furthermore, high expression levels of 

BRCA1 (BRCA1 DNA repair associated), SOCS1 

(suppressor of cytokine signaling 1), UHRF1 (ubiquitin-

like with PHD and ring finger domains 1), and USP54 

(ubiquitin specific peptidase 54) were associated with a 

low-risk score. 

 

An independent validation data set was involved in the 

evaluation of the risk model. Based on the prognostic 

risk model, patients with HNSCC were divided into 

low- and high-risk groups. Survival analysis performed 

by Kaplan-Meier displayed significant prognostic 

differences between the two groups (P < 0.001, 

Supplementary Figure 3A). The relationship between 

the eight DEUPSGs and risk scores was shown in 

Supplementary Figure 3B. At the same time, similar 

results were found in the TCGA training set and TCGA 

all data set (Supplementary Figure 3C, 3D). 

 

The GEO (GSE65858) database was used as an external 

data set for validating the classification performance of 

the risk model. Samples in the GSE65858 were 

segregated into low- and high-risk groups. The 

classification performance of the risk model and the 

expression pattern of the risk genes were consistent with 

the training set (Supplementary Figure 4). 

 

Clinical independence of the risk model 

 

To assess the independence of the risk model in clinical 

application, univariate and multivariate Cox regression 

analyses were subjected to clinical parameters from the 

TCGA training set, TCGA test set, GSE65858 database, 

 

 
 

Figure 2. Functional enrichment analysis of DEUPSGs in HNSCC. (A–C) The top ten enriched terms in the GO analysis belonged to 
biological process (A), cell component (B), and molecular function (C) for DEUPSGs are demonstrated using an enriched scatter diagram.  
(D) The enriched pathways of the KEGG pathway analysis are showed using a scatter diagram. GO, gene ontology; KEGG, Kyoto Encyclopedia 
of Genes and Genomes. 
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Table 1. List of the eight prognostic genes of the risk model in the TCGA training 
set. 

ENSG ID Symbol Location Expression status Coefficient 

ENSG00000012048 BRCA1 Chromosome 17 Upregulated -0.0370 

ENSG00000081087 OSTM1 Chromosome 10 Upregulated 0.0294 

ENSG00000277258 PCGF2 Chromosome 17 Upregulated 0.0502 

ENSG00000175166 PSMD2 Chromosome 3 Upregulated 0.0058 

ENSG00000185338 SOCS1 Chromosome 16 Upregulated -0.0157 

ENSG00000154277 UCHL1 Chromosome 4 Upregulated 0.0022 

ENSG00000276043 UHRF1 Chromosome 19 Upregulated -0.0496 

ENSG00000166348 USP54 Chromosome 10 Downregulated -0.0887 

 

and TCGA all data set. Univariate and multivariate Cox 

regression analyses suggested that the risk score had a 

significant association with prognosis in the TCGA 

training set (HR = 4.182, 95% CI = 2.540-6.887, P < 

0.001; HR = 4.513, 95% CI = 2.732-7.375, P < 0.001, 

respectively, Figure 4A, 4B), the TCGA test set (HR = 

1.993, 95% CI = 1.173-3.385, P < 0.05; HR = 1.954, 95% 

CI = 1.144-3.338, P < 0.05, respectively, Figure 4C, 4D), 

the TCGA all data set (HR = 2.947, 95% CI = 2.048-

4.241, P < 0.01; HR = 2.961, 95% CI = 2.051-4.277, 

 

 
 

Figure 3. Identification of the prognostic risk model in HNSCC patients. (A) Kaplan-Meier survival curve with overall survival (OS) in 
the high- and low-risk HNSCC patients in the TCGA training set. (B) ROC curve showing AUC for the risk score and other clinical factors of 
HNSCC patients in the TCGA training set. (C) The risk plot distribution of the high- and low-risk HNSCC patients. (D) Scatter plot showing the 
survival status of HNSCC patients. (E) The expression of risk genes of HNSCC samples in the TCGA training set. 
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Figure 4. Prognostic predictive value of risk score in HNSCC patients. (A, B) Univariate and multivariate Cox regression analyses of 
the clinical factors of the patients in the TCGA training set, respectively. (C, D) Univariate and multivariate Cox regression analyses of the 
clinical factors of the patients in TCGA test set, respectively. (E) Nomogram for OS in HNSCC patients. 
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P < 0.01, respectively, (Supplementary Figure 5A, 5B), 

and the GEO data set (HR = 1.754, 95% CI = 0.917-

3.352, P < 0.01; HR = 1.598, 95% CI = 0.814-3.135, P 

< 0.05, respectively, Supplementary Figure 5C, 5D). 

These data demonstrated that the risk model has an 

effectively prognostic power and exhibits an 

independent predictive value. A nomogram contained 

both risk score and clinical features was shown in 

Figure 4E. 

 

Gene set enrichment analysis in the high-risk and 

low-risk groups 

 

Gene set enrichment analysis (GSEA) was employed 

for pathways identification in the TCGA database for 

detecting twenty pathways from the high- and low-risk 

groups (Supplementary Table 3). The selected signaling 

pathways showed significant differences between the 

two groups (FDR < 0.25, NOM p < 0.05) (Table 2), in 

which glycan metabolism, extracellular matrix, and 

proteolysis were significantly enriched in the high-risk 

group (Figure 5A, 5B). In contrast, DNA repair, fatty 

acid metabolism, other metabolisms, and immune-

related pathways were significantly enriched in the low-

risk group (Figure 5C–5E). Interestingly, the T cell 

receptor (TCR) signaling pathway was enriched in the 

low-risk group (Figure 5F), which may indicate a 

potential relationship of the high-risk core with 

impaired immunosurveillance and T cell antitumor 

response in HNSCC. The rest of GSEA graphs were 

shown in Supplementary Figure 6. 

 

Exploration of the relationship between the risk 

score and antitumor immunity 
 

To determine whether the high-risk score was correlated 

with impaired T cell activity in HNSCC, we employed 

the ESTIMATE algorithm to estimate immune and 

stromal scores based on the TCGA database. The 

immune score was higher in the low-risk group than the 

high-risk group (P < 0.001, Figure 6A), and the risk 

score had a negative correlation with the immune score 

in HNSCC patients (R = -0.19, P < 0.0001, Figure 6B). 

However, the stromal score was higher in the high-risk 

group than the low-risk group (P < 0.01, Figure 6C), 

and the risk score had a positive correlation with the 

stromal score in HNSCC samples (R = 0.17, P < 0.001, 

Figure 6D). 

 

We subsequently analyzed the fraction of both tumor-

infiltrated innate and adaptive immune cells in HNSCC 

samples by CIBERSORT. The relationships of risk 

score with those immune cells were shown in Figure 

6E. The results showed that the fraction of CD8 T cells 

(P < 0.001), CD4 memory activated T cells (P < 0.001), 

and follicular helper T cells (P < 0.01) in samples from 

the high-risk group were lower than the low-risk group, 

indicating that high-risk score was associated with 

immunosuppressive phenotypes that may result from 

impaired T cell response and activation. 
 

Correlation between the genes of the risk model and 

the four T cell subpopulations 
 

According to the potential relationship between the risk 

model and the four T cell subpopulations (Figure 7A), 

we further tested the correlation between the eight genes 

and the four T cell subpopulations (Figure 7B–7I). 

Consistent with the profile of these genes in the risk 

model, decreased CD8 T cells were associated with the 

upregulated OSTM1 (P < 0.01), PCGF2 (P < 0.05), 

PSMD2 (P < 0.01), UCHL1 (P < 0.05) and the 

downregulated SOCS1 (P < 0.01). Additionally, 

decreased CD4 memory-activated T cells were related 

to the upregulated UCHL1 (P < 0.01) and the 

downregulated SOCS1 (P < 0.01). Similarly, the 

asthenia of follicular helper T cells may be caused by 

high expressed OSTM1 (P < 0.05), PSMD2 (P < 0.001) 

and low expressed USP54 (P < 0.001). Moreover, the 

increase of CD4 memory resting T cells was associated 

with the high expressed OSTM1 (P < 0.01). Thus, the 

UPS-related genes OSTM1, PCGF2, PSMD2, UCHL1, 

SOCS1, and USP54 were associated with immuno-

suppression in HNSCC. 

 

DISCUSSION 
 

Tumor cells that escape from immunosurveillance and 

attack have been the characteristics of 

immunosuppression in the tumor progression, which is 

largely associated with the impaired or dysregulated 

host immune system [27]. By managing protein 

degradation and abundance, the UPS pathway has been 

reported as an essential regulator in immunosurveillance 

of the tumor microenvironment [28]. Accumulating 

evidence has demonstrated that E3 dysfunction perturbs 

antitumor immune responses [29–31]. Current 

knowledge on the functions of the UPS pathway in the 

development of HNSCC remains obscure. In this 

regard, an improved understanding of the UPSGs 

functions in the text of HNSCC can provide a 

therapeutic value. 
 

This study analytically conferred prognostic evidence 

by identification of 114 DEUPSGs and establishment of 

the eight prognosis-related DEUPSGs. A prognosis risk 

model was established based on the eight DEUPSGs. 

Previous studies have reported the abnormal expression 

of UPSGs in renal cancer and breast cancer [32, 33]. 

Analyses performed at both mRNA and protein levels 

can improve the reliability of the results, whereas the 

limited sample size of these analyses may lead to a bias 
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Table 2. Gene sets enriched in high-risk and low-risk groups. 

MSigDB collection Name NES ES NOM p-val FDR q-val 

c2.cp.kegg.v7.1.symbols.gmt 

KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN_SULFATE 2.099 0.813 0.000 0.010 

KEGG_ECM_RECEPTOR_INTERACTION 1.903 0.676 0.010 0.061 

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES 1.889 0.743 0.002 0.046 

KEGG_OTHER_GLYCAN_DEGRADATION 1.854 0.705 0.006 0.038 

 
KEGG_FOCAL_ADHESION 1.813 0.556 0.018 0.045 

 
KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_KERATAN_SULFATE 1.801 0.683 0.004 0.045 

 
KEGG_GLYCOSAMINOGLYCAN_DEGRADATION 1.758 0.587 0.008 0.052 

 
KEGG_LYSOSOME 1.746 0.495 0.018 0.047 

 
KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_HEPARAN_SULFATE 1.719 0.563 0.010 0.054 

 
KEGG_PROTEASOME 1.634 0.585 0.047 0.120 

 KEGG_DNA_REPLICATION -1.971 -0.810 0.000 0.143 

 KEGG_MISMATCH_REPAIR -1.961 -0.796 0.004 0.081 

 KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY -1.917 -0.559 0.004 0.065 

 KEGG_PANTOTHENATE_AND_COA_BIOSYNTHESIS -1.841 -0.669 0.002 0.126 

 KEGG_HOMOLOGOUS_RECOMBINATION -1.803 -0.690 0.016 0.148 

 KEGG_CYSTEINE_AND_METHIONINE_METABOLISM -1.792 -0.552 0.012 0.137 

 KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY -1.773 -0.488 0.008 0.141 

 KEGG_ALPHA_LINOLENIC_ACID_METABOLISM -1.726 -0.610 0.010 0.153 

 KEGG_LINOLEIC_ACID_METABOLISM -1.712 -0.565 0.018 0.155 

 KEGG_BASE_EXCISION_REPAIR -1.676 -0.620 0.045 0.152 

 KEGG_ARACHIDONIC_ACID_METABOLISM -1.667 -0.476 0.014 0.152 

 
KEGG_FATTY_ACID_METABOLISM -1.660 -0.527 0.028 0.151 

 

in the results, because only abnormal gene expression is 

analyzed, and verification of clinical significance or 

potential functional analysis is lacking. 

 

In this risk model, high expression levels of PSMD2, 

OSTM1, PCGF2, and UCHL1 were risk factors, while 

high expression levels of BRCA1, SOCS1, UHRF1, and 

USP54 acted as protective factors. Overexpression of 

PSMD2 has been previously shown to be involved in 

the development of lung adenocarcinoma, breast cancer, 

and hepatocellular carcinoma [24–26]. UCHL1 has 

been reported a potential oncoprotein in colorectal 

cancer, breast cancer, and uterine serous cancer. It 

promotes proliferation and metastasis of cancer cells 

and leads to a radioresistant phenotype via regulation of 

β-catenin/TCF and HIF-1α pathway [34–38]. In line 

with those previous studies, our results also suggested 

that PSMD2 and UCHL1 may have therapeutic 

potential as targets against cancer. Accumulating 

evidence has shown that BRCA1 mutation is a crucial 

risk factor in multiple cancers, including breast cancer, 

skin cancer, ovarian cancer, and colorectal cancer [39–

43]. SOCS1 acts as an antioncogene in various tumors, 

arresting the cell cycle, inhibiting cancer cell migration 

and invasion, and attenuating tumor growth [44–47]. 

Nevertheless, non-coding RNA (ncRNA) regulating 

SOCS1 promotes the occurrence and development of 

cancers [48–50]. Similarly, UHRF1 also acts as an 

antioncogene in multiple cancers and inhibits tumor 

development and progression [51–54]. Therefore, the 

abovementioned studies suggest that BRCA1, SOCS1, 

and UHRF1 serve as antioncogenes, consistent with our 

results. 

 

Interestingly, our GSEA results showed that the TCR 

signaling pathway was highly enriched in the low-risk 

group, which suggested the impaired T cell activation 

presented in the high-risk group. TCR engagement 

initiates a central signaling pathway that is crucial for T 

cell proliferation, survival, and differentiation into killer 

cells for adaptive immunity. Abnormalities of TCR 

signaling could result in immunodeficiency [55–58]. 

Consequently, according to the relationship between the 

risk score and the distribution of T cell subpopulations, 

we found that the high-risk score has a decreased 

immune score, which may suggest that the high-risk 

score is critical for evaluating whether tumor-infiltrated 

T cells have an immunosuppressive status and 

dysregulated antitumor response. Moreover, the high 

expression of OSTM1, PCGF2, PSMD2 combined with 

the low expression of UCHL1, SOCS1, and USP54 

were engaged in the suppression of T cell proliferation 

and activation in the HNSCC microenvironment. It has 

been previously shown that differential expression of 

UCHL1 was majorly involved in the proliferation and 

differentiation of T cells, including CD8 memory 

CTLp, circulating TCR-gamma/delta+ lymphocytes, 

and mature T cells [59]. SOCS1 has been identified as 
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Figure 5. GSEA analysis showing the enriched pathways of the high- and low-risk groups. (A) Multiple GSEA showing glycan-
related metabolism pathways in the high-risk group. (B) Multiple GSEA showing extracellular matrix and proteolysis related pathways in the 
high-risk group. (C) Multiple GSEA showing DNA repair in the low-risk group. (D) Multiple GSEA showing fatty acid metabolism pathways in 
the low-risk group. (E) Multiple GSEA showing other metabolism- and immune- related pathways in the low-risk group. (F) Single GSEA 
showing the T cell receptor signaling pathway. 
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Figure 6. Association between risk score and tumor immunity. (A) Distribution of immune scores in high- and low-risk HNSCC 
patients. (B) Association between the risk score and immune score in HNSCC samples. (C) Distribution of stromal scores in high- and low-risk 
HNSCC patients. (D) Association between the risk score and stromal score in HNSCC samples. (E) Comparison of immune cell fractions 
between the high-risk and low-risk HNSCC patients. 
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Figure 7. Correlation of the genes of the risk model with the four subpopulations of T cells. (A) Comparison of the four 
subpopulations of T cells (CD8 T cells, CD4 memory activated T cells, and follicular helper T cells) between the high- and low-risk groups. (B–I) 
Distribution of the four T cell subpopulations based on the high and low expression of BRCA1, OSTM1, PCGF2, PSMD2, SOCS1, UCHL1, UHRF1, 
and USP54, respectively. 
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an inhibitor against cytokine release and a growth factor 

receptor, it plays a crucial role in regulating T cell 

homeostasis, development, and homeostasis activation 

[60–64]. However, the function of OSTM1, PCGF2, 

PSMD2, and USP54 have not been investigated in the 

antitumoral immune response. The present studies 

suggest that the high expression of OSTM1, PCGF2, 

and PSMD2 and low expression of UCHL1 were 

associated with immunosuppressive phenotypes. 

 

Generally, we identified an eight -UPSGs based risk 

model according to the TCGA-HNSCC database and 

analyzed its biological functions, demonstrating that the 

risk score obtained from this model was significantly 

correlated with immunosuppressive status. However, 

some limitations in the context of the study should be 

acknowledged. First, this study is performed by 

bioinformatics analysis alone, the predictive results 

could be insufficient. Second, this is a retrospective 

study rather than a prospective one, further validations 

with large clinical cohort and actual experiments are 

needed. 

 

CONCLUSIONS 
 

In summary, we present a risk model constructed by 

DEUPSGs that can be considered as potential 

prognostic biomarkers and associated with an 

immunosuppressive status and impaired antitumor 

response of T cells in the HNSCC microenvironment. 

This systematic analysis on the interaction of UPSGs 

based risk model and immune profile provides a novel 

understanding of the precise immunotherapy for 

HNSCC patients. 

 

MATERIALS AND METHODS 
 

Data downloading and processing 
 

The most recent transcriptional data and clinical 

features on 500 HNSCC samples and 44 adjacent 

samples were obtained from the TCGA database 

(https://portal.gdc.cancer.gov/) and the cBio Cancer 

Genomics portal (https://www.cbioportal.org/) (Table 

3). We chose 498 HNSCC samples with follow-up data 

and randomly divided them into two groups: a training 

set (n=298) and a test set (n=298), as shown in 

Supplementary Tables 4, 5. In addition, we obtained the 

GSE65858 data setwith 270 HNSCC samples as an 

external set from the Gene Expression Omnibus (GEO) 

database (https://www.ncbi.nlm.nih.gov/geo/). 

 

Identification of differentially expressed genes 
 

The differentially expressed UPS-related genes 

(DEUPSGs) between head and neck tumor tissues and 

adjacent tissues were screened out through the 

Wilcoxon signed-rank test using the limma R package, 

according to the following cut-off values: FDR < 0.05 

and |Fold change| > 1.5. Subsequently, a heat map was 

generated using the “pheatmap” package, and volcano 

dot plots were created to present the DEUPSGs. We 

used the OmicCircos R package to show the distribution 

of the DEUPSGs [65]. 

 

Functional enrichment analyses 
 

The enrichplot R package was built for the GO and 

KEGG pathway enrichment analyses to identify the 

functions of the abovementioned DEUPSGs [66], 

containing BP, CC, and MF terms and pathways. 

Statistical significance was defined as both P-value and 

FDR < 0.05. 

 

Prognostic risk model establishment 
 

We used univariate Cox regression analysis to screen 

out DEUPSGs significantly associated with OS. P < 

0.05 was chosen as the threshold. We further used 

Lasso regression analysis to establish a multi-gene 

prognostic model. The risk score of each patient was 

calculated, employing the regression coefficient of each 

selected gene based on the following equation: 
 

1
( ) ,

n

i ii
Risk score Coef gene Exp


   

 

where n is the number of prognostic genes, genei is the 

ith prognostic gene, Coef is the regression coefficient of 

genes, and Expi is the expression value of the prognostic 

genes. Then, the HNSCC patients were divided into 

high-risk and low-risk groups according to the median 

risk score. Moreover, we used rms package to generate 

a nomogram. 

 

Gene set enrichment analysis 
 

Gene set enrichment analysis (GSEA, https://www. 

gsea-msigdb.org/) is a powerful computational tool used 

to determine statistical differences of specific functional 

gene sets between two biological states [67]. Here, we 

performed the GSEA analysis using GSEA v4.0.3 to 

obtain the differentially expressed genes from the high- 

and low-risk groups. After 1000 repeats for each 

analysis, gene sets with p-value < 0.05 and FDR < 0.25 

were identified as enriched sets. 

 

Identification of immune scores and tumor-

infiltrating immune cells 
 

To identify infiltrated immune cell numbers and stromal 

cell numbers, the R software package “ESTIMATE 

algorithm” was used for calculating immune and 

https://portal.gdc.cancer.gov/
https://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
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Table 3. Clinical characteristics of HNSCC patients in the TCGA 
and GEO databases. 

Clinical characteristics 
TCGA 

 
GEO (GSE65858) 

n=500 % 
 

n=270 % 

Age 
     

  < 60 220 44.0 
 

153 56.7 

  ≥ 60 280 56.0 
 

117 43.3 

Gender 
     

  Female 133 26.6 
 

47 17.4 

  Male 367 73.4 
 

223 82.6 

Histologic grade 
     

  G1 61 12.2 
   

  G2 299 59.8 
   

  G3 119 23.8 
   

  G4 2 0.4 
   

  Gx 16 3.2 
   

  NA 3 0.6 
   

Stage 
     

  I 19 3.8 
 

18 6.7 

  II 95 19.0 
 

37 13.7 

  III 102 20.4 
 

37 13.7 

  IV 270 54.0 
 

178 65.9 

  NA 14 2.8 
   

T classification 
     

  T1 33 6.6 
 

35 13 

  T2 143 28.6 
 

80 29.6 

  T3 130 26.0 
 

58 21.5 

  T4 179 35.8 
 

97 35.9 

  Tx 11 2.2 
   

  NA 4 0.8 
   

N classification 
     

  N0 239 47.8 
 

94 34.8 

  N+ 239 47.8 
 

176 65.2 

  Nx 18 3.6 
   

  NA 4 0.8 
   

M classification 
     

  M0 470 94.0 
 

263 97.4 

  M1 5 1.0 
 

7 2.6 

  Mx 20 4.0 
   

  NA 5 1.0 
   

Vital status 
     

  Deceased 218 43.6 
 

94 34.8 

  Living 282 56.4 
 

176 65.2 

 

stromal scores of HNSCC samples in the TCGA 

database [68]. Additionally, CIBERSORT was applied 

to acquire the composition of the infiltrated immune 

cells in HNSCC samples [69]. 

Statistical analysis 
 

R package (v4.0.1) was subjected to all analyses. 

Kaplan-Meier curve was drawn with the log-rank test. 
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Univariate and multivariate Cox regression was used to 

determine the independence of gene markers. 

Spearman’s rank correlation test was utilized to identify 

the variables. Differences in the distributions of the 

variables were analyzed by the Chi-square test or 

Fisher’s exact test. P < 0.05 was considered statistically 

significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The distribution of UPSGs on chromosomes. A total of 804 human UPSGs are distributed across all 
chromosomes, including the sex chromosome X and Y. The position of the line and dot indicates the position of the gene on the 
chromosome, and the height of the column indicates the abundance of gene expression. 
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Supplementary Figure 2. Construction of a prognostic risk model using LASSO regression analysis. (A) LASSO algorithms used to 
identify prognosis-related DEUPSGs. (B) The prognostic risk model constructed using LASSO coefficient values in the TCGA training set. 
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Supplementary Figure 3. Verification of the prognostic risk model in HNSCC patients in the TCGA database. (A) Kaplan-Meier 
survival curve for HNSCC patients in the TCGA test set. (B) Kaplan-Meier survival curve for HNSCC patients in the TCGA all set. (C) The risk plot 
distribution, survival status, and the expression of risk genes of HNSCC patients in the TCGA test set. (D) The risk plot distribution, survival 
status, and expression of risk genes in HNSCC patients in the TCGA all set. 
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Supplementary Figure 4. Performance validation of the risk model in HNSCC patients using the GEO database. (A) Kaplan-
Meier survival curve with OS in the high- and low-risk HNSCC patients in the GSE65858 data set. (B) ROC curve showing the AUC for the risk 
score and other clinical factors of HNSCC patients in the GEO database. (C) The risk score distribution of the high- and low-risk HNSCC 
patients. (D) Scatter plot showing the survival statuses of HNSCC patients. (E) The expression of risk genes of HNSCC samples in the GSE65858 
data set. 
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Supplementary Figure 5. Univariate and multivariate Cox regression analyses of OS in the GEO and TCGA data sets. (A, B) The 
clinical factors of the patients in the TCGA all set were assessed using univariate and multivariate Cox regression analysis, respectively.  
(C, D) The clinical factors of the patients in GEO (GSE65858) data set were assessed using univariate and multivariate Cox regression analysis, 
respectively. 
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Supplementary Figure 6. Other single GSEA figures of the high-risk and low-risk groups. Single GSEA plots showing enriched 
pathways in the high- and low-risk groups displayed in Table 3. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–5. 

 

Supplementary Table 1. List of ubiquitin proteasome system (UPS)-related genes analyzed in this study. 

 

Supplementary Table 2. The 114 differentially expressed UPS-related genes (UPSGs) identified in HNSCC in the 
present study. 

 

Supplementary Table 3. The top 20 enriched pathways of GSEA in the high-risk and low-risk groups. 

 

Supplementary Table 4. The HNSCC patients of the TCGA training set. 

 

Supplementary Table 5. The HNSCC patients of the TCGA test set. 


