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INTRODUCTION 
 

Alzheimer’s disease (AD) and vascular dementia (VD) are 

common neurocognitive disorders [1–3]. The cerebrospinal 

fluid (CSF) concentrations of phosphorylated Tau 181 

(Tau-181) and amyloid-beta 42 (Aß-42) are considered 

biomarkers for AD [4–6]. There are no diagnostic or 

therapeutic biomarkers for VD [7]. Mild cognitive 

impairment (MCI) is a transitional and reversible stage 

that can diverge to normal aging and neurocognitive 

disorder [8, 9]. MCI increases the risk of developing 

neurocognitive disorders [9], but the trajectory of 
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individuals varies. Identifying biomarkers of neurocognitive 

disorders in the MCI stage is critical for early diagnosis 

and intervention [10]. 

 

With the advances in biochemistry and sequencing 

techniques, over 150 RNA modifications have been 

identified in the past decade [11, 12]. N6-

methyladenosine (m6A) is the most common RNA 

modification in eukaryotic cells [13–17]. The 

abundance of m6A in the brain gradually increases with 

age and peaks in adulthood [18]. M6A is highly 

enriched in adult brain tissue [19, 20] and plays a 

critical role in neurogenesis, neurodevelopment, and 

neurological disorders [18, 20–23]. M6A modification 

on messenger RNA (mRNA) affects the proliferation 

and differentiation of neural progenitor cells [24–26], 

and elucidating dysregulations and alterations of m6A 

perturbations facilitates a comprehensive understanding 

of RNA methylation-based stem cell or gene-targeted 

diagnosis and therapy [17, 27].  

 

M6A modification is dynamically regulated by 

methyltransferases (also known as “writers”), 

demethylases (“erasers”) and binding proteins 

(“readers”) (Figure 1A, 1B) [15, 28]. This methylation 

installed by the “writers” can be reversed by “erasers” 

[29]. Dysregulations of m6A have been associated with 

the perturbations of cell proliferation and cell death in 

different diseases [11, 30, 31]. 

 

Alternations of RNA methylation modified genes in the 

central nervous system (CNS). Little evidence has 

elucidated the relationships between m6A regulators 

and neurodegeneration, such as dementia [32]. A recent 

study by Han et al. using APP/PS1 transgenic mice 

indicated that m6A abnormality (such as METTL3 

and FTO genes) is closely related to AD [33]. To 

gain a thorough understanding regarding cognitive 

malfunction from a new perspective, we systematically 

investigated the molecular alterations of m6A regulators 

and their associations with AD, VD, and MCI using the 

database search. 
 

MATERIALS AND METHODS 
 

Collection of m6A regulators 
 

Our study was designed and conducted according to the 

flow chart (Figure 1C). Briefly, twenty-six m6A 

regulators were selected accordingly to recent 

 

 
 

Figure 1. Landscape of included m6A regulators. (A) Overview of dynamic biological processes of m6A RNA methylation mediated by 
“writers”, “erasers” and “readers” in nucleus and cytoplasm. (B) Distribution of “writers”, “erasers” and “readers” among included 26 m6A 
regulators. (C) Workflow of the study design. Abbreviations: GEO: Gene Expression Omnibus; WGCNA: Weighted Gene Co-expression 
Network Analysis; GSEA: Gene Set Enrichment Analysis; DEGs: differentially expressed genes; KEGG: Kyoto Encyclopedia of Genes and 
Genomes; GO: Gene Ontology. 
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publications [15, 34–37], including ten writers 

(METTL3, METTL14, METTL16, RBM15, RBM15B, 

WTAP, KIAA1429, PCIF1, ZCCHC4, ZC3H13),  

two erasers (FTO, ALKBH5) and fourteen readers 

(YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, 

IGF2BP1, IGF2BP2, IGF2BP3, HNRNPA2, HNRNPC, 

FMR1, RBMX, LRPPRC, ELAVL1) (Figure 1B). 

Figure 1A summarized the landscape of related 

regulators, including classification, biological functions, 

and molecular mechanisms. 

 

Acquisition of microarray datasets and preprocessing 

 

The gene-expression dataset with full clinical 

annotation was obtained from Gene Expression 

Omnibus (GEO), a publicly sponsored genomic 

database operated by the National Institutes of Health 

(NIH). GEO provides open access to many gene 

expression data from biological and statically 

comparable samples [38]. In total, four eligible datasets 

regarding AD, VD, or MCI, including GSE122063, 

GSE63060, GSE63061, and GSE84422, were selected. 

There are 711 blood samples from GSE63060 (n = 382) 

and GSE63061 (n = 329), including 238 control, 189 

MCI and 284 AD. GSE122063 consists of 136 brain 

samples from either frontal or temporal lobe, and 

patients are divided into control (n = 11), VD (n = 8), 

and AD (n = 12) groups. GSE84422 collected 1053 

post-mortem brain samples from 125 subjects with a 

full spectrum of AD.  

 

The microarray platforms provided by Illumina and 

Agilent were downloaded in the format of normalized 

matrix files. The dataset retrieved from Affymetrix was 

downloaded in raw “CEL” form. The R/Bioconductor 

algorithm “RMA” and package “SVA” were used to 

preprocess gene chips normalization among datasets 

and to remove batch effects and other latent variations 

[39]. The overall workflow was presented in Figure 1C. 

 

Analysis of unsupervised clustering for m6A regulators 

 

Unsupervised clustering analysis is an effective 

machine learning tool for exploring the patterns of 

datasets in a complex system, which has been applied to 

AD studies [40] and single-cell RNA sequencing 

applications [41]. In the current study, the m6A-related 

regulators were classified into several distinct endotypes 

by employing unsupervised clustering methods [42, 43] 

and m6A modification patterns based on the mRNA 

sequencing of 21 m6A regulators were hereafter 

determined for further research. Consensus Cluster Plus 

R package was conducted to perform 1000 times 

repetitions to guarantee the stability of classification 

[44]. The number of clusters was determined by the 

consensus clustering cumulative distribution function 

(CDF) result (Supplementary Figure 1). The purpose of 

the CDF plot is to find the k at which the distribution 

reaches an approximate maximum, which indicates 

maximum stability, and after which divisions are 

equivalent to random picks rather than the true cluster 

structure [44]. Besides, patients were classified into 

different groups for deeper analysis by adopting  

an unsupervised clustering method for analyzing  

the significant difference in different clusters by  

consensus clustering. 

 

Identification of differential gene expression 

 

After data normalization, differentially expressed genes 

(DEGs) in datasets of GSE122063, GSE63060, and 

GSE63061 were identified using the “Limma” package 

from R/Bioconductor software [45]. The significance of 

DEGs was set as the adjusted P-value <0.05 and 

threshold of |log2FC|≥1. Different expression levels of 

26 m6A regulators among groups were further verified 

by unsupervised clustering analysis. 

 

Exploring KEGG pathway enrichment 
 

After identifying DEGs in frontal and temporal 

cortices, Database for Annotation, Visualization and 

Integrated Discovery (DAVID, https://david.ncifcrf.gov/, 

ver. 6.8) was further used to identify Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway enrichment of 

DEGs in the above two brain regions. The cutoff criteria 

were set as P values of 0.05. The results of top10 KEGG 

pathways in both cortices were picked up and constructed 

in a bubble plot via R Studio.  

 

Gene set enrichment analysis and functional 

annotation 
 

Gene set enrichment analysis (GSEA) has successfully 

been applied to interpret the molecular pathway activated 

in different biological states [46]. In this study, software 

“GSEA” (https://www.gsea-msigdb.org/) was utilized to 

identify the gene up- or down-regulation after filtering 

for gene set size (min = 5, max = 500) and ranked by 

t-score [47]. The gene sets of “c2.cp.kegg.v7.1.symbols” 

(MSigDB database) were used for GSEA analysis. The 

FDR-corrected q-value <0.25 and P-value <0.05 were  

set for significance.  

 

Weighted gene co-expression network analysis  
 

Weighted gene co-expression network analysis 

(WGCNA) was used to extract highly correlated 

clinical traits and calculate module membership 

measures from the data sets [48]. “WGCNA” R 

package was applied to determine hub genes and 

clinical traits-related modules among microarrays [48]. 

https://david.ncifcrf.gov/
https://www.gsea-msigdb.org/
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Genes with variations in the top 25% were extracted 

from DEGs analysis. Biweight miscorrelation 

(corType = “Pearson”) was set to detect the outliers. 

The topological overlap matrix (TOM) was trans-

formed to find the connectivity in the adjacent matrix. 

Genes were after that divided into multiple sensitive 

modules according to the TOM-based dissimilarity 

measurement. Other analysis setting regarding the 

identification of key modules included soft-threshold 

power = 7, scale free R2 = 0.9, height = 33, cut height 

= 0.2, and minimal module size = 10. Subsequently, 

genes from the highest correlated module were picked 

up to perform Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

pathway analyses. Hub genes were determined by 

defying gene significance (GS) >0.3 and module 

membership (MM) >0.8. 

 

Comparing the expression levels according to 

genotypes of apolipoprotein E gene  

 

The association between apolipoprotein E (APOE) gene 

ɛ4 allele and m6A methylation regulators in AD 

patients was examined by extracting data from 

GSE29652. Eighteen post-mortem brain samples of AD 

were categorized into APOE ɛ4+ or APOE ɛ4− subtype. 

The expression levels of m6A regulators were 

compared between APOE ɛ4 genotype groups after data 

normalization and DEGs extraction. 

 

Statistical analysis 

 

The Statistical Package for the Social Sciences (SPSS) 

version 24.0 was used for statistical analysis. Patients  

in GSE63060 and GSE63061 were sub-grouped by  

age according to their cognitive functions. Normal 

distributed continuous variables were described using 

mean ± SD; categorical variables were presented as 

percentages (%). Differences between groups were 

compared by t-test, one-way ANOVA, or Kruskal-

Wallis test for continuous variables, and chi-square for 

categorical variables. 

 

Correlation analyses were carried out to compute the 

strength of interrelationships between clinical traits and 

gene expression traits. Correlations between m6A 

regulators were computed by Spearman correlation 

analyses and visualized by the “corrplot” package in the 

R program. Univariate analysis examinations, filtering 

the meaningful independent variables, followed  

by multivariate logistic regression analysis, were 

conducted to estimate the association between m6A 

methylation levels and MCI and AD. 

 

All statistical P values were two-tail, and p < 0.05 was 

regarded as statistically significant.  

Data sharing statement 
 

All relevant data supporting the key findings are 

available from the corresponding author upon 

reasonable request. 

 

RESULTS 
 

Overview of included datasets and m6A regulators  

 

Seven hundred and seventy-one blood samples from 

GSE63060 and GSE63061 were stratified into three age 

categories (≤70, 71–79, ≥80). There are significant 

differences in age distribution among CTL, MCI, and 

AD groups (2
 = 26.2, P < 0.001) (Supplementary 

Table 1). 50% of patients over 80 years had AD, which 

is significantly higher than in younger age groups, 

supporting that AD is age-related. 

 

Expression patterns of m6A-related regulators vary 

with cognitive dysfunctions 
 

Firstly, expression levels of m6A RNA methylation 

regulators from different samples in the same groups 

were compared. As we can see, nearly half of the 

proteins have various expressive phenotypes in the 

control group. The expression profile of YTHDC2 

mainly was enriched in the frontal lobe, while RBMX 

and FTO were in the temporal lobe, and IGF2BP3  

was in the blood (Supplementary Figure 2A). The 

expression profiles were different in AD patients, and 

even more prominent expressive differences were 

found. The expression levels of METTL3 and 

KIAA1429 were highest in the frontal lobe, while 

PCIF1 had the highest expression in the temporal lobe, 

and YTHDC2 had the highest expression in the blood 

(Supplementary Figure 2B). The combined results 

indicated that the modification phenotypes of m6A-

related regulators varied in different samples. 
 

To further explore these m6A regulators’ expression 

patterns, our attention was fixed on comparing different 

levels of cognitive functions within the same tissues. 

Unsupervised clustering analysis was performed by 

classifying into several clusters, according to K-means. 

When classified according to brain regions, two distinct 

clusters were identified. We noted that m6A Cluster1 

was relatively enriched in the frontal lobe 

(Supplementary Figure 2C), with writers METTL3, 

METTL14, readers YTHDF2/3, and YTHDC1/2 had 

the most significant enrichment (Supplementary Figure 

2D–2K). No noticeable enrichment difference was 

found by visual inspection in m6A Cluster2. When 

classified by cognitive status, the exhibition was 

different (Figure 2). We discovered that m6A Cluster1 

was distinctively enriched in the CTL group, especially 
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in readers and eraser FTO (Figure 2A, 2C). As for m6A 

Cluster2, it was mainly enriched in readers of VD and 

AD groups, with IGF2BP1/2/3 and HNRNPA2B1 were 

the most obvious (Figure 2A, 2C). The most significant 

divergently expressed regulators between the three 

groups were seen in Figure 2E–2H (YTHDF2, F = 

10.612; YTHDC2, F = 36.231; LRPPRC, F = 13.354; 

FTO, F = 22.789). Besides, our previous research has 

found the differences in epigenetics modifications in 

diverse brain regions (unpublished), so when further 

comparisons were conducted based on brain domains, 

the expression imbalance was similar to the combined 

results (Supplementary Figure 2C). 

 

There were three m6A Clusters, and 13 differently 

expressed regulators between CTL, MCI, and AD in 

blood samples (Figure 2B, 2D). Cluster 2 was mainly 

enriched in the VD group, Cluster 3 was mainly 

enriched in the CTL group, with WTAP (F = 22.354), 

RBM15 (F = 12.609), PCIF1 (F = 13.629), HNRNPC 

(F = 12.133) had the most distinctive mutations among 

groups (all Ps < 0.0001, Figure 2I–2L). Interestingly, 

we noticed that the expression tendencies of MCI were 

always different from those of CTL or AD groups 

(Figure 2D), indicating that expressional alterations of 

m6A regulators played a crucial role in mediating the 

progression of cognitive dysfunctions. 

 

Interactions between m6A-related regulators  
 

Considerable evidence has proved that cross-talks of 

m6A regulators were ubiquitous [35, 49]. Therefore, we 

further investigated collaboration among writers, erasers, 

and readers by constructing protein-protein interaction 

(PPI) networks. In general, correlated expression patterns 

and genetic alterations were not only within the same 

biological regulators but also among writers-erasers-

readers (Supplementary Figure 3). Except for recently 

 

 
 

Figure 2. Mutation frequency distribution of m6A regulators across different groups in brain and blood samples. (A) 
Unsupervised clustering of 26 m6A regulators in GSE122063, annotated according to cognitive statues. Red represented high expression of 
regulators and blue represented low expression. (B) Unsupervised clustering of 26 m6A regulators in GSE63060 and GSE636061, annotated 
according to cognitive statues. Yellow represented high expression of regulators and blue represented low expression. (C–D) The expression 
profiles of 26 m6A regulators in brain and blood samples. (E–L) Box plots showing representative expression differences between CTL, VD and 
AD from brain sample, or between CTL, MCI and AD from blood sample. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: no significance. 
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reported proteins PCIF1, ZCCHC4, and LRPPRC, the 

other regulators' expressive patterns were significantly 

associated with each other. Mostly evident interactions 

were observed between proteins within the ten writers. 

Close interrelationships were also found between writers 

with readers or erasers. Relatively few interactions were 

existed between the 14 readers, while complicated 

interactions between erasers FTO and ALKBH5 were 

apparent in the PPI network (Supplementary Figure 2). 

 

Correlations between m6A regulators in different samples 

and two brain cortices were computed by Spearman 

correlation analyses and visualized by the “corrplot” 

package in the R program. The lines linking regulators 

showed their interactions, and thickness showed the 

correlation/interference strength between regulators 

(Figure 3, Supplementary Figure 3). As we can see, the 

result of brain samples showed strong co-occurrences 

between eraser FTO with readers RBMX, YTHDF2, and 

YTHDC1. At the same time, negative correlations were 

exhibited with writers METTL16, IGF2BP3 and 

HNRNPA2, and PCIF1. The closest interference was 

found between METTL16 and IGF2BP3 (Figure 3A, 3C; 

R = 0.792, p-value < 0.0001). According to brain regions, 

we found more inseparable expression profiles 

(Supplementary Figure 4). For example, the absolute 

values of the correlation coefficient between IGF2BP3 

with FTO and YTHDF2 were both more than 0.80 in the 

temporal lobe (Supplementary Figure 4B, 4D; R = −0.818 

and −0.813, respectively, both Ps < 0.0001). While in the 

frontal lobe, the interaction strength between regulators 

was somewhat weaker, but the absolute values of the 

correlation coefficient between IGF2BP3 and YTHDF2, 

FTO and YTHDC1 were also close to 0.80 

(Supplementary Figure 4A, 4C; R = 0.773 and −0.753, 

respectively, both Ps < 0.0001). Besides, the interactions 

between METTL16, TYHDF2, YTHDC1, and IGF2BP3 

with other regulators were always the strongest, indicating 

intimidate connections among m6A-related regulators. 

 

As for blood samples, we found that the overall 

correlations were less close to those in the brain. The 

writer RBM15 was positively correlated with writer 

WTAP and readers YTHDC1/2 and YTHDF3, while 

negatively correlated with writer PCIF1 and readers 

IGF2BP1/2, with the closest relationship existed within the 

same functional protein class between writers RBM15 and 

PCIF1 (Figure 3B, 3D; R = −0.638, p-value < 0.0001). 

 

Identification of m6A-related biological functions 

 

Potential biological processes of m6A-related regulators 

were further investigated. 502 and 674 DEGs were 

identified in frontal and temporal cortices, respectively, 

and they were subsequently performed by the Kyoto 

Encyclopedia of Genes and Genomes (KEEG) pathway 

analysis. Bubble plots showed that DEGs in two lobes 

were both mainly enriched in neuro-modulatory 

activities, including neuroactive ligand-receptor 

interaction, serotonergic synapse, GABAergic synapse, 

glutamatergic synapse, and cholinergic synapse. Other 

pathways, such as the retrograde endocannabinoid 

signaling pathway and Calcium signaling pathway, 

were also mainly involved (Figure 4A, 4B). In addition, 

 

 
 

Figure 3. Interaction among m6A RNA methylation regulators. (A, B) Spearman correlation analysis of the 26 m6A methylation 
regulators in brain (A) and blood (B) samples. Positive correlation was marked with red and negative correlation with blue. (C, D) The 
interaction between the 26 m6A methylation regulators by constructing PPI network in brain (C) and blood (D) samples, respectively. The 
circle size was determined by the degree value. The lines linking regulators showed their interactions, and thickness showed the correlation 
strength between regulators. Positive correlation was marked with red and negative correlation with blue.  
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the Ras signaling pathway, MAPK signaling pathway 

were typically enriched in the frontal lobe (Figure 4A), 

while Rap1 signaling pathway, phagosome, and Gap 

junction were in the temporal lobe (Figure 4B), 

demonstrating that biological functions in various  

brain regions were similar in general but also  

slightly different. 

 

Estimation of differentially regulated molecular 

pathways  
 

We used the Gene Set Enrichment Analysis (GSEA) 

algorithm to identify molecular pathways differentially 

regulated according to cognitive dysfunctions. Of the 65 

pathways in the AD group compared to the CTL group, 

41 pathways were activated, while 24 pathways were 

down-regulated (Additional file 1). Generally, GSEA-

based analysis highlighted a broad dysregulation of 

genes related to neurodegenerative disorders. Among the 

latter are genesets associated with AD, Parkinson’s 

Disease and Huntington’s Disease, taste transduction, 

sphingolipid metabolism, and calcium signaling pathway 

(Figure 4C–4J). It is interesting to find that taste 

transduction was the only pathway mediated between 

AD and MCI, and it was up-regulated in AD vs. CTL. 

However, down-regulated both in MCI vs. CTL and AD 

vs. MCI (Figure 4J, 4F, Additional file 1), indicating that 

taste transduction malfunction might play a role in 

 

 
 

Figure 4. Identification of differentially regulated molecular pathways and m6A-related biological functions. (A, B) Functional 
annotation of the genes with different expression in frontal (A) and temporal (B) lobes using KEGG pathway. (C–J) Representative 
differentially regulated pathways are shown by analyzing blood samples. Pathways with increased activation included pathways indicative of 
Alzheimer's Disease (C) and VEGF signaling pathway (E), pathways with reduced activation included Huntington's Disease (D) and taste 
transduction (F) in AD group compared with CTL group; (G–J) Pathways with dysregulated activation in MCI group compared with CTL group.  
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cognitive impairment progress. Besides, Pathways such 

as the VEGF signaling pathway, complement and 

coagulation cascades, JAK-STAT signaling pathway, 

and MAPK signaling pathways were activated in the 

AD group compared to the CTL group (Additional file 

1). The identified dysregulated pathways and related 

genes, e.g., VEGF, JAK, MAPK, and complements, 

could be therapeutic targets of AD. 

 

Construction of gene co-expression network and 

module of interest identification 
 

In this study, weighted gene co-expression network 

analysis (WGCNA) [50] was performed to identify the 

key modules most associated with AD and MCI clinical 

traits. Ages were stratified into three subgroups: ≤70, 

71–79, and ≥80 years old. After setting the soft 

threshold = 7, 6 outliers were removed (height = 33), 

and the left 705 genes were, after that, theoretically 

classified according to the expression pattern 

(Supplementary Figure 5). Firstly, we identified 11 

modules of highly co-expressed genes by considering 

clinical traits, including age/age stratification, gender, 

cognitive status (Figure 5A). Eigengene adjacency 

heatmap was further conducted and revealed four main 

branches among the genes, which verified the above 

interconnections (Figure 5B). Unique color identifiers 

were assigned to each module, with gray represented 

the remaining poorly connected genes. Then, the co-

expressed gene network was constructed, and the 

topological overlap matrix (TOM) heatmap plot was 

employed to show the network landscape (Figure 5C). 

The rows and columns in the TOM plot corresponded 

to various genes. The color intensity represented 

values of Pearson correlation coefficients, which 

meant that the higher color intensity indicates higher 

co-expression similarity between genes included in the 

network. Herein, genes appeared highly interconnected 

between module green with modules turquoise and 

blue, module purple with module brown by visual 

inspection (Figure 5C).  

 

To further strengthen the study of crucial module 

identification, we defined a measurement to discern the 

statistical significance between modules with clinical 

traits. As depicted in the Heatmap, the associations 

between module eigengenes and clinical traits were 

colored by corresponding plot, with a darker color (red 

or blue) indicating strong correlations. Therefore, 

modules turquoise and yellow were closely intimated 

with cognitive statues (Figure 5D), indicating that  

genes in these two modules had high relationships  

with different cognitive performance levels. The 

investigation of gene significance (GS) was further 

performed to find the modules most biologically 

connected to clinical traits. (Figure 6A–6C). What is 

more, the existence of significant correlations between 

GS and module membership (MM) implied that genes 

within the module turquoise tended to strongly 

interrelate to cognition (correlation coefficient = 0.35, P 

= 3.4e-49; Figure 6B).  

 

A total of 1666 genes in module turquoise and the 

top20 hub genes, including SNRPG, SNRPD2, 

RPL26, ERH, SNRPB2, and SSB, were selected, 

setting GS >0.3 and module membership (MM) >0.8. 

We can tell that these genes were inseparably 

associated with each other (Figure 6D). Herein, GO 

enrichment analysis was performed to identify 

potential biological functions of module turquoise-

related genes (Figure 6E). The result revealed  

that genes within the module turquoise were  

most significantly enriched in translation, peptide 

biosynthetic process, nuclear-transcribed mRNA 

catabolic process, mRNA/RNA catabolic process.  

 

Prediction of associations between m6A-related 

methylations and cognitive dysfunctions 

 

In order to assess the effect of m6A-related regulators 

on the prevalence of cognitive dysfunctions, un-

conditional logistic regressions were used. As 

expected, age predicts AD (OR = 1.055, 95%CI 

1.025–1.087) and MCI (OR = 1.056, 95%CI 1.022–

1.091), while gender has no prediction values. 

WTAP, ZCCH4, and HNRNPC from blood samples 

were found to have protective roles in MCI 

prevalence (Supplementary Table 2-1). While AD, 

METTL3, YTHDF3, and ALKBH5 were predicted to 

significantly increase the odds ratios, with YTHDF3 

having the most apparent effect (OR = 8.033, 95%CI 

2.047–31.523). On the contrary, METTL14, WTAP, 

YTHDC1, IGF2BP2, HNRNPC, and FTO had a 

protective effect on AD (Supplementary Table 2-2). 

When we further analyzed the relationships between 

MCI and AD, we surprisingly found that males with 

MCI had prone to deteriorating into AD compared to 

females (OR = 1.490, 95%CI 1.003–2.213), while age 

failed to predict the outcome. Besides, METTL3, 

WTAP, and RBM15 increased the possibility of 

occurrence, with METTL3 had the most apparent 

effect (OR = 6.984, 95%CI 1.778–27.432), while 

YTHDF1, YTHDC1, and LRPPRC were just the 

opposite (Supplementary Table 2-3). 

 

Further analysis from brain regions of frontal and 

temporal lobes demonstrated age (OR = 1.067, 95%CI 

1.050–1.085) and IGF2BP2 (OR = 2.633, 95%CI 1.248–

5.552) were promotive to AD, while METTL16 and 

LRPPRC were protective to the prevalence. The model’s 

overall predictive value, sensitivity, and specificity were 

79.4%, 70.8%, and 80.0%, respectively. 
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Exploration of correlations between APOE ɛ4 and 

m6A-related methylations  

 

The ɛ4 allele of the human apolipoprotein E gene 

(APOE) is a well-proven genetic risk factor for the 

late-onset form of AD [51]. Studies have proved that 

the ɛ4 allele of APOE was differentially methylated in 

AD [52, 53]. However, whether RNA methylation 

changes the presence of the APOE ɛ4 allele is still 

unknown. Thus, data from GSE29652, which contains 

18 postmortem brain samples, were extracted and 

analyzed according to APOE ɛ4+/−. As a result, five 

DEGs were dug out (Figure 7). Except for YTHDC2 

was downregulated in the ɛ4+ group, the other four 

DEGs (METTL3, METTL16, RBMX, and LRPPRC) 

were upregulated epigenetic alterations of RNA 

methylation might be related to APOE ɛ4 dysfunction 

in AD (Figure 7A–7E). 

 

 
 

Figure 5. Identification of key modules correlated with clinical traits by WGCNA. (A) Cluster dendrograms of all genes, with 
dissimilarity based on topological overlap, and then various module colors were assigned. (B) The upper panel displays the hierarchical 
clustering dendrogram of hub genes that summarize the analyzed modules and branches of the dendrogram group with eigengenes are 
closely correlated. The lower panel shows the eigengene adjacency heatmap, with the trait weight included. The darker red color 
represents higher adjacency, while darker blue color represents low adjacency. (C) Heatmap plot of Topological Overlap Matrix (TOM) 
among selected genes. Each module corresponds to a branch in the hierarchical clustering dendrogram. Modules demonstrate more 
saturated yellow or even red colors indicate higher co-expression interconnection. Genes locate at the tip of each branch indicate highest 
interconnection with the rest of the genes in the module. (D) Heatmap of the associations between module eigengenes and clinical traits. 
Each row and column correspond to a module eigengene or a clinical trait. The plot is colored by corresponding correlation according to the 
legend, and each cell contains the corresponding P-value. The red color represents positive correlation, while blue color represents 
negative correlation. 



 

www.aging-us.com 20725 AGING 

DISCUSSION 
 

The discovery of m6A mRNA methylation has 

extended a new dimension in post-transcriptional gene 

expression [29]. Various animal experiments have 

previously suggested the modulation roles of m6A on 

neuronal functions [19, 20, 54–57]. However, the 

relevance of m6A RNA methylation in cognitive 

dysfunction remains mostly unexplored. The current 

study has identified certain m6A-related regulators and 

related modification patterns, which might serve as 

novel biomarkers and therapeutic strategies for 

cognitive dysfunction. 

 

Firstly, we found that m6A-related regulators’ 

expression differs in different tissues and different 

cognition levels. A little evidence has confirmed that 

m6A regulators were closely related to hippocampal-

dependent learning and memory [22, 56] and further 

proved the inner regulating mechanisms [58, 59]. We 

found that FTO, YTHDC2, and YTHDF2 were the most 

divergently expressed regulators in the brain between 

different cognitive groups. However, different from the 

above findings, we found that expression of METTL3 

had no significant difference between CTL, MCI, and 

AD, while METTL14 had the highest expression in 

CTL but lowest in MCI. This may partly explain that 

the above two studies were based on animal research 

and tissue from the hippocampus, while we analyzed 

samples of blood from the elderly [22, 56]. Besides, 

recently reported studies have proved that 

oligodendrocyte (OL) lineage progression was 

accompanied by changes along with m6A-related 

regulators, such as METTL14, YTHDF2, or even a 

 

 
 

Figure 6. Identification of hub genes and functional annotation of the WGCNA module highly correlated with clinical traits. 
(A–C) Scatter plots of eigengenes in the representative modules yellow (A), turquoise (B), and brown (C), which have highly significant 
correlation between Gene Significance (GS) and Module Membership (MM). (D) PPI network of the top20 hub genes in the module turquoise. 
The circles with darker red represent higher gene rank. (E) Biological functional annotation of the top20 hub genes in the module turquoise 
by Geno Ontology (GO) enrichment analysis. 
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novel reader PRRC2A [60, 61]. Considering our 

previous findings that OLs and myelin were closely 

associated with animal cognition [62, 63], we may 

uncover a m6A-specific cognition modification. 

Conditional inactivation of m6A components might 

result in decreased OLs numbers, and CNS hypo-

myelination and the latter have been implicated in the 

development of cognitive impairment. Together, we 

hypothesize that it is possible to regulate OLs 

proliferation and differentiation by modulating RNA 

methylation and improving hippocampus-dependent 

cognitive function. Further in vivo and in vitro 

experiments are needed to validate the conjecture. 

 

KEGG analysis revealed that DEGs in the brain were 

significantly enriched in neuroactive ligand-receptor 

interaction, consistent with a previous study. They 

reported that the regulation of neuroactive ligand-

receptor interaction associated with AD was not 

preserved in healthy and MCI networks [64]. Another 

multinational study confirmed that genes regarding 

neuroactive ligand-receptor interaction were closely 

related to memory-modulation [65]. As for DEGs in 

blood, GSEA results surprisingly revealed enrichment 

of taste transduction. The alterations of taste perception 

were commonly found in aging and neurodegenerative 

disorders [66–68]. For example, frontotemporal 

dementia (FTD) is characterized by alterations in 

gustation, eating behaviors [69, 70], and appetite 

alteration are also significantly found in AD [70, 71]. 

The type 1 taste receptor member 3 (T1R3) is closely 

involved in taste perception and highly abundant in 

cognition-related brain areas, such as the hippocampus 

and cortex [72]. Besides, bioinformatics tools confirmed 

that the T1R3 receptor processes a strong structural 

similarity with metabotropic glutamate receptors, and 

the latter is crucial for learning, memory, and behavior 

[73, 74]. The loss of the T1R3 subunit is thereby 

demonstrated to cause learning and memory impairment 

[68]. Taken together with our and others' data suggest 

that taste transduction plays a crucial role in cognition 

procession, and alterations of taste might implicate as 

an indicator of cognitive dysfunction. 

 

The present study has dug out critical proteins 

associated with MCI and AD through WGCNA. 

Belonging to the small nuclear ribonucleoprotein 

peptide family, SNRPG has been identified as one of 

the bridge regulators in the module network closely 

connected to MCI and AD [75, 76]. The decreased 

expression level of SNRPG might participate in the 

progression from MCI to AD [76]. Meanwhile, 

SNRPD2 interacts with nuclear retention elements,  

and a decrease of SNRPD2 also correlates with 

pathogenesis from MCI to AD [76, 77]. Moreover, 

several genes show overlaps in the potential 

pathogenesis of cancers. It is consistent with a previous 

bioinformatic study regarding VD by our group 

[accepted but unpublished] and another PD-associated 

research [78], which collectively indicated that genes 

associated with neurodegenerative diseases were always 

abnormally dysregulated in cancers [76]. Therefore, we 

may conclude that our study contributed to a better 

understanding of the pathological mechanisms from 

 

 
 

Figure 7. Expression differences on m6A-related regulators between APOE ɛ4+ and APOE ɛ4− groups. (A–E) Five representative 

DEGs between two groups. *p < 0.05, **p < 0.01, ***p < 0.001. 
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MCI to AD. Proteins like SNRPG, SNRPD2, or even 

cancer-related are expected to be novel biomarkers to 

predict for patients with MCI who are more likely to 

progress to AD.  

 

For the first time, we demonstrated in the present 

study that APOE ɛ4 is closely correlated to five RNA 

methylation regulators (METTL3, METTL16, 

YTHDC2, RBMX, LRPPRC) in the AD brain. The ε4 

allele of APOE is the most common and influential 

genetic risk factor for developing AD [79]. Lee et al. 

once reported that expression of all APOE RNA species 

was significantly higher in the AD brain than those in 

the control brain [80]. Similarly, we found a significant 

increase in most m6A-related regulators within the AD 

APOE ɛ4+ group, suggesting a complex regulation of 

epigenetic alterations between the ɛ4 allele and AD. A 

prospective cohort study by Keller et al. once reported 

an interaction between FTO and APOE. It proved that 

those carrying genes of both FTO and AOPE ɛ4 had an 

increased risk for dementia [81]. They further figured 

out that FTO's effect on dementia or AD risk mainly 

was through interaction with the APOE ɛ4 allele [81]. 

We did not find the difference of FTO expression 

between APOE ɛ4+/− groups, suggesting that we 

adopted different samples (brain vs. blood).  Consistent 

with Han's study reporting an elevated level of 

METTL3 in AD mice, we found that the AD APOE ɛ4 

+ group has a higher expression of METTL3 [33]. 

Ectopic expression of RBMX was reported to decrease 

the APOE receptor’s splicing and was critical to 

cholesterol homeostasis and, possibly, AD development 

[82]. Loss or mutation of LRPPRC may contribute to 

manifestations of neurofibromatosis type 1, which has 

characteristics of cognitive dysfunction [83]. No 

previous studies have ever reported relationships 

between METTL16, YTHDC2 with AOPE ɛ4,  

or cognition.  

 

CONCLUSIONS 
 

The current study has demonstrated the prevalent 

genetic and expression alterations of RNA methylation 

regulators according to cognitive impairment. These 

differently modified patterns of m6A regulators deserve 

to be highlighted because they are tightly correlated 

with cognitive malfunctions. The systematic evaluation 

of m6A regulators-related molecular alterations  

might lay a critical foundation for understanding the 

characteristics of cognition. It will also contribute to 

guiding more therapeutic strategies for dementia. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The unsupervised cluster based on ConsensusClusterPlus in R package. (A) Empirical cumulative 
distribution function (CDF) plots display consensus distributions for each k. (B–E) Consensus matrices of dementia cohort for k = 2 – 5. 
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Supplementary Figure 2. Mutation frequency distribution of m6A regulators across different samples or brain regions. (A–B) 
The expression profile of 26 m6A regulators in CTL and AD groups. (C) Unsupervised clustering of 26 m6A regulators in GSE122063, annotated 
according to brain regions. Red represented high expression of regulators and blue represented low expression. (D–K) Box plots showing 
representative expression differences between frontal and temporal lobes. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: no 
significance. 
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Supplementary Figure 3. Overview of the PPI network among the 26 m6A methylation regulators constructed using STRING. 
 

 

 
 

Supplementary Figure 4. Interaction among m6A RNA methylation regulators according to brain regions. (A, B) Spearman correlation 
analysis of the 26 m6A methylation regulators in frontal (A) and temporal (B) lobes. Positive correlation was marked with red and negative 
correlation with blue. (C, D) The interaction between the 26 m6A methylation regulators by constructing PPI network in frontal (C) and 
temporal (D) samples, respectively. The circle size was determined by the degree value. The lines linking regulators showed their interactions, 
and thickness showed the correlation strength between regulators. Positive correlation was marked with red and negative correlation with 
blue.  



 

www.aging-us.com 20736 AGING 

 
 

Supplementary Figure 5. Preparation before identification of WGCNA key modules. (A) Analysis of network topology for different 
soft-thresholding powers. The left panel shows the dependence of the scale-free fit index (y-axis) on the soft-thresholding power (x-axis). The 
right panel displays the influence of soft-thresholding power (x-axis) on the mean connectivity (degree, y-axis). (B) Sample clustering to 
detect outliers after setting height = 33. (C) Clustering dendrograms of genes based on clinical traits. Color intensity varies positively with age/ 
age stratification, gender and cognitive function. 
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Supplementary Tables 
 

Supplementary Table 1. Age stratification in specific cognitive function groups. 

Groups 
Total 
n (%) 

≤70 years old 
n (%) 

71-79 years old 
n (%) 

≥80 years old 
n (%) 

2
 Test 

2
 P Value 

CTL 238 (33.5) 68 (43.1) 127 (37.1) 43 (20.5)* 

26.2 <0.001 
MCI 189 (26.6) 37 (23.4) 90 (26.2) 62 (29.5) 

AD 284 (39.9) 53 (33.5) 126 (36.7) 105 (50.0)* 

Total 711 158 (22.2) 343 (48.2) 210 (29.5) 

*P < 0.05 compared to other age groups. 
 

Supplementary Table 2-1. Prediction of the prevalence from CTL to MCI. 

 B SE P OR 95% CI 

Age 0.054 0.017 0.001 1.056 (1.022, 1.091) 

WTAP –1.699 0.439 <0.001 0.183 (0.077, 0.433) 

ZCCHC4 –2.814 1.523 0.065 0.060 (0.003, 1.186) 

HNRNPC –2.234 0.658 0.001 0.107 (0.029, 0.389) 

Constant 47.361 11.777 <0.001   

 

Supplementary Table 2-2. Prediction of the prevalence from CTL to AD. 

 B SE P OR 95% CI 

Age 0.054 0.015 <0.001 1.055 (1.025, 1.087) 

METTL3 1.527 0.699 0.029 4.603 (1.170, 18.118) 

METTL14 –2.079 1.067 0.051 0.125 (0.015, 1.013) 

WTAP –1.198 0.494 0.015 0.302 (0.115, 0.795) 

YTHDF3 2.084 0.698 0.003 8.033 (2.047, 31.523) 

YTHDC1 –1.173 0.493 0.017 0.309 (0.118, 0.813) 

IGF2BP2 –0.465 0.174 0.007 0.628 (0.447, 0.883) 

HNRNPC –1.432 0.599 0.017 0.239 (0.074, 0.772) 

FTO –2.409 0.949 0.011 0.090 (0.014, 0.578) 

ALKBH5 1.625 0.550 0.003 5.079 (1.728, 14.931) 

Constant 19.863 13.301 0.135   

 

Supplementary Table 2-3. Prediction of the prevalence from MCI to AD. 

 B SE P OR 95% CI 

Gender 0.399 0.202 0.048 1.490 (1.003, 2.213) 

METTL3 1.944 0.698 0.005 6.984 (1.778, 27.432) 

WTAP 0.964 0.496 0.052 2.621 (0.991, 6.935) 

RBM15 1.473 0.623 0.018 4.361 (1.287, 14.783) 

YTHDF1 –2.235 0.796 0.005 0.107 (0.022, 0.50) 

YTHDC1 –0.957 0.489 0.051 0.384 (0.147, 1.002) 

LRPPRC –1.945 0.766 0.011 0.143 (0.032, 0.642) 

Constant 7.798 9.232 0.398   

 

Please browse Full Text version to see the data of Additional file 1. 


