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INTRODUCTION 
 

Due to the wave of global aging, aging-related diseases 

among the elderly are increasing: hypertension, 

diabetes, atherosclerosis, osteoporosis, dementia, 

cancer, etc. Frailty and sarcopenia are also well known 

as aging-related diseases [1, 2]. Both diseases are 

increasing with estimated global populations of about 

120 million and 90 million individuals, respectively [3, 

4]. The clinical evaluation for sarcopenia is different 

from that for frailty. Sarcopenia is defined as a loss of 

skeletal muscle and muscle strength in the elderly [5], 

while frailty is a state of vulnerability to several 

stressors, due to declined function or impairment of 

organs and tissues during aging [1]. Frailty 

encompasses multiple domains of aging, including 

cognitive impairment, hypomobility, and decreased 

social activity [1, 6]. 

Frail patients overlap with 20–70% of sarcopenic 

populations [7–10]. In addition, both sarcopenia and 

frailty significantly affect the general status of the 

elderly, including mortality, hospitalization rate, falling, 

and necessity of long-term care [5, 6, 11]. This is partly 

because sarcopenic patients share clinical features with 

physical frailty, a subtype of frailty [1, 5]. Three major 

tools are applied for the diagnosis of frailty: 1) The 

physical frailty model known as the Fried 

Cardiovascular Health Study Index (CHS) [1], 2) the 

deficit accumulation model, covering multimorbidity, 

known as the Rockwood Frailty Index [12], and 3) the 

Edmonton Frailty Scale (EFS) or Tilburg Frailty 

Indicator, a mixed physical and psychosocial model [13, 

14]. Thus, the Rockwood Frailty Index and EFS are 

distinct from physical frailty in evaluating cognitive or 

social function. Several reports suggest the involvement 

of cytokines in sarcopenia [15–17]. However, little is 
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known about the metabolic basis which may be shared 

or discrete in sarcopenia and frailty. 

 

Metabolomics is a newly developed branch of 

chemistry that detects and quantifies small molecules, 

called metabolites, using methods such as liquid 

chromatography- mass spectrometry (LC-MS) [18]. 

Metabolites are generated in cells and tissues through 

their metabolic activities. They include amino acids, 

carbohydrates and organic acids, nitrogen compounds, 

purines and pyrimidines, lipids, antioxidants, etc. 

Metabolomics reveal complex, highly integrated 

biological processes. Human blood reflects 

physiological and pathophysiological states influenced 

by heredity, epigenetics, and disease, as well as by 

physiological or homeostatic responses, lifestyle, and 

nutrition [18–20]. Blood metabolomics have been 

utilized to reveal pathology and to identify diagnostic 

biomarkers [21–23]. 

 

Recently, we established reproducible and quantitative 

analyses for metabolomics using whole blood [24]. 

Although many studies have examined human blood 

serum or plasma, our whole blood analysis covers 

metabolites from both cellular and non-cellular 

compartments [24]. This approach has been validated in 

several comprehensive, non-targeted studies for 

comparisons between yeast and human blood [25], 

aging metabolites [26], and fasting compounds [27]. In 

addition, our whole blood metabolomics have identified 

15 frailty markers, including 10 antioxidants, based on 

EFS diagnostic tools [28]. Interestingly, although the 

average ages of both frail and non-frail populations 

were more than 80 years in our study, 5 of 15 frailty-

related metabolites overlapped with aging markers [26] 

[28], indicating an intriguing metabolic link between 

frailty and human aging. 

 

Here previous metabolomic data from the study of 

frailty diagnosed using the EFS are analyzed, based on 

sarcopenic diagnoses in the same group [28]. In sharp 

contrast to the 15 frailty markers, including 

antioxidants, we identified 22 sarcopenia markers, 

comprising TCA cycle compounds, urea cycle 

compounds, muscle or nitrogen metabolites, and 

methylated metabolites. Interestingly, most metabolites 

that decreased in sarcopenia or low SMI are uremic 

compounds that increase as a result of kidney 

impairment. Thus, metabolite profiles in sarcopenia are 

largely distinct from those of frailty. 

 

RESULTS 
 

We previously reported findings of non-targeted 

comprehensive metabolomic analysis of whole blood 

based on frailty diagnosis using the EFS in 19 elderly 

participants (7 males and 12 females; average age; 84.2 

± 6.9 years) [28] (Figure 1A). As this study also 

included sarcopenic profiles in the same population, 

here we analyzed metabolite profiles from the same 

data, based on individual diagnoses of sarcopenia 

(Figure 1A). Clinical features for frailty and results of 

blood tests were shown in Supplementary Table 1 in 

Kameda et al. PNAS 2020. Sarcopenia was diagnosed 

based on metrics of the Asian Working Group for 

Sarcopenia (AWGS), which includes hand grip strength, 

a 10-meter speed-walking test, and skeletal muscle 

index (SMI) among patients over 65 years old [5]. SMI 

was recorded by bioelectric impedance analysis [29]. 

Among individuals with decreased SMI, patients with 

decreased hand grip strength or walking speed were 

diagnosed as sarcopenic.  

 

Clinical attributes of all participants for sarcopenia are 

summarized in Supplementary Table 1. Among 19 

participants, 6 individuals (average age; 85.0 ± 8.6) 

were diagnosed as sarcopenic, while 13 (average age; 

83.8 ± 6.3) were not (Supplementary Table 1). Non-

sarcopenia group included 5 cases of pre-sarcopenia, 

5 cases of dynapenia, and 5 cases of frailty. Sarcopenia 

group included 4 cases of frailty. SMI and BMI were 

significantly decreased in sarcopenia, while hand grip 

strength was not (Figure 1B, Supplementary Figure 1, 

and Supplementary Table 1). Handgrip strength was 

significantly correlated with SMI (Figure 1C). Calf 

circumference was significantly decreased in sarcopenia 

and low SMI group. Other clinical parameters were 

comparable between the two groups. Among results of 

blood tests, both serum creatinine and creatine kinase 

were significantly decreased in sarcopenia (Figure 1D, 

Figure 1E, and Supplementary Table 1), consistent with 

previous findings. However, serum creatinine and 

creatine kinase in frailty were comparable to those in 

non-frailty [28]. Thus, regarding clinical markers such 

as creatinine and creatine kinase (CK), sarcopenia is 

distinct from other muscle degenerative diseases 

accompanied by increases in these markers [30] and 

also distinct from frailty. Lower CK levels in sarcopenia 

would be caused by the decreased turnover of muscle 

tissues or by decreased physical activity in patients. 

Regarding SMI, 11 individuals displayed low SMI 

(average score; 5.2 ± 0.9), while 8 were normal 

(average 7.4 ± 0.8). BMI, serum creatinine, and BUN 

were significantly decreased in the low-SMI group 

(Figure 1E, and Supplementary Table 1). However, we 

noticed that cognitive function in sarcopenic patients is 

comparable to that in subjects without sarcopenia, 

assessed using the Japanese version of the Montreal 

Cognitive Assessment, (MoCA-J) (Figure 1C, and 
Supplementary Figure 1). Thus, in sharp contrast to the 

close correlation between frailty and impaired cognition, 

sarcopenia appears unlinked to cognitive impairment [7]. 
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All metabolomic profiles in these participants were 

previously analyzed by LC-MS [28]. The 131 

metabolites detected were confirmed using standard 

compounds or by MS/MS, as previously reported [28]. 

We performed a comprehensive assessment of 131 

metabolites based on the diagnosis of sarcopenia 

(Supplementary Data 1). We identified 22 compounds 

as sarcopenic markers (Supplementary Table 2), which 

did not overlap with 15 frailty markers in the same 

dataset [28]. Among these 22 compounds, 21 

metabolites (acetyl-carnitine, dimethyl-proline, 

phenylalanine, dimethyl-arginine, N1-methyl-histidine, 

isovaleryl-carnitine, myo-inositol, creatinine, 

pantothenate, hypoxanthine, dimethyl-guanosine, N1-

methyl-adenosine, 2-oxoglutarate, pentose-phosphate, 

succinate, N-acetyl-glutamate, quinolinic acid, 

4-guanidinobutanoate, N1-methyl-guanosine, trimethyl-

tyrosine, and cis-aconitate) decrease significantly in 

sarcopenia, while aspartate increases. In addition, 

comparisons between low- and normal-SMI groups 

identified 10 SMI markers: urate, butyro-betaine, 

dimethyl-arginine, N1-methyl-histidine, isovaleryl-

carnitine, creatinine, hippurate, dimethyl-guanosine, 

2-oxoglutarate, and cis-aconitate (Supplementary Table 

3). All 10 SMI markers are significantly decreased in 

the low-SMI group. Thirteen of 22 sarcopenia 

markers and all 10 SMI markers are significantly 

correlated with SMI (Supplementary Table 4). As 

three SMI markers (urate, butyro-betaine, and 

hippurate) did not overlap with sarcopenia markers, a 

total of 25 metabolites are identified as sarcopenia-

related markers.  

 

 
 

Figure 1. The metabolomic study of sarcopenia. (A) Overview of the study protocol. All participants were clinically assessed, and their 

blood was evaluated by untargeted whole-blood metabolomics. This study was conducted using previously reported clinical data from 19 
elderly participants who were also assessed for sarcopenia. (B) Comparison of SMI between sarcopenic and non-sarcopenic subjects. SMI 
was significantly decreased in the sarcopenia group. (C) Pearson's correlation of the linear model between hand grip and SMI (left panel). 
The correlation coefficient between hand grip and SMI was statistically significant (R = 0.60, p = 0.007). The correlation between MoCA-J 
and SMI was not statistically significant (R = 0.25, p = 0.31). (D) Serum creatine kinase levels decreased significantly in sarcopenia. (E) Serum 
creatinine decreased significantly in sarcopenia and the low-SMI group. (F) Metabolomic analysis by LC-MS detected a significant decrease 
of creatinine in sarcopenia and the low-SMI group. *p < 0.05. Error bars represent means ± SD. **p < 0.01. Error bars represent means ± SD. 
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First, consistent with findings in blood tests (Figure 1E), 

metabolomic analysis detected a decline of creatinine 

both in sarcopenia and in the low-SMI group (Figure 

1F). In clinical practice, creatinine is well known as a 

marker of both kidney disease and muscle mass [31]. 

We observed that 10 sarcopenia-related markers pertain 

to mitochondria: 8 sarcopenia markers (acetyl-carnitine, 

isovaleryl-carnitine, 2-oxoglutarate, cis-aconitate, 

succinate, aspartate, N-acetyl-glutamate, and 

pantothenate) and 5 SMI markers (isovaleryl-carnitine, 

butyro-betaine, 2-oxoglutarate, cis-aconitate, and 

hippurate) (Figure 2). Except aspartate, the other 9 

mitochondrial metabolites are significantly decreased. 

Short-chain carnitines (acetyl- and isovaleryl-carnitine) 

supply acetyl-CoA to mitochondria (Figure 2A). 

Butyro-betaine is a precursor of carnitine. TCA 

metabolites (cis-aconitate, 2-oxoglutarate, and 

succinate) are involved in energy production in the 

mitochondrial matrix (Figure 2B). Pantothenate is the 

precursor of CoA. Mitochondria are also involved in the 

urea cycle, one of the substrates of which is N-acetyl-

glutamate (Figure 2C) [32]. Hippurate is generated in 

mitochondria during ammonia synthesis (Figure 2D) 

[33]. In the previous metabolomic study of frailty, the 

 

 
 

Figure 2. Ten mitochondrial metabolites are diagnostic for sarcopenia. (A) Three short-chain carnitines and their derivatives 

(acetyl-carnitine, isovaleryl-carnitine, and butyro-betaine) decreased significantly in sarcopenia. Isovaleryl-carnitine was significantly 
decreased in the low-SMI group. (B) Four TCA-related metabolites (2-oxoglutarate, cis-aconitate, succinate, and pantothenate) decreased 
significantly in sarcopenia. 2-oxoglutarate and cis-aconitate were significantly reduced in the low-SMI group. (C) N-acetyl-glutamate, which 
is related to the urea cycle, was significantly diminished in sarcopenia. (D) Hippurate, which is related to ammonia synthesis, was 
significantly decreased in the low-SMI group. (E) Aspartate, which is involved in the mitochondrial malate-aspartate shuttle, was 
significantly increased in sarcopenia. *p < 0.05 Error bars represent means ± SD. **p < 0.01. Error bars represent means ± SD.  
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assessment using the timed-up-and-go (TUG) test also 

identified hippurate and isovaleryl-carnitine as 

hypomobility markers [28]. Some mitochondrial 

metabolites displayed high correlation coefficients: 

2-oxoglutarate and cis-aconitate (R = 0.66, p = 0.002), 

2-oxoglutarate and succinate (R = 0.75, p = 0.0002), 

cis-aconitate and succinate (R = 0.59, p = 0.007). 

Aspartate was significantly increased in sarcopenia 

(Figure 2E) and negatively correlated with 

mitochondrial metabolites (2-oxoglutarate; R = −0.56,  

p = 0.012, and succinate; R = −0.60, p = 0.0002) 

(Supplementary Figure 2). Aspartate is utilized in the 

mitochondrial malate-aspartate shuttle.  

Second, it is noteworthy that 8 methylated metabolites 

decrease in sarcopenia (Figure 3A and 3B): 5 

methylated compounds related to amino acids (N1-

methyl-histidine, trimethyl-tyrosine, dimethyl-arginine, 

dimethyl-proline, and butyro-betaine) (Figure 3A) and 3 

methylated nucleotides (N1-methyl-adenosine, N1-

methyl-guanosine, and dimethyl-guanosine) (Figure 

3B). Additionally, pentose phosphate metabolites, 

related to synthesis of nucleotides, decrease in 

sarcopenia (Supplementary Figure 3A). 

 

Third, we observed that 10 decreased metabolites 

overlapped with previously reported markers for uremia

 

 
 

Figure 3. Sarcopenic markers related to methylated metabolites and kidney disease. (A) Five methylated amino acids and their 

derivatives (dimethyl-arginine, N1-methyl-histidine, dimethyl-proline, trimethyl-tyrosine, and butyro-betaine) were significantly decreased 
in sarcopenia or the low-SMI group. 4 metabolites (N1-methyl-histidine, trimethyl-tyrosine, dimethyl-arginine, and dimethyl-proline) were 
significantly decreased in the sarcopenia group. Three metabolites (N1-methyl-histidine, dimethyl-arginine, butyro-betaine) were 
significantly decreased in the low-SMI group. (B) Three methylated nucleotides (dimethyl-guanosine, N1-methyl-adenosine, and N1-methyl-
guanosine) were significantly decreased in sarcopenia. Dimethyl-guanosine was significantly decreased in the low-SMI group. (C) Two 
uremic markers related to purine metabolism (hypoxanthine and urate) were involved in sarcopenia. Hypoxanthine was significantly 
decreased in sarcopenia, whereas urate was significantly decreased in the low-SMI group. (D) Eight metabolites related to kidney disease 
(creatinine, dimethyl-arginine, dimethyl-guanosine, N1-methyl-guanosine, quinolinic acid, 4-guanidinobutanoate, myo-inositol, and 
phenylalanine) were significantly decreased in sarcopenia. Three metabolites (creatinine, dimethyl-arginine, and dimethyl-guanosine) were 
also significantly decreased in the low-SMI group. *p < 0.05 Error bars represent means ± SD. **p < 0.01. Error bars represent means ± SD. 
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or kidney disease: creatinine, dimethyl-arginine, 

dimethyl-guanosine, quinolinic acid, N1-methyl-

guanosine, hypoxanthine, urate, 4-guanidinobutanoate, 

myo-inositol, and phenylalanine (Figure 3C and 3D) 

[31, 34–38]. Creatinine is well known as a marker both 

for kidney disease and muscle mass in clinical practice 

[31]. Hypoxanthine is the precursor of urate, which was 

also reported as a frailty marker [28] (Figure 3C). ATP 

levels in muscle reportedly decline during aging [39], 

while in our whole blood metabolomics we observed 

that blood ATP levels were less affected in sarcopenia. 

The decrease of urate and hypoxanthine in blood in 

sarcopenia may reflect reduced ATP metabolism in 

aging muscles. 4-Guanidinobutanoate is related to NH3 

metabolism (Figure 3D). Moreover, other decreased 

metabolites related to mitochondria (cis-aconitate, 

2-oxoglutarate, succinate, pantothenate, N-acetyl-

glutamate, acetyl-carnitine, isovaleryl-carnitine, butyro-

betaine, and hippurate) and methylation (N1-methyl-

adenosine and N1-methyl-histidine) are also increased 

in patients with kidney disease. Thus, in total, 21 

metabolites that decreased in sarcopenia or low SMI are 

uremic compounds. These uremic compounds are 

statistically correlated. Creatinine is significantly 

correlated with other uremia markers; hypoxanthine 

(R = 0.76, p = 0.0001), urate (R = 0.71, p = 0.0007), 

dimethyl-arginine (R = 0.73, p = 0.0003), dimethyl-

guanosine (R = 0.56, p = 0.0136), N1-methyl-guanosine 

(R = 0.67, p = 0.002), quinolinic acid (R = 0.71, p = 

0.0006), and myo-inositol (R = 0.75, p = 0.0002) 

(Supplementary Figure 2). Moreover, these kidney 

markers are significantly correlated with other 

sarcopenic markers (isovaleryl-carnitine, butyro-

betaine, cis-aconitate, succinate, N-acetyl-glutamate, 

and N1-methyl-histidine) (Supplementary Figure 2). We 

observed the gender differences in 7 metabolites, which 

are significantly decreased in female; 23.89 ± 7.85, 

15.47 ± 5.00, p = 0.03, in isovaleryl-carnitine, 24.79 ± 

3.59, 16.61 ± 6.15, p = 0.002 in creatinine, 54.51 ± 

10.42, 42.07 ± 11.02, p = 0.03 in dimethyl-arginine, 

4.07 ± 0.43, 3.15 ± 1.14, p = 0.02 in dimethyl-

guanosine, 27.06 ± 13.54, 13.86 ± 8.87, p = 0.05 in 

hippurate, 0.35 ± 0.10, 0.24 ± 0.09, p = 0.04 in N1-

methyl-guanosine, and 119.58 ± 19.81, 93.90 ± 16.89, 

p = 0.02 in urate (mean ± SD of peak area in male and 

female, and p-value of t-test, respectively). 

 

Finally, we addressed the question of whether these 

sarcopenia-related metabolites are useful for detection 

of sarcopenia. As we noticed that 22 sarcopenia markers 

are distinct from 15 previously reported frailty markers 

(Figure 4) [28], we assessed the correlation analysis 

between 25 sarcopenia-related metabolites and 
Edmonton frail scale (EFS), and that between 22 frailty-

related markers and SMI. Three sarcopenia-related 

markers (isovaleryl-carnitine, hippurate, and urate) were 

significantly correlated with EFS (Supplementary Table 

4), while eight frailty-related markers (acetyl-carnosine, 

urate, 1,5-anhydroglucitol, proline, methionine, leucine, 

isovaleryl-carnitine, hippurate) were significantly 

correlated with SMI (Supplementary Table 5). These 

results suggest that sarcopenia-related or frailty 

metabolites partly correlate with the diagnostic 

parameters for frailty (EFS) or sarcopenia (SMI), 

respectively. However, heatmap analysis and principal 

component analysis (PCA) using sarcopenia-related 

metabolites indicated much closer interrelation between 

sarcopenia and sarcopenia-related metabolites. Heatmap 

comparisons of 22 sarcopenia markers revealed their 

distinct distributions in sarcopenic and non-sarcopenic 

persons (Figure 4A upper panel). Similar results were 

observed regarding 10 SMI markers among low-SMI 

and control groups (Figure 4A lower panel). Next, we 

applied PCA, based on 22 sarcopenia markers. PCA 

distinguished sarcopenia patients from non-sarcopenia 

controls (Figure 4B). However, PCA with sarcopenia 

markers did not distinguish the frail population from 

non-frail controls (Supplementary Figure 3B).  

 

DISCUSSION 
 

Here non-targeted comprehensive metabolomic analysis 

of whole blood identified 25 sarcopenia-related 

metabolites: 22 sarcopenia markers and 10 SMI markers 

that overlap. These 25 markers include metabolites 

related to mitochondria, kidney function, nitrogen 

metabolism, and methylated compounds. It is 

noteworthy that 22 sarcopenia markers are distinct from 

15 previously reported frailty markers (summarized in 

Figure 5), although clinical and metabolomic 

information were extracted from the same datasets. 

Thus, our metabolomic analysis revealed previously 

unknown aspects of the metabolite profile of 

sarcopenia. These metabolites could be developed into 

the future clinical use, as some metabolites, such as 

leucine and isoleucine, were effective to improve 

muscle quality [40]. 

 

It is well known that frailty and sarcopenia share several 

clinical features, although their definition and 

diagnostic criteria are distinct. Frailty displays complex 

domains, physical and social impairment, and 

diminished cognition, due to vulnerability to stressors in 

aged organs and tissues. Sarcopenia is defined as 

muscle aging, displaying decreased muscle mass and 

strength. Thus, both disease states are deeply affected 

by organismal aging, but the underlying metabolic bases 

are still unclear. Our metabolomic study evaluated both 

frailty and sarcopenia in the same participants. In this 

setting, we observed that no metabolites overlapped 

between frailty and sarcopenia (Figure 5) [28], although 

the markers for sarcopenia and frailty partly correlate 
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with the diagnostic index for each others. Indeed, while 

10 metabolites for antioxidation were identified as 

frailty markers diagnosed using the EFS [28], no 

antioxidant was included among 22 sarcopenic 

metabolites. Moreover, PCA of sarcopenia metabolites 

clearly distinguished sarcopenia from non-sarcopenia, 

although not frailty from non-frailty. Thus, their 

metabolite profiles partly overlap with each other, the 

diagnostic evaluation by those metabolites are much 

different. While our findings overlap partly with several 

other works [41–44], the difference in metabolite 

markers was noted. Such gaps are probably due to the 

difference in nutritional status (e.g., high BMI) [41], 

average age, and study design including whole blood 

metabolome. Although several metabolomics studies 

successfully reported findings with small group [45], it 

is important to verify these markers with larger subjects, 

e.g., by targeted metabolomics, in the near future. 

 

Strikingly, we observed that compounds that decrease in 

sarcopenia largely overlap with those that increase in 

kidney diseases. In addition to the list of 10 sarcopenia 

markers relevant to kidney function (Figure 3), several 

reports suggest that other sarcopenic metabolites, 

relevant to mitochondria (9) and methylation (6), are 

also increased in uremia or kidney disease [31, 34, 37, 

46–48]. Thus, the majority of decreased markers in 

sarcopenia or low SMI (21 of 24 metabolites) overlap 

with uremic compounds, which increase in renal 

dysfunction or uremia (Figure 5). It was also well 

known that creatinine, a kidney biomarker, declines 

during muscle loss [31]. Our findings suggest the 

possibility that waste actively generated via muscle 

metabolism could be a major burden for kidneys, failure 

of which results in increased levels of these sarcopenic 

markers. Alternatively, blood sarcopenia markers might 

decline by their enhanced excretion from kidney in 

sarcopenia. 

 

Although other muscle diseases, e.g., muscle dystrophy, 

are frequently accompanied by increased markers for 

muscle degeneration, we observed that the majority of 

 

 
 

Figure 4. Heatmap analysis and PCA for sarcopenia. (A) Heatmap analysis of metabolites involved in sarcopenia (top panel), and SMI 
(bottom). The heat map shows Z-scores of peak areas from LC-MS analysis. (B) PCA plot of 19 elderly participants. 22 sarcopenia markers 
were analyzed.  
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sarcopenic metabolites decrease, in addition to 

creatinine. Mitochondria-related metabolites, 

including short-chain carnitines, TCA metabolites, 

and urea cycle metabolites, decrease significantly in 

sarcopenia. Mitochondrial dysfunction in muscles 

during sarcopenia is well established in experimental 

models [49–51]. Consistently, recent comparative 

RNA analysis in muscle biopsy also identified 

mitochondrial dysfunction in sarcopenia [52]. Since 

RBCs in blood do not contain mitochondria, the 

decline in mitochondrial compounds reflects 

mitochondrial activity in muscle. Moreover, the 

decrease of several methylated compounds is an 

unexpected feature of sarcopenia. S-adenosyl 

methionine (SAM) is the major methyl-group donor 

in methylation of DNA, histones, proteins, lipids, and 

RNA [53]. However, as SAM does not decrease 

significantly in sarcopenia, some other muscle- or 

tissue-specific methylation pathway component may 

be impaired in sarcopenia. TRMT10C and TRMT5 

mediate tRNA methylation by generating 

N1-methyladenosine and N1-methylguanosine, 

respectively. Interestingly, enzymatic mutations of 

TRMT10C and TRMT5 causes mitochondrial 

respiratory chain defects [54–56]. N1-

methyladenosine, N1-methylguanosine, and dimethyl-

guanosine, known as indices of RNA methylation [57], 

decrease in sarcopenia. These methylated blood 

metabolites may have a pathological link to 

mitochondrial or muscle dysfunction. 

 

Notably, these 22 sarcopenia markers are largely 

distinct from 15 frailty markers in the same patients, 

suggesting that metabolic profiles distinguish 

sarcopenia from frailty. Thus, sarcopenia can be 

characterized as muscle aging with a decrease of 

metabolites for mitochondria, muscle, kidney, and 

methylation, in sharp contrast to the decrease of 

metabolites for antioxidation in frailty [28]. These 

findings help not only our understanding of 

pathogenesis of sarcopenia and frailty, but also future 

development of clinical applications.  

 

 
 

Figure 5. Summary of 25 metabolites related to sarcopenia and 15 frailty markers. 15 frailty markers (blue box) and 22 

sarcopenia markers (dark green box) are presented. There is no overlap among them. 10 metabolites are muscle mass-related markers 
(light green box). Seven of the 15 frailty markers were antioxidants; however, sarcopenia markers include no antioxidants. Seven 
metabolites (isovaleryl-carnitine, 2-oxoglutarate, cis-aconitate, creatinine, dimethyl-arginine, dimethyl-guanosine, and N1-methyl-histidine) 
are both sarcopenia and muscle mass-related markers. 21 metabolites in orange are kidney-related markers. 
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MATERIALS AND METHODS 
 

Clinical assessment 

 

All clinical data were recorded at Kyoto University 

Hospital. Medical interviews, physical examinations, 

and blood tests were executed for nineteen elderly 

participants. Patients who were bedridden, or who had 

kidney failure (elevation of serum creatinine, over 2.0 

mg/dL), or liver disease (increased serum GOT and 

GPT, over 50 U/L), were excluded from this study. 

Diagnosis of sarcopenia was performed using AWGS 

2014 [5], which consists of muscle mass evaluation, a 

10-m speed-walking evaluation, and a hand grip 

strength test. SMI was measured by Inbody 720 (South 

Korea). SMI below 7.0 kg/m2 in males and 5.7 kg/m2 in 

females was classified as decreased SMI. Patients who 

had an apparent risk of falling in the 10-m walking test 

or whose walking speed was below 0.8 m/sec, were 

considered hypomobile. Participants were asked to walk 

at a comfortable speed on a 12-m straight walkway, 

including 1 m for acceleration and deceleration. 

Stopwatch was used for the start and end points to 

record the time taken to walk 10 m, and habitual gait 

speed was measured by calculating this in meters per 

second [58]. Hand grip strength below 26 kg in male 

and 18 kg in female was considered decreased muscle 

strength. Handgrip was measured using a Smedley-type 

hand-held dynamometer (Matsumiya Ika Seiki 

Seisakusho Co., Ltd., Tokyo, Japan) [59]. Calf 

circumference was assessed, one of the clinical 

parameters in AWGS 2019 [59]. The total number of 

iADL impairment in EFS was scored. 

 

Blood sample preparation for metabolomic analysis 

 

Blood samples were prepared for metabolomic analysis 

as previously reported [25, 26]. Blood for clinical tests 

and metabolomic analysis was collected at the 

laboratory of Kyoto University Hospital in the morning. 

All participants were asked not to have breakfast to 

ensure overnight fasting for at least 12 hours until 

the time of blood sampling. Participants were 

encouraged to spend their time normally and to drink 

beverages without calories. Since some metabolites 

are labile, blood samples were rapidly quenched at 

−40°C in methanol to guarantee quick sample 

processing [26]. Ten nmol of 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) and piperazine-

N, N’-bis (2-ethanesulfonic acid) (PIPES) were added 

to each sample, to serve as internal standards. 

 

LC-MS conditions 

 
Untargeted, comprehensive analysis by LC-MS was 

executed as previously reported [25, 26]. LC-MS data 

were acquired using an Ultimate 3000 DGP-3600RS 

liquid chromatograph (Thermo Fisher Scientific, 

Waltham, MA, USA) combined with an LTQ Orbitrap 

mass spectrometer (Thermo Fisher Scientific, Waltham, 

MA, USA). LC separation utilized a ZIC-pHILIC 

column (Merck SeQuant, Umeå, Sweden, 150 mm × 2.1 

mm, 5 μm particle size). The mobile phase consisted of 

ammonium carbonate buffer (10 mM, pH 9.3) and 

acetonitrile. Gradient elution from 80 to 20% 

acetonitrile over 30 min at a flow rate of 100 μL/min 

was performed. An electrospray ionization (ESI) source 

was utilized for MS detection. An injection of 1 μL was 

carried out twice for each sample, once with the ESI in 

positive ionization mode and once in negative mode. 

Ion spray was set to 4.0 and 2.8 kV (positive or negative 

ESI, respectively), while the temperature of the 

capillary was kept to 300 or 350°C. Nitrogen gas was 

utilized as a carrier of ionized metabolites. We ran the 

mass spectrometer in full scanning mode with a 100–

1000 m/z range and with MS/MS fragmentation 

scanning in an automatic data-dependent manner.  

 

LC-MS data processing and analysis 

 

MZmine 2 (version 2.29) software (mzmine.github.io) 

was utilized to measure peak areas for metabolites [60]. 

Isotopic peaks were removed. Lists of peaks for 

individual samples were arranged, according to their 

retention times and corresponding m/z. 131 metabolites 

were identified for each sample by comparing retention 

times and m/z values of peaks with those of standards 

(Supplementary Data 1) [25, 26]. If no standard 

compound was accessible, metabolites were identified 

by analyzing MS/MS spectra (MS/MS). Then, all data 

acquired were converted into a spreadsheet, followed by 

evaluation with R statistical software (http://www.r-

project.org). Student’s T test was performed to evaluate 

statistical significance of differences between groups 

(significance was set at p < 0.05) and its 95% 

confidence interval. The ordinary least squares method 

was used to assess linear regression. Pearson's 

correlation was performed to evaluate correlations 

between metabolites and clinical data (assuming p < 

0.05). Principal component analysis was performed to 

visualize the metabolomic model. 

 

Data availability 

 

Raw LC-MS data in mzML format are accessible from 

the MetaboLights repository (http://www.ebi.ac.uk/ 

metabolights). The study identifier is MTBLS3341. 

 

Ethics statement 

 

All participants signed written informed consent forms 

prior to examination, in accordance with the Declaration 

http://www.r-project.org/
http://www.r-project.org/
http://www.ebi.ac.uk/metabolights
http://www.ebi.ac.uk/metabolights
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of Helsinki. Experiments were performed in agreement 

with relevant rules and official guidelines in Japan. The 

study protocol was approved both by the Human 

Research Ethics Committee of Kyoto University and by 

the Review Committee on Human Subjects Research at 

OIST. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Supplemental clinical data between sarcopenia and non-sarcopenia. Comparison of handgrip strength 

(left panel) and MoCA-J (right panel) between sarcopenia and non-sarcopenia were shown. 
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Supplementary Figure 2. Blood metabolites significantly affected in sarcopenia and muscle mass. Pearson’s correlation 

analysis for 25 metabolites, relevant to sarcopenia or SMI. Positive and negative correlations are shown in brown and blue, respectively. 
Significant correlations between TCA cycle metabolites (cis-aconitate, 2-oxoglutarate, and succinate) or kidney markers (creatinine, 
dimethyl-arginine, dimethyl-guanosine, urate, hypoxanthine, N1-methyl-guanosine, and quinolinic acid) were observed. 
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Supplementary Figure 3. Pentose-phosphates as sarcopenic markers and PCA for frailty using sarcopenia markers. (A) 

Pentose-phosphates were significantly decreased in sarcopenia. Error bars represent means ± SD. Asterisks indicate significant difference 
(*p < 0.05). (B) PCA with 22 sarcopenia markers did not distinguish frailty patients from non-frailty controls. 
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Supplementary Tables 
 

Supplementary Table 1. Clinical parameters of human subjects. 

 
Sarcopenia 

(N = 6) 

Non- 

Sarcopenia 

(N = 13) 

95% CI 

of the  

difference  

P-value 
Reduced SMI  

(N = 11) 

Control 

(N = 8) 

95% CI 

of the  

difference  

p-value 

Age 85.0 ± 8.6  83.8 ± 6.3  –7.92 to 10.38 0.76  85.0 ± 8.6  83.8 ± 6.3  –7.92 to 10.38 0.76  

Gender (Male; Female) 1;5 6;7   2;9 5;3   

SMI (kg/m2) 5.0 ± 1.0  6.6 ± 1.2  –2.77 to –0.48 *0.01  5.2 ± 0.9  7.4 ± 0.8  –2.99 to –1.31 **0.0005  

Handgrip(kg) 18.0 ± 4.0  23.0 ± 7.4  –10.53 to 0.66 0.08  21.1 ± 5.4  23.4 ± 8.4  –10.89 to 4.0 0.51  

TUG(sec.) 23.5 ± 13.3  12.2 ± 6.5  –2.68 to 25.26 0.1  18.1 ± 11.4  12.6 ± 8.3  –4.10 to 14.95 0.27  

Walking Speed (m/sec.) 1.07 ± 0.33 1.21 ± 0.40 –0.61 to 0.33 0.53 1.09 ± 0.26 1.27 ± 0.48 –0.57 to 0.21 0.37 

BMI(kg/m2) 20.0 ± 2.3  23.3 ± 3.6  –6.15 to –0.33 *0.03  20.7 ± 2.2  24.4 ± 4.0  –7.20 to –0.26 *0.04  

Fat mass (kg) 12.7 ± 2.9 15.4 ± 5.7 –7.98 to 2.59 0.19 13.4 ± 2.7 16.0 ± 7.2 –7.60 to 2.33 0.35 

Calf circumference(cm) 29.5 ± 4.1 33.5 ± 3.2 –7.65 to –0.42 *0.03 30.1 ± 3.1 35.3 ± 2.5 –8.12 to –2.42 **0.001 

MoCA-J 18.2 ± 3.8  22.2 ± 4.8  –8.40 to 0.42  0.07 20.5 ± 4.3  21.5 ± 5.6  –6.17 to 4.08 0.66 

Systolic BP(mmHg) 140.5 ± 10.4  136.5 ± 18.2  –9.95 to 18.03 0.55  143.9 ± 13.7  129.3 ± 14.2  0.40 to 28.92 *0.04  

Diastolic BP(mmHg) 77.7 ± 6.8  77.3 ± 14.4  –9.89 to 10.61 0.94  77.2 ± 13.7  77.8 ± 10.1  –12.49 to 11.36 0.92  

iADL  3.7 ± 3.1 2.0 ± 2.3 –1.05 to 4.38 0.28 2.7 ± 2.7 2.3 ± 2.7 –2.19 to 3.14 0.71 

         

CRE（mg/dl）  0.61 ± 0.22  0.92 ± 0.28  –0.57 to 0.06 *0.02  0.68 ± 0.23  1.03 ± 0.25  –0.59 to -0.11 **0.008  

BUN（mg/dl）  15.8 ± 4.8  19.7 ± 6.4  –9.67 to 1.75 0.16  15.6 ± 3.8  22.4 ± 6.6  –12.59 to –1.03 *0.025  

CK（U/L） 81.7 ± 24.6  124.4 ± 49.7  –77.50 to –7.33 *0.03  103.1 ± 54.2  121.3 ± 33.4  –59.69 to 23.62 0.39  

AST (U/L） 20.8 ± 2.5  22.8 ± 4.8  –5.46 to 1.59 0.26  22.9 ± 4.7  21.1 ± 3.6  –2.20 to 5.77 0.36  

ALT (U/L） 12.5 ± 4.5  14.6 ± 5.4  –7.27 to 3.04 0.39  13.8 ± 5.3  14.1 ± 5.3  –5.53 to 4.92 0.90  

γGTP (U/L） 19.7 ± 5.9  32.3 ± 19.5  –25.21 to -0.07 *0.05  21.3 ± 5.4  38.0 ± 23.3  –36.32 to 2.87 0.08  

HDL（mg/dl）  77.0 ± 18.0  59.9 ± 17.4  –2.67 to 36.82 0.08  66.5 ± 18.9  63.8 ± 20.2  –16.82 to 22.23 0.77  

LDL（mg/dl）  113.5 ± 17.5  119.8 ± 28.9  –29.19 to 16.50 0.56  116.5 ± 21.6  119.6 ± 31.6  –31.36 to 25.21 0.82  

Hba1c (%) 5.6 ± 0.4  5.9 ± 0.5  –0.72 to 0.12 0.15  5.7 ± 0.3  6.0 ± 0.6  –0.81 to 0.22 0.20  

Alb（g/dl）  3.9 ± 0.3  3.8 ± 0.2  –0.25 to 0.42 0.57  3.9 ± 0.3  3.8 ± 0.3  -0.18 to 0.34 0.53  

Glu（mg/dl）  96.7 ± 11.5  100.4 ± 17.6  –18.22 to 10.78 0.59  101.6 ± 18.5  95.9 ± 11.2  –8.70 to 20.22 0.41  

TG（mg/dl）  83.7 ± 53.9  134.4 ± 81.9  –118.38 to 16.94 0.13  118.9 ± 73.6  117.6 ± 85.8  –79.46 to 82.03 0.97  

         

WBC（109/L）  4.4 ± 1.0  5.5 ± 1.6  –2.37 to 0.21 0.09  4.7 ± 1.2  5.7 ± 1.8  –2.61 to 0.62 0.20  

RBC（1012 /L)  4.0 ± 0.2  4.2 ± 0.3  –0.43 to 0.15 0.31  4.2 ± 0.3  4.2 ± 0.4  –0.37 to 0.31 0.83  

Hb（g/dl）  12.7 ± 0.7  12.8 ± 0.8  –0.90 to 0.67 0.75  12.8 ± 0.7  12.7 ± 0.9  –0.68 to 0.99 0.70  

HCT（%）  39.3 ± 2.4  37.9 ± 2.9  –1.29 to 4.17 0.27  38.6 ± 2.6  38.0 ± 3.1  –2.27 to 3.48 0.66  

Plt（109/L）  238.2 ± 24.9  206 ± 53.9  –5.99 to 70.32 0.09  217.5 ± 38.1  214.4 ± 62.9  –52.19 to 58.34 0.90  

In addition to clinical features derived from sarcopenia diagnosis, 19 participants were statistically analyzed by SMI. Comparison between 
the sarcopenia and non-sarcopenia groups detected significant decreases in SMI (5.0 ± 1.0 vs 6.6 ± 1.2 kg/m2, p < 0.05), Body Mass Index 
(BMI) (20.0 ± 2.3 U/L vs 23.3 ± 3.6 kg/m2, p < 0.05), serum creatinine (0.61 ± 0.22 vs 0.92 ± 0.28 mg/dl, p < 0.05), serum creatine kinase (CK) 
(81.7 ± 24.6 vs 124.4 ± 49.7 U/L, p < 0.05) and serum γGTP (19.7 ± 5.9 vs 32.3 ± 19.5 U/L, p < 0.05) in sarcopenia. A comparison between 
decreased and normal SMI groups detected significant decreases in SMI (5.2 ± 0.9 vs 7.4 ± 0.8 kg/m2, p < 0.01, BMI (20.7 ± 2.2 vs 24.4 ± 4.0 
kg/m2, p < 0.05), serum creatinine (0.68 ± 0.23 vs 1.03 ± 0.25 mg/dl, p < 0.01) and serum BUN (15.6 ± 3.8 vs 22.4 ± 6.6 mg/dl, p < 0.05) and 
a significant increase in systolic blood pressure (143.9 ± 13.7 vs 129.3 ± 14.2 mmHG, p < 0.05). Asterisks indicate significant differences (*p < 
0.05). Asterisks indicate significant differences (**p < 0.01). Abbreviation: SMI: skeletal muscle mass index; MoCA-J: Japanese version of 
Montreal Cognitive Assessment; TUG: Timed up and go test; BMI: Body mass index; BP: Blood pressure; CRE: creatinine; BUN, Blood urea 
nitrogen; CK: creatine kinase; HCT: hematocrit; CI: Confidence Interval.  
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Supplementary Table 2. List of 22 metabolites involved in sarcopenia. 

Parameters 

Peak area (106 AU) T test 

Sarcopenia Non-sarcopenia 
95% CI of the dif. p-value 

(N = 6) (N = 13) 

Acetyl-carnitine  337.73 ± 76.94 433.23 ± 99.79 –186.23 to – 4.77 *0.040  

Dimethyl-proline  186.23± 91.05 313.38 ± 102.26 –230.09 to –24.20  *0.020  

Phenylalanine 225.19 ± 55.70  287.35 ± 40.46  –121.27 to –3.07 *0.042  

Dimethyl-arginine  38.92± 4.67  50.22 ± 13.03  –19.94 to –2.66 *0.013  

N1-Methyl-histidine 21.75 ± 8.25  37.39 ± 12.08  –25.82 to –5.44 **0.005  

Isovaleryl-carnitine  14.24 ± 3.85 20.57 ± 7.7 –11.95 to –0.71 *0.033  

Aspartate (↑)  22.91 ± 5.65  13.64 ± 7.84  2.44 to 16.09 *0.011  

myo-Inositol  13.95 ± 1.58  20.30 ± 7.43  –10.98 to –1.72 *0.011  

Creatinine  15.60 ± 4.82 21.48 ± 6.64 –11.70 to –0.08 *0.047  

Pantothenate  10.14 ± 3.09  17.20 ± 8.03  –12.47 to –1.65 *0.013  

Hypoxanthine 4.11 ± 1.36  7.58± 4.95  –6.62 to –0.31 *0.033  

Dimethyl-guanosine  2.50 ± 0.74  3.95 ± 0.81  –2.29 to –0.62 **0.003  

N1-Methyl-adenosine 2.36 ±1.07 3.64 ± 1.08 –2.47 to –0.10 *0.036  

2-Oxoglutarate 2.01 ± 0.49  3.01 ±1.1  –1.76 to –0.23  *0.018  

Pentose-phosphate 2.13 ±0.24  2.71 ± 0.75  –1.07 to –0.09 *0.022  

Succinate  1.33 ± 0.18  1.74 ± 0.45  –0.71 to –0.10 *0.012  

N-Acetyl-glutamate 0.42 ± 0.14 0.58 ± 0.12 –0.31 to –0.01  *0.037  

Quinolinic acid 0.26 ± 0.14 0.50 ± 0.24 –0.43 to –0.06 *0.013  

4-Guanidinobutanoate 0.16 ± 0.06  0.55 ± 0.60  –0.76 to –0.03  *0.035  

N1-Methyl-guanosine 0.21 ±0.09  0.32 ± 0.10  –0.21 to –0.01  *0.038  

Trimethyl-tyrosine 0.05 ± 0.04  0.17 ± 0.17  –0.23 to –0.02 *0.027  

cis-Aconitate  0.05 ± 0.02  0.12 ± 0.05  –0.10 to –0.04  **0.000 

Metabolite peak area. High > 108 AU. Medium 107–108 AU. Low < 107 AU. 21 sarcopenia markers (acetyl-carnitine, dimethyl-proline, 
phenylalanine, dimethyl-arginine, N1-methyl-histidine, isovaleryl-carnitine, myo-inositol, creatinine, pantothenate, hypoxanthine, dimethyl-
guanosine, N1-methyl-adenosine, 2-oxoglutarate, pentose-phosphate, succinate, N-acetyl-glutamate, quinolinic acid, 4-
guanidinobutanoate, N1-methyl-guanosine, trimethyl-tyrosine, and cis-aconitate) decreased significantly. However, aspartate increased 
significantly in sarcopenia. Abbreviations: SMI: skeletal muscle index; CI: Confidence Interval. (↑) indicates upregulated metabolite in 
sarcopenia. Asterisks indicate significant differences (*p < 0.05). Asterisks indicate significant differences (**p < 0.01).  
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Supplementary Table 3. List of ten metabolites involved in muscle mass. 

 

Peak area (106 AU) T test 

Decreased SMI Normal SMI 95% CI 

of the dif. 
p-value 

(N = 11) (N = 8) 

Urate  95.24 ± 21.23 114.54 ± 1.64 –38.18 to –0.41 *0.046  

Butyro-betaine  88.02 ± 19.93 108.91± 19.46 –40.32 to –1.47 *0.037  

Dimethyl-arginine  40.23 ±11.17 55.48 ± 7.04 –24.09 to –6.40 **0.002  

N1-Methyl-histidine 24.73 ± 9.48 43.07 ± 9.55 –27.77 to –8.93 **0.001  

Isovaleryl-carnitine  14.47 ±3.12 24.21 ± 7.76 –16.34 to –3.14 **0.009  

Creatinine  16.89 ± 6.31 23.38 ± 5.27 –12.12 to –0.86 *0.026  

Hippurate  12.92 ± 8.00 26.70 ± 13.19 –25.37 to –2.19 *0.020  

Dimethyl-guanosine  2.98 ± 0.92 4.20 ± 0.74 –2.03 to –0.41 **0.005  

2-Oxoglutarate 2.15 ± 0.53 3.45 ± 1.14 –2.27 to –0.32 *0.014  

cis-Aconitate  0.07 ± 0.04 0.14 ± 0.05 –0.11 to –0.27 **0.004  

Metabolite peak area. High > 108 AU, Medium 107–108 AU, Low < 107 AU. 10 metabolites (urate, butyro-betaine, dimethyl-arginine, N1-
methyl-histidine, isovaleryl-carnitine, creatinine, hippurate, dimethyl-guanosine, 2-oxoglutarate, cis-aconitate) decreased significantly in 
sarcopenia. Abbreviations: SMI: skeletal muscle index; CI: Confidence Interval. Asterisks indicate significant differences (*p < 0.05). Asterisks 
indicate significant differences (**p < 0.01). 
 

 

Supplementary Table 4. Correlation analysis between 25 sarcopenia-related markers and SMI or EFS. 

Parameters 
SMI EFS 

R 95% CI p value R 95% CI p value 

Isovaleryl-carnitine  0.70 0.37 to 0.88 **0.001 –0.55 –0.80 to -0.12 *0.015  

Urate  0.58 0.18 to 0.82  **0.008  –0.54 0.10 to 0.79  *0.02  

Hippurate  0.60 0.21 to 0.83  **0.006  –0.46 –0.76 to -0.01 *0.05 

Phenylalanine 0.40 –0.07 to 0.72  0.09 –0.45 –0.75 to 0.00  0.05  

Butyro-betaine  0.5 0.06 to 0.78  *0.029  –0.44 –0.75 to 0.01 0.05 

Acetyl-carnitine  0.55 0.12 to 0.80  *0.02  –0.43 –0.74 to 0.03  0.06  

N1-Methyl-guanosine 0.65 0.27 to 0.85  **0.003 –0.39 –0.71 to 0.08 0.10 

Pantothenate  0.62 0.23 to 0.84  **0.005 –0.36 –0.70 to 0.11 0.13 

N1-Methyl-histidine 0.58 0.17 to 0.82 **0.009 –0.3 –0.66 to 0.18  0.22  

Hypoxanthine 0.52 0.09 to 0.79  *0.02  –0.29 –0.65 to 0.18  0.22  

Dimethyl-guanosine  0.62 0.23 to 0.84 **0.005 –0.28 –0.65 to 0.20 0.25 

Dimethyl-arginine  0.55 0.12 to 0.80 *0.02  –0.27 –0.64 to 0.20  0.26  

Creatinine  0.69 0.35 to 0.87 **0.001 –0.25 –0.63 to 0.23 0.31 

Dimethyl-proline  0.24 –0.24 to 0.63  0.32 –0.25 –0.63 to 0.23  0.31  

N-Acetyl-glutamate 0.41 –0.05 to 0.73  0.08 –0.21 –0.60 to 0.26  0.38  

Quinolinic acid 0.36 –0.11 to 0.70  0.13 –0.19 –0.59 to 0.28  0.44  

2-Oxoglutarate 0.65 0.27 to 0.85 **0.003 –0.17 –0.58 to 0.31 0.49 

Trimethyl-tyrosine 0.28 –0.20 to 0.65  0.24 –0.17 –0.58 to 0.30  0.47  

Aspartate (↑)  -0.45 –0.75 to –0.001 0.05 –0.17 –0.30 to 0.58  0.48  

cis-Aconitate  0.57 0.16 to 0.82  *0.01 –0.16 –0.57 to 0.32  0.52  

Succinate  0.59 0.19 to 0.82  **0.008 –0.12 –0.54 to 0.36 0.63 

Pentose-phosphate 0.31 –0.17 to 0.67 0.20 –0.11 –0.53 to 0.36  0.65  

4-Guanidinobutanoate 0.20 –0.27 to 0.60  0.41 –0.1 –0.53 to 0.37  0.68  

N1-Methyl-adenosine 0.37 –0.10 to 0.71  0.12 –0.07 –0.52 to 0.40  0.76  

myo-Inositol  0.52 0.09 to 0.79  *0.02  –0.04 –0.48 to 0.42  0.88  

Metabolite peak area. High > 108 AU. Medium 107–108 AU. Low < 107 AU. Metabolites are ordered according to its correlation coefficient to 
EFS. Abbreviations: SMI: skeletal muscle index; Pearson: Pearson’s correlation coefficient between a metabolite and SMI; CI: Confidence 
Interval; EFS: Edmonton frail scale. Asterisks indicate correlation (*p < 0.05). Asterisks indicate correlation (**p < 0.01). 
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Supplementary Table 5. Correlation analysis between 22 frailty-related markers and SMI or EFS. 

 SMI EFS 

 R 95% CI p value R 95% CI p value 

Isovaleryl-carnitine 0.70 0.37 to 0.88 **0.001 –0.54 –0.80 to –0.12 *0.015 

Acetyl-carnosine  0.69 0.35 to 0.87 **0.001 –0.51 0.07 to 0.78 *0.03 

Hippurate  0.60 0.21 to 0.83 **0.006 –0.46 0.01 to 0.76 *0.05 

Urate  0.58 0.18 to 0.82 **0.009 –0.54 0.11 to 0.80 *0.02 

1,5-anhydroglucitol  0.52 0.08 to 0.79 *0.02 –0.56 0.14 to 0.80 *0.01 

Proline  0.49 0.05 to 0.77 *0.03 –0.54 0.11 to 0.80 *0.02 

Methionine  0.46 0.01 to 0.76 *0.046 –0.56 0.14 to 0.80 *0.01 

Leucine  0.46 0.01 to 0.75 *0.046 –0.46 0.01 to 0.75 *0.04 

N3-methyl-histidine 0.45 –0.01 to 0.74 0.05 –0.19 –0.59 to 0.29 0.43 

Trimethyl-histidine  0.44 –0.01 to 0.75 0.057 –0.39 –0.08 to 0.71 0.10 

Isoleucine  0.42 –0.04 to 0.74 0.07 –0.45 0.14 to 0.80 *0.04 

Tryptophan  0.37 –0.09 to 0.71 0.12 –0.57 0.15 to 0.82 *0.01 

Arginine  0.36 –0.11 to 0.70 0.13 –0.32 –0.15 to 0.67 0.17 

Ergothioneine  0.33 –0.14 to 0.69 0.16 –0.45 0.01 to 0.75 0.05 

Adenine 0.23 –0.25 to 0.62 0.34 –0.45 –0.001 to 0.75 0.05 

S-methyl-ergothioneine  0.22 –0.26 to 0.61 0.37 –0.51 0.07 to 0.78 *0.02 

Ophthalmic acid  0.14 –0.34 to 0.56 0.56 –0.41 –0.06 to 0.73 0.08 

2-ketobutyrate  0.14 –0.33 to 0.56 0.56 –0.29 –0.19 to 0.66 0.24 

UDP-glucose (↑)  0.04 –0.41 to 0.49 0.86 –0.12 –0.55 to 0.34 0.60 

Creatine (↑)  –0.08 –0.51 to 0.38 0.73 0.44 –0.74 to 0.02 0.06 

N-acetyl-aspartate (↑)  –0.09 –0.52 to 0.38 0.71 0.16 –0.32 to 0.57 0.51 

UDP-glucuronate (↑)  –0.15 –0.56 to 0.32 0.54 0.47 –0.76 to -0.02 *0.04 

Metabolite peak area. High > 108 AU. Medium 107–108 AU. Low < 107 AU. Metabolites are ordered according to its correlation coefficient to 
SMI. Abbreviations: SMI: skeletal muscle index; Pearson: Pearson’s correlation coefficient between a metabolite and SMI; CI: Confidence 
Interval. Asterisks indicate correlation (*p < 0.05). Asterisks indicate correlation (**p < 0.01). 

 

 

Supplementary Data 1. 131 identified metabolites were detected in whole blood samples by LC-MS. Abundance; 

Compound abundance (peak area) is indicated (High > 108 AU, 107 < Medium < 108 AU, Low < 107 AU). CV (coefficient of variation); 
Standard deviation/mean. See Supplementary Dataset 1 

 


