
 

www.aging-us.com 22164 AGING 

INTRODUCTION 
 

Colorectal cancer (CRC) is the fourth most commonly 

diagnosed cancer and the second leading cause of 

cancer-related mortality worldwide [1]. CRC is a highly 

aggressive malignancy with rapid progression. Its 

pathogenetic heterogeneity confers an escape 

mechanism to radiation, chemotherapy, and targeted 
therapies [2]. Despite recent advances in early diagnosis 

and treatment, the CRC prevalence and death rate in 

China have shown a significant upward trend over the 

past ten years [3], which sparked the need for effective 

management of CRC. Understanding the molecular 

mechanisms involved in CRC pathogenesis is key to 

discover new targets and therapeutic agents for CRC. 

 

The SLCO1B3 gene encodes an organic anion-

transporting polypeptide (OATP) 1B3, a member of the 

liver-enriched OATP superfamily. The OATP1B3 was 

first identified as a membrane-bound multi-specific 

transporter in hepatocytes responsible for the uptake of 

endogenous and xenobiotic substances [4, 5]. Later 

studies found that a variant of the liver-type SLCO1B3 

mRNA (Lt-SLCO1B3) is expressed in human cancer 
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ABSTRACT 
 

Solute carrier organic anion transporter family member 1B3 (SLCO1B3) is a gene that encodes an organic anion-
transporting polypeptide (OATP) 1B3, a membrane-bound multi-specific transporter in hepatocytes. SLCO1B3 was 
first reported in hepatocytes. Later, it was found that its expression is higher in colorectal cancer (CRC) than in the 
adjacent normal tissue. However, the role of SLCO1B3 in CRC is not well elucidated. In this study, the correlation 
between SLCO1B3 and the overall survival (OS) of CRC patients was evaluated using data from the GEO database. 
This study evaluated the relationship between SLCO1B3 and the clinicopathological characteristics and prognosis 
of CRC patients. The effects of SLCO1B3 knockdown, on human CRC cell proliferation, migration, and invasion in 
vitro and CRC tumorigenesis and metastasis in vivo were also examined. In addition, next-generation sequencing 
was used to identify SLCO1B3 mediators. The results confirmed the association between SLCO1B3 and poor OS of 
CRC patients, and SLCO1B3 was identified as the top hub gene associated with the OS. The study showed that high 
SLCO1B3 expression was associated with poor tumor differentiation, advanced disease stage, tumor invasion, 
lymph node metastasis, and poor OS. Next-generation sequencing revealed that SLCO1B3 knockdown affected the 
expression of several genes involved in cancer invasion, metastasis, and DNA repair. Moreover, the western blot 
analysis showed that SLCO1B3 knockdown downregulated p-STAT3, MMP-2, and MMP-9. In summary, we 
demonstrated that SLCO1B3 acts as a novel carcinogen in the CRC that drives the CRC tumorigenesis and 
metastasis. SLCO1B3 inhibitors, alone or in combination with current drugs, may have therapeutic benefits in CRC. 
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tissues and cell lines [6]. This cancer-type SLCO1B3 

mRNA (Ct-SLCO1B3) has a different transcription 

initiation site from the Lt-SLCO1B3, and its translated 

product (Ct-OATP1B3) mainly localized in the 

cytoplasm of cancer cells. Importantly, Ct-SLCO1B3 

was detected significantly higher than Lt-SLCO1B3 in 

human colon cancer tissues [6]. However, the potential 

diagnostic and/or prognostic value and the functional 

role of SLCO1B3 in human CRC remain unexplored. 

 

This study evaluated the relationship between SLCO1B3 

and the clinicopathological characteristics and prognosis 

of CRC patients. We also investigated the function of 

SLCO1B3 in human CRC cell proliferation, migration, 

and invasion in vitro and in CRC tumorigenesis and 

metastasis in vivo. The molecular mechanisms underlying 

the function of SLCO1B3 in CRC were also explored. 

 

RESULTS 
 

Gene screening and the expression of SLCO1B3 in 

human CRC and its relationship with disease 

progression and survival 

 

To further assess the mechanism of CRC acceleration, we 

downloaded the GSE123734 dataset from the GEO 

database, which comprised CRC samples. According to 

data in GSE123734, we found that a high expression 

level of SLCO1B3 is associated with a lower overall 

survival rate (Figure 1A). Cytoscape and cytoHubba 

were used to catch the Hub genes. Consequently, the 

SLCO1B3 gene with the highest score was considered a 

hub gene involved in the cell-matrix adhesion and MMPs 

pathway GSE123734 (Figure 1B). In the collected 

clinical samples compared with adjacent normal tissues, 

the human CCR tissues exhibited significantly higher 

SLCO1B3 expression as revealed by qRT-PCR (P < 0.01, 

Figure 1C). SLCO1B3 is highly expressed in poorly 

differentiated CRC, whereas reduced expression has been 

noticed in moderately well-differentiated CRC. The 

difference is statistically significant (P < 0.01, Figure 

1D). Correlation analysis revealed that high tumorous 

SLCO1B3 was associated with advanced disease stage, 

tumor invasion, lymph node metastasis, poor tumor 

differentiation, and low overall survival (Table 1 and 

Figure 1E). However, SLCO1B3 expression was not 

associated with gender, age, tumor size, or tumor location 

in these patients (Table 1). 

 

SLCO1B3 expression in CRC cell lines and select 

effective interfere sequence 

 

We found that high SLCO1B3 expression in human 

CRC tissues was associated with advanced disease, 

 

 
 

Figure 1. The expression of Ct-SLCO1B3 in human CRC and its correlation with tumor differentiation and survival. (A) The 
relationship between OS and Ct-SLCO1B3 expression in CRC patients was assessed by assessing the mechanism of SLCO1B3 in colorectal 
cancer acceleration. GSE123734 dataset from the GEO database was downloaded that comprised of colorectal cancer samples. (B) Cytoscape 
and cytoHubba were used to catch the Hub genes based on GSE123734. As a result, the SLCO1B3 gene with the highest score was considered 
a hub gene involved in the cell-matrix adhesion and MMPs pathway on GSE123734. (C) The Ct-SLCO1B3 expression in cancer and adjacent 
normal tissues by qRT-PCR. n=96. **P < 0.01. (D) In poorly differentiated CRC, higher expression of SLCO1B3 and in moderately well-
differentiated CRC reduced expression of SLCO1B3 has been noticed significantly. **P < 0.01. (E) Overall survival analysis of SLCO1B3 
expression in cancer tissues based one the collected clinical sample revealed that the high expression level of SLCO1B3 was associated with a 
lower overall survival rate. The median SLCO1B3 expression level was used as the cutoff for splitting high-expression and low-expression. 
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Table 1. The correlation between Ct-SLCO1B3 expression and the 
clinicopathologic features of the 96 CRC patients. 

Clinicopathologic features n 
SLCO1B3 

c2 P-value 
Low High 

All  96 48 48   

Gender 
Male 58 30 28 

0.174 0.676 
Female 38 18 20 

Age 
≥65 59 31 28 

0.396 0.529 
<65 37 17 20 

Tumor size 
≥6cm 41 21 20 

0.043 0.873 
<6cm 55 27 28 

Tumor site 
Left 59 31 28 

0.396 0.529 
Right 37 17 20 

Tumor invasion 
T1+T2 5 5 0 

5.275 0.022 
T3+T4 91 43 48 

N stage 
N0 45 33 12 

5.880 0.015 
N1+2 51 15 36 

M stage 
M0 89 47 42 

4.909 0.027 
M1 7 1 6 

TNM stage 
I+II 31 22 9 

8.052 0.005 
III+IV 65 26 39 

Note: The median Ct-SLCO1B3 expression level was used as the cutoff for 
splitting high-expression and low-expression tumors. The Chi-square test 
was used to analyze the correlation between the clinicopathologic 
features and Ct-SLCO1B3 expression level. P < 0.05 indicates statistical 
significance. 

tumor invasion, lymph node metastasis, and poor 

patient survival. We investigated the role of this gene in 

CRC tumorigenesis in vitro and in vivo. We examined 

SLCO1B3 expression in the NCM460 normal human 

colon epithelial cell line and the SW480, SW620, 

HT29, HCT116, and RKO human CRC cell lines. The 

HCT116, HT29, and SW480 CRC cell lines showed 

significantly higher SLCO1B3 expression than the 

NCM460 cell line (Figure 2A, 2B). To evaluate the 

function of SLCO1B3 in human CRC cell proliferation, 

migration, and invasion in vitro, we generated HCT116 

and SW480 cells transiently transfected with si1-
SLCO1B3, si2-SLCO1B3, si3-SLCO1B3, or si-NC. The 

SLCO1B3 expression was effectively reduced with si1-

SLCO1B3 or si2-SLCO1B3, but not with si3-SLCO1B3 

transfection (Figure 2C, 2D). Subsequently, the 

HCT116 and SW480 cell lines were used to perform the 

followed research, transfected by si1-SLCO1B3 and si2-
SLCO1B3. 

 

SLCO1B3 knockdown inhibits human CRC cell 

proliferation, migration, and invasion in vitro 

 

Compared with the corresponding control cells, 

SLCO1B3-silenced HCT116 and SW480 cells exhibited 

significantly reduced migration and invasion abilities as 

indicated by the Transwell and wound healing assays (P 

< 0.05; Figure 3A–3C). In addition, the MTS assay 

revealed decreased proliferation of the SLCO1B3-

silenced cells than their corresponding control (P < 

0.05, Figure 3D, 3E). 

 

The effects of SLCO1B3 knockdown on CRC 

tumorigenesis in vivo 

 

We investigated the role of SLCO1B3 in CRC 

tumorigenesis in a mouse xenograft model and 

subsequently generated HCT116 and HT29 cells. They 

were then stably transfected with a lentiviral vector 

carrying sh-SLCO1B3 or sh-Control. SLCO1B3 

knockdown was confirmed with western blot analysis 

(Figure 4A). Female BALB/c nude mice received 

HCT116 cells with stable SLCO1B3 knockdown (sh-
SLCO1B3) or an equal number of negative controls 

HCT116 cells (sh-Control) by subcutaneous injection 

into the front flank (n=6 per group). The mice were 

euthanized 21 days after the inoculation. We found that 

xenograft tumors derived from SLCO1B3-silenced 

HCT116 cells grew significantly slower than those 

derived from control cells (P < 0.05). This resulted in 
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smaller and lighter tumors after three weeks of growth 

(Figure 4B–4D). 

 

SLCO1B3 activates STAT3 in human CRC cells 

 

To investigate the molecular mechanisms underlying 

the function of SLCO1B3, we used next-generation 

sequencing to study the effects of SLCO1B3 

knockdown on the gene expression profile of CRC 

cells. A total of 286 mRNAs were differentially 

expressed in SLCO1B3-silenced HCT116 cells 

compared with the mRNAs in control HCT116 cells. 

Among which 125 were upregulated, and 161 were 

downregulated (Figure 5C). The mRNA expression 

data from this study are available from the 

GSE163396 dataset of the GEO database (Figure 5A). 

The GO functional enrichment analysis (Figure 5B, 

5C), KEGG pathway analysis (Figure 5D), and GSEA 

(Figure 5E) revealed that many of these DEGs are 

involved in cancer invasion, metastasis, and DNA 

repair. 

 

In a previous study, we found that STAT3, an important 

driver for CRC tumorigenesis and metastasis [7–9], was 

 

 
 

Figure 2. Ct-SLCO1B3 expression in CRC cell lines and select effective interfere sequence. (A, B) The mRNA (A) and protein (B) 

levels of Ct-SLCO1B3 in the NCM460 normal human colon epithelial cell line and the SW480, SW620, HT29, HCT116, and RKO human CRC cell 
lines by qRT-PCR and western blot analysis, respectively. n=3; *P < 0.05, **P < 0.01 vs. NCM460. (C, D) HCT116 and SW480 cells were 
transiently transfected with si1-Ct-SLCO1B3, si2-Ct-SLCO1B3, si3-Ct-SLCO1B3, or si-NC. (C) The Ct-SLCO1B3 mRNA levels by qRT-PCR. (D) The 
Ct-OATP1B3 protein levels by western blot analysis. n=3; *P < 0.05, **P < 0.01 vs. si-NC. NC=si-NC, Si1=si1-Ct-SLCO1B3, Si2=si2-Ct-SLCO1B3 
and Si3=si3-Ct-SLCO1B3. 
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Figure 3. Ct-SLCO1B3 knockdown inhibits human CRC cell proliferation, migration, and invasion in vitro. (A) Cell migration and 

invasion abilities evaluated by the Transwell assays. The cells that had migrated to the lower surface of the membrane were counted after 
48-hour incubation. n=3; *P < 0.05, **P < 0.01 vs. NC. (B, C) The scratch-wound healing assay evaluated cell migration ability. The width of 
the wound bed (distance) was measured at 0, 24, and 48 hours after the creation of the scratch wound. (D, E) Cell proliferation evaluated by 
the MTS assay. n=3; *P < 0.05, **P < 0.01, ##P < 0.01 vs. si-NC or NC. NC=si-NC. 

 

 
 

Figure 4. The effects of Ct-SLCO1B3 knockdown on CRC tumorigenesis in vivo. (A) Characterization of the HCT116 and HT29 cells 
stably transfected with a lentiviral vector carrying sh-Ct-SLCO1B3 or sh-Control. Bright and fluorescent field cell images (upper panel) and 
western blot analysis results on Ct-OATP1B3 protein expression (middle and lower panels) are shown. n=3, *P < 0.05 vs. sh-Control. (B) 
Photos of mice bearing subcutaneous tumors. (C) Photos of tumors harvested from the mice. (D) The change in tumor volume with time and 
the weight of the harvested tumors. *P < 0.05. 



 

www.aging-us.com 22169 AGING 

overexpressed in human CRC tissues compared with 

adjacent non-tumor colorectal tissues [10]. The co-

expression analysis revealed a positive association 

between the two (Figure 5F). In our in vitro 

experiments, SLCO1B3 knockdown in HCT116 cells 

downregulated p-STAT3 (P < 0.01, Figure 6A, 6B), 

while total STAT3 remained unchanged. This 

indicated that SLCO1B3 activates the STAT3 pathway 

by promoting STAT3 phosphorylation. MMP-2 and 

MMP-9 are downstream targets of STAT3 that play 

critical roles in CRC invasion and metastasis [11]. 

SLCO1B3 knockdown also decreased MMP-2 and 

MMP-9 (P < 0.01). Thus, the pro-CRC properties of 

SLCO1B3 were at least partially mediated by STAT3 

and its downstream mediators such as MMP-2 and 

MMP-9. Interleukin-6 (IL-6), a cytokine released from 

CRC cells, activates STAT3 to drive CRC 

pathogenesis and metastasis [12]. p-STAT3, MMP-2, 

and MMP-9 downregulated by SLCO1B3 silencing 

were restored by IL-6 (Figure 6A). Female BALB/c 

nude mice received HT29 cells with stable SLCO1B3 

knockdown (sh-SLCO1B3) or an equal number of 

negative controls HT29 cells (sh-Control) by injection 

into the tail vein (n=6 per group). The mice were 

euthanized 21 days after the injection (Figure 7A, 7B). 

H&E staining of the liver Figure 7A and lung Figure 

7B tissues showing metastatic nodules. The expression 

of p-STAT3, STAT3, MMP-2, and MMP-9 in 

metastatic tumors by western blot analysis (Figure 7C). 

**P < 0.01 vs. sh-Control. 

 

DISCUSSION 
 

In the present study, the relationship between SLCO1B3 

and the clinicopathological characteristics and 

prognosis of CRC patients was evaluated [13]. Our 

bioinformatics analysis identified SLCO1B3 as the top 

hub gene associated with the OS of CRC patients. Thus, 

SLCO1B3 may serve as a novel therapeutic target for 

CRC. 

 

In 2008, L. Wooin et al. detected SLCO1B3 expression 

in most colon tumors [14]. They also found that higher 

SLCO1B3 expression was associated with lower stage 

 

 
 

Figure 5. Bioinformatics analysis of GSE163396. Microarray data analysis was performed to investigate the molecular mechanisms 

underlying the function of SLCO1B3. (A) Heatmap of 286 differentially expressed genes from GSE163396 dataset (with 125 highly expressed 
genes and 161 lowly expressed genes). (B–D) GO functional enrichment and KEGG pathway analysis were performed based on DEGs from 
GSE163396 dataset. Partial results of the upregulated GO pathways were shown in panel B, the downregulated GO pathways were shown in 
panel C, and the KEGG pathway was illustrated in panel D. (E) Gene Set Enrichment Analysis (GSEA) revealed that most DEGs associated with 
the STAT3 signaling pathway were enriched in the SLCO1B3 gene. (F) The co-expression analysis revealed a positive association between the 
SLCO1B3 and STAT3 activation. 
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and lower grade tumors and improved 5-year survival 

within individual tumor grades. This suggested that 

SLCO1B3 might exhibit antitumor properties in human 

CRC. However, another 2008 report showed that 

SLCO1B3 overexpression in CRC cells conferred 

resistance to drug-induced apoptosis, supporting the 

protumorigenic function of SLCO1B3 [14]. These 

seemingly contradictory findings were reported before 

the discovery of Ct-SLCO1B3 in 2012. In 2012, Nagai 

and colleagues identified Ct-SLCO1B3 in human colon 

and lung cancer tissues [6]. The original SLCO1B3 was 

renamed Lt-SLCO1B3 because of its enriched 

expression in the liver. Importantly, Ct-SLCO1B3 was 

detected significantly higher than Lt-SLCO1B3 in both 

human colon cancer tissues and cells [6, 15]. While Lt-
OATP1B3 (the translated product of Lt-SLCO1B3) was 

mostly found as a membrane-bound protein on the cell 

surface, Ct-OATP1B3 (the translated product of 

 

 
 

Figure 6. Ct-SLCO1B3 knockdown in HCT116 cells downregulates p-STAT3, MMP-2, and MMP-9. HCT116 cells were transiently 
transfected with si1-Ct-SLCO1B3, si2-Ct-SLCO1B3, or si-NC with or without IL-6 stimulation (50 ng/mL). The protein levels of Ct-OATP1B3, p-
STAT3, total STAT3, MMP-2, and MMP-9 were determined by western blot analysis. (A) Gel image. (B) Quantified protein levels without IL-6 
stimulation. n=3, **P < 0.01 vs. si-NC. NC=si-NC, Si-1=si1-Ct-SLCO1B3, Si-2=si2-Ct-SLCO1B3. 
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Ct-SLCO1B3) was mainly detected in the cytoplasm 

of colon cancer cells [15]. In addition, Ct-OATP1B3 

and Lt-OATP1B3 exhibited disparate patterns of post-

translational modifications and proteasomal degradation 

[15]. Compared with Lt-OATP1B3, Ct-OATP1B3 

showed poorer transporter activity [15]. Given these 

differences between the two, it is reasonable to 

speculate that Ct-SLCO1B3 and Lt-SLCO1B3 may play 

separate roles in carcinogenesis. Herein, we reported for 

the first time the function of SLCO1B3 as a carcinogen 

in CRC. Intriguingly, Ct-SLCO1B3, but not Lt-

SLCO1B3, can be induced in response to ambient or 

chemical hypoxia through the HIF-1a pathway [16]. 

Thus, Ct-SLCO1B3 may serve as a defense mechanism 

in cancer cells to sustain tumor growth under hypoxic 

conditions. 

 

This study found that high SLCO1B3 expression in 

human CRC tissues is associated with advanced disease 

stage, tumor invasion, lymph node metastasis, poor 

tumor differentiation, and poor OS. SLCO1B3 

knockdown effectively inhibited human CRC 

proliferation, migration, and invasion in vitro and 

curbed CRC tumorigenesis and metastasis in vivo. 

Mechanistically, we identified p-STAT3 and its 

downstream targets MMP-2 and MMP-9 as mediators 

of the protumorigenic function of SLCO1B3. The 

STAT3 signaling is overactivated in the CRC, and its 

downstream mediators such as VEGF, c-Myc and 

Cyclin D1, MMP-2, and MMP-9 have been linked with 

tumor angiogenesis, proliferation, invasion, and 

metastasis, respectively [17–19]. Importantly, the 

activation of STAT3 has been identified as a critical 

mechanism for resistance to 5-FU [20], the current first-

line chemotherapy for advanced CRC [21]. A SLCO1B3 

inhibitor would possibly potentiate the efficacy of 5-FU 

in CRC by inactivating STAT3. 

 

This study has limitations: (i) The primers designed in 

this study do not specifically recognize CT-OATP1B3, 

LT-OATP1B3; (ii) Immunohistochemistry in this study 

is also lacking. Thus, in a future study on this topic, 

immunohistochemistry should be performed with the 

antibody that recognizes Ct-OATP1B3. 

 

In summary, we identified SLCO1B3 as a novel 

carcinogen in the CRC that drives CRC tumorigenesis 

and metastasis. SLCO1B3 inhibitors, alone or in 

combination with current drugs, may have therapeutic 

benefits in the CRC. 

 

 
 

Figure 7. The effects of Ct-SLCO1B3 knockdown on CRC metastasis in vivo. (A, B) H&E staining of the liver and lung tissues showing 

metastatic nodules. (C) The expression of p-STAT3, STAT3, MMP-2, and MMP-9 in metastatic tumors by western blot analysis. **P < 0.01 vs. 
sh-Control. 
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MATERIALS AND METHODS 
 

Human tissue samples 

 

A total of 96 pairs of tumor and adjacent normal tissues 

were collected between 2012 and 2014 from 96 CRC 

patients in the Fourth Affiliated Hospital of Hebei 

Medical University (Shijiazhuang, Hebei, China). The 

adjacent normal tissues were at least 5 cm away from 

the tumor edge. The clinicopathological characteristics 

of the patients are shown in Table 1. This study was 

approved by the Ethics Committee of the Fourth 

Affiliated Hospital of Hebei Medical University, China. 

All patients included in this study provided written 

informed consent before test-specific implementation 

process. 

 

Quantitative real-time PCR (qRT-PCR) 

 

Total RNA was extracted using TRIzol Reagent (Thermo 

Fisher, USA). Complementary DNA (cDNA) was 

synthesized using the Reverse Transcription System 

(Promega, USA), following the manufacturer's 

instructions. Quantitative PCR (qPCR) was performed on 

a 7500 RT-PCR System (Applied Biosystems, USA) 

with the qPCR Mix (Promega, USA). The primers used 

in the amplification were: GAPDH, forward 5'-

GGACCTGACCTGCCGTCTAG-3' and reverse 5'-

GTAGCCCAGGATGCCCTTGA-3'; SLCO1B3, forward 

5'-ACAGCAGAGTCAGCATCTTCAG-3' and reverse 

5'-ATCACAAGCAAATTTCCAATTT-3'. The relative 

expression of SLCO1B3 was calculated using the 2-ΔΔCt 

method. Each experiment was performed in triplicate. 

 

Cell culture 

 

The SW480, SW620, HT29, HCT116, and RKO human 

CRC cell lines were purchased from the Type Culture 

Collection of the Chinese Academy of Science 

(Shanghai, China). The NCM460 normal human colon 

epithelial cell line was obtained from INCELL (USA). 

All cell lines were authenticated with short tandem 

repeat profiling. The SW480, SW620, and HT29 cells 

were cultured in Dulbecco's modified Eagle's medium 

(DMEM; Thermo Fisher USA), and the HCT116, RKO, 

and NCM460 cells were cultured in RPMI-1640 

medium (Thermo Fisher). All growth media were 

supplemented with 10% fetal bovine serum (FBS) and 

1% penicillin/streptomycin. All cells used in the 

experiments were mycoplasma-free. 

 

Transient and stable transfections 

 

HCT116 and SW480 cells were transiently transfected 

with an siRNA targeting SLCO1B3 or a negative control 

siRNA (Invitrogen, USA) using Lipofectamine 2000 

(Invitrogen, USA), following the manufacturer's 

instructions. This was done to evaluate the effects of 

SLCO1B3 knockdown, on CRC cell proliferation, 

migration, and invasion. The target sequences were: si1-

SLCO1B3, 5'-GCAACAGGAGGUACCACAUTT AU 

GUGGUACCUCCUGUUGCTT-3'; si2-SLCO1B3, 5'-

GGAAAUAAUUCAGUGGCAUTTAUGCCACUGAA

UUAUUUCCTT-3'; si3-SLCO1B3, 5'-GCACUAGG 

UGGAAUCAUUATT UAAUGAUUCCACCUAGUG 

CTT-3'. The negative control (si-NC) target sequence 

was: 5'-UUCUCCGAACGUGUCACGUTTACGUGA 

CACGUUCGGAGAATT-3'. in which TT is the tail, 

playing as a stabilizing role. HCT116 and HT29 cells 

were stably transfected with a lentiviral vector carrying 

an shRNA targeting SLCO1B3 (sh-SLCO1B3: 5'-

GGAAAUAAUUCAGUGGCAUTTAUGCCACUGAA

UUAUUUCCTT-3'.) or a scrambled shRNA that served 

as negative control (sh-Control). This was done to 

evaluate the effects of SLCO1B3 knockdown, on CRC 

xenograft tumor growth and metastasis. Both sh-

SLCO1B3 and sh-Control were obtained from Shanghai 

Genechem Co., Ltd., (Shanghai, China). SLCO1B3 

knockdown in transient and stable transfections was 

confirmed by qRT-PCR and western blot analysis. 

 

CRC mouse xenograft model 

 

Female BALB/c nude mice (five weeks old) were 

purchased from Beijing Vital River Laboratory Animal 

Technology (Beijing, China). The mouse model was 

established following the previously published protocol 

[22]. The mice were randomly assigned to two groups 

(n=6 per group) to receive HCT116 cells with stable 

SLCO1B3 knockdown or an equal number of negative 

controls HCT116 cells by subcutaneous injection into 

the front flank. This was done to evaluate the effects of 

SLCO1B3 knockdown, on CRC xenograft tumor 

growth. Tumor length and width were measured with 

an external caliper once every three days. Tumor 

volume was calculated using the formula: tumor 

volume = (length × width2)/2. The mice were 

euthanized 21 days after the inoculation, and the 

tumors were harvested, photographed, and weighed. 

The mice were randomly assigned to two groups (n=6 

per group) to receive HT29 cells with stable SLCO1B3 

knockdown or an equal number of negative controls 

HT29 cells by injecting them into the tail vein. This 

was done to evaluate the effects of SLCO1B3 

knockdown, on CRC metastasis. The mice were 

euthanized 21 days after the injection. 

 

The lung and liver tissues were harvested and examined 

with hematoxylin and eosin (H&E) staining. The 
metastatic tumors were collected for western blot 

analysis. All animal experiments were performed 

following the international standards-3R principle of 
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animal welfare and with permission of the Experimental 

Animal Ethics Committee of The Fourth Affiliated 

Hospital of Hebei Medical University. 

 

H&E staining 

 

H&E staining was conducted following the previously 

published protocol [23]. The paraffin sections of the 

mouse liver and lung tissues were dewaxed and stained 

with hematoxylin (Servicebio, Wuhan, China) for 3-5 

minutes. After differentiation, bluing, and dehydration 

in 85% and 95% alcohol for 5 minutes each, the 

sections were stained with eosin (Servicebio) for 5 

minutes, dehydrated, sealed, and observed under the 

microscope. 

 

Western blot analysis 

 

Western blot analysis was performed as previously 

described [24]. The primary antibodies used in the 

experiments included an anti-OATP1B3 antibody from 

Proteintech Group Inc., (Wuhan, China; Catalog # 

66381-1) and anti-STAT3 (Catalog # ab68153), anti-p-

STAT3 (S727) (Catalog # ab32143), anti-MMP-2 

(Catalog # ab92536), and anti-MMP9 (Catalog # 

ab58803) antibodies from Abcam (USA). Each 

experiment was performed in triplicate. 

 

Cell proliferation assay 

 

SW480 and HCT116 cells transiently transfected with si1-

SLCO1B3, si2-SLCO1B3, or si-NC were seeded in 96-

well plates at a density of 3,000 cells/well and cultured for 

three days. Cell viability was evaluated using a 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay kit 

(Promega), according to the manufacturer's instructions. 

Each experiment was performed in triplicate. 

 

Scratch-wound healing and transwell assays 

 

The cell migration ability was assessed using the 

scratch-wound healing assay [25]. The width of the 

wound bed was recorded at 0, 24, and 48 hours after the 

scratch wound. In addition, the cell migration and 

invasion abilities were evaluated using the Transwell 

migration and invasion assays, respectively. In brief, 1.5 

× 105 cells were loaded into the upper chamber of 

Transwell inserts with an 8-μm pore membrane 

(Corning Costar, USA), either uncoated (for migration 

assessment) or pre-coated with Matrigel, BD, USA, (for 

invasion assessment). After 48 hours, the cells that had 

migrated to the lower surface of the membrane were 
fixed, stained with crystal violet, and counted under an 

inverted light microscope. Each experiment was 

performed in triplicate. 

Identification of differentially expressed genes 

(DEGs) by microarray mRNA analysis 

 

The microarray mRNA analysis was performed on 

HCT116 cells transfected with si1-SLCO1B3 or si-NC. 

The raw microarray data were converted to gene 

expression data using the Edge R package [26]. The 

DEGs (|logFC|>2 and padj<0.05) were identified with 

the Limma R package. 

 

GSEA, GO, and KEGG analysis of DEGs 

 

The Gene Set Enrichment Analysis (GSEA) was 

performed using the Category package (version 2.10.1). 

The functional enrichment Gene Ontology (GO) 

analysis and the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analysis were performed 

with the DAVID online tools. Fisher's exact test was 

used to select the significant pathways. A P value less 

than 0.05 was considered statistically significant. 

 

Bioinformatics analysis 

 

The overall survival (OS) and mRNA expression data of 

CRC patients were retrieved from the GSE123734 dataset 

from the GEO (Gene Expression Omnibus) database. The 

relationship between OS and SLCO1B3 expression was 

analyzed by the Kaplan–Meier method. The CytoHubba 

application in Cytoscape was used to identify and rank the 

hub genes. The Cytoscape software was used to generate 

the protein-protein interaction diagram. 

 

Statistical analysis 

 

Each experiment was performed in triplicate. The results 

are presented as mean ± standard deviation. The 

differences between the two groups were evaluated 

using the two-tailed Student's t-test. The correlation 

between tumorous SLCO1B3 and the clinicopathological 

characteristics and prognosis of CRC patients was 

evaluated using the chi-square test. The Kaplan–Meier 

method (log-rank test) was used to interpret the survival 

curves. All statistical analyses were performed using the 

GraphPad Prism 5.0 and SPSS 21.0 software. A P-value 

of less than 0.05 was considered statistically significant. 

 

Data availability statement 

 

The mRNA expression data from this study will be 

deposited in the GSE163396 dataset of the GEO database. 
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liver-type SLCO1B3 mRNA; OATP: organic anion-

transporting polypeptide; OS: overall survival; qRT-

PCR: quantitative real-time PCR. 
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