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INTRODUCTION 
 

Asthma is considered to be one of the most non-

communicable and prevalent chronic complications, 

which is characterized by variable respiratory 

symptoms and airflow limitation. Infiltration of 

various inflammatory cells, such as eosinophils, mast 

cells, basophils, monocytes, and lymphocytes, as well 

as airway hyperresponsiveness (AHR), airway 

remodeling, and mucus hypersecretion, are patho-

gnomonic characteristics of asthma [1, 2]. These 

process are driven by group-2 innate lymphocytes, 
antigen-specific CD4+ T helper type 2 (Th2) cells and 

their cytokines including interleukin(IL)-5, IL-13, IL-

4, which are capable of inducing, prolonging, and 

amplifying the inflammatory responses through 

allergic-specific immunoglobulin E (IgE) secreted by 

B lymphocytes [3–5].  

 

The interleukin-1 (IL-1) family includes human IL-37 

(IL-37 / IL-1F7). The coding gene of IL-37 / IL-1F7 is 

located on the IL-1 gene cluster 2q12-13 on human 

chromosome 2 [6–8]. IL-37 plays an anti-inflammation 

role via inhibition of the pro-inflammatory cytokines 

production and functions through intracellular (nuclear) 

and extracellular (receptor-mediated) mode. Extra-

cellular IL-37 acts by binding to IL-18 receptor α (IL-

18Rα) but does not recruit IL-18Rβ [9, 10]. In fact, IL-

37 interacts with IL-1 receptor 8 (IL-1R8/ SIGIRR), the 

underlined event leads to the development of a tripartite 
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ABSTRACT 
 

Asthma is driven by group 2 innate lymphoid cells, antigen-specific CD4+ T helper type 2 cells and their 
cytokines such as interleukin (IL)-4, IL-5, IL-13. IL-37 is decreased in asthma and negatively related to Th2 
cytokines and other pro-inflammatory cytokines. Our study showed that IL-37 level in asthmatic peripheral 
blood mononuclear cells was lower than in healthy. Further, IL-37 was negatively correlated with exhaled 
nitric oxide, asthma control test score, atopy and rhinitis history in asthmatics. Then an OVA-induced 
asthma mice model treated with rhIL-37 was established. An antibody array was employed to uncover 
altered cytokines induced by IL-37 in mice lung tissue. 20 proteins differentially expressed after rhIL-37 
treatment and five of them were validated in asthmatic peripheral blood mononuclear cells. Consistent with 
cytokine antibody array, CCL3, CCL4, CCL5 decreased after IL-37 administration. While CXCL9 and CXCL13 
were no change. We concluded that IL-37 reduce asthmatic symptoms by inhibit pro-inflammatory cytokine 
such as CCL3, CCL4, CCL5. 
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complex with IL-18Rα, resulting in the initiation of 

anti-inflammatory signals [11–13]. Intracellular IL-37 

interacts with Smad3 and transports to the nucleus, then 

attenuates the expression of pro-inflammatory genes at 

mRNA level [10, 14].  

 

Recent findings suggest that IL-37 was decreased in 

serum and induced sputum of asthmatics, and its 

reduction was related to the severity of asthma [15–18]. 

In addition, the level of IL-37 was decreased in patients 

suffering from allergic asthma relative to nonallergic 

asthma patients [17]. In asthmatic mice, IL-37 treatment 

reduced eosinophil counts in airway tissues and BAL, 

reduced goblet cell hyperplasia, and improved AHR 

[12, 16, 19, 20]. Further, the IL-37 negatively related to 

Th2 cytokines in patients with asthma and allergic 

rhinitis, one of mechanism is through MAPK pathway 

[21–23]. IL-37 attenuated the development of IL-1β, IL-

6, and TNF-α in sputum cells (LPS-stimulated) in 

asthma patients and caused suppression of IL-17 

production more notably in patients with asthma than in 

healthy controls [15]. In epithelium and sputum-

cultured cells, a partial suppression of TSLP production 

occurred upon the addition of recombinant IL-37 [24]. 

These results showed the IL-37 as a negative regulator 

on an allergic immune response in airways via 

inhibiting pro-inflammatory cytokines. 

 

Herein, we analyze the correlation between IL-37 and 

clinical features in human peripheral blood 

mononuclear cells (PBMCs) from 19 asthma patients 

and 7 health. Then an advanced antibody array 

technology was used to evaluate protein-protein 

interaction network of asthmatic mice lung response to 

IL-37. The representative differential proteins were 

selectively verified in PBMCs stimulated by IL-37. 

 

RESULTS 
 

IL-37 downregulated in asthmatic PBMCs and 

correlated with clinical characteristics 

 

In the current study, IL-37 mRNA was identified in 

PBMCs from 19 patients with asthma (PA) and 7 

healthy control (HC), whose clinical characteristics 

have shown on Table 1. We demonstrated marked 

downregulation of IL-37 in PA relative to that in HC 

(Figure 1A). Furthermore, the link between the level of 

IL-37 and clinical features was evaluated by Spearman 

correlation analysis. There was a negative correlation 

between IL-37 level and FeNO (r=-0.46, P=0.02) 

(Figure 1B). IL-37 expression in asthma patients with 

atopy history (Atopy) was lower than that without atopy 

history (Non-atopy) (Figure 1C). Similarly, IL-37 

expression of asthma patients with rhinitis (Rhinitis) 

was lower than that without rhinitis (Non-rhinitis) 

(Figure 1D). However, there was no correlation 

between IL-37 and percentage of sputum eosinophils 

(r=-0.28, p=0.30) (Figure 2A), percentage of blood 

eosinophils (r=-0.40, p=0.09) (Figure 2B), FEVI/FVC 

(r=-0.10, p=0.74) (Figure 2C), blood total IgE (r=-0.44, 

p=0.14) (Figure 2D). In terms of clinical symptoms, IL-

37 expression of asthma patients was negatively 

correlated with ACT-score (r=-0.47, p=0.04) (Figure 

2E) but no correlation with mini-AQLQ-score (r=-0.21, 

p=0.38) (Figure 2F). 

 

IL-37 attenuated asthmatic symptoms and 

eosinophils infiltration in mice model 

 

A contribution of rhIL-37 in asthma mouse models 

(caused by OVA) was confirmed in this section. The 

modeling process is shown in Figure 3A. OVA 

considerably elevated AHR compared to Control, which 

was lowered by rhIL-37 (Figure 3B). In addition, the 

number of lymphocytes, macrophages, eosinophils, and 

neutrophils in OVA/PBS animals BALF was higher 

than in Control mice. rhIL-37 reduced these cell counts 

especially eosinophils (Figure 3C). In addition, H&E 

staining showed more neutrophils and eosinophils 

infiltration in the OVA/PBS relative to Control, and IL-

37 treatment reduced the eosinophils infiltration 

compared with OVA/PBS (Figure 3D). 

 

IL-37 altered receptor expression in mice lung tissue 

 

IL-18Ra is the key receptor of IL-37 function. Unlike 

the way IL-18 works, IL-37 recruits SIGIRR after 

binding to IL-18Ra instead of IL-18b. Immuno-

histochemistry of these receptor of mice lung showed 

that IL-18Ra expression was no difference after OVA 

challenge, but increased after IL-37 treatment compared 

with OVA/PBS (p<0.0001) and Control (p<0.0001) 

(Figure 4A, 4D). The same trend and subcellular 

localization with IL-18Ra could be seen in SIGIRR 

expression (p<0.01) (Figure 4C, 4D). On the contrary, 

IL-18b level was no difference between each 

group(p>0.05) (Figure 4B, 4D).  

 

Altered cytokine levels after IL-37 treatment 

 

The basic statistics used for significance analysis were 

moderated t-statistic. Differentially expressed proteins 

(DEPs) were defined as those with adjusted P-value less 

than 0.05, and fold change over 1.2 or less than 0.83, 

which were presented as Volcano plot (Figure 5B and 

Supplementary Figure 1A). All of the DEPs were 

analyzed by cluster analysis between Control and 

OVA/PBS (Supplementary Figure 1B), or OVA/PBS 
and OVA/IL-37 (Figure 5A). The intersection between 

two groups represents these molecules up/down-

regulated in asthmatic mice but down/up-regulated after 
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Table 1. Participants’ characteristic. 

 HC, n=7 PA, n=19 P value 

Age(years), mean(SD) 37.57(16.47) 37.20(14.77) 0.737 

Sex, female  n(%) 4(57) 10(53) 0.5 

BMI,  

mean(SD) 
23.37(4.36) 24.53(6.20) 0.304 

FEV1/FVC, mean(SD) - 64.67(4.06) - 

FeNO(ppb), geo mean(SD) 11.57(5.62) 56.3(6.33) 0.000 

Sputum eos.%, 

median(IQR) 
0(0.00,0.00) 16.00(9.00,28.00) 0.000 

Secrum eos.%,  median(IQR) - 5.20(3.60,6.20) - 

ACT-score, median(IQR) - 20.00(14.00,23.00) - 

Mini AQLQ-score, 

mean(SD) 
- 65.00(13.81) - 

Secrum total IgE, (KU/L), 

median(IQR) 
- 176.00(68.75,391.00) - 

Methacholine, n positive(%) 0(0) 4(21.05) 0.001 

Atopy, 

n(%) 
0(0) 9(47.37) 0.030 

Rhinitis,  

n(%) 
0(0) 12(63.16) 0.030 

BMI, Body Mass Index; FEV1, Forced expiatory volume in 1st second; FVC, Forced vital capacity; FeNO, 
Fractional exhaled nitric oxide; ACT, asthma control test; Mini-AOLQ, mini asthma quality of life 
questionnaire; HC, Healthy Control; PA, Patients with Asthma. 

 

 
 

Figure 1. Correlations of IL-37 levels with clinical characteristics. Each points represents one person. (A) IL-37 mRNA levels of 
people’s PBMCs with and without asthma, as measured by means of qRT-PCR. (B) FeNO negatively correlated with IL-37 levels in asthma 
patients. (C) IL-37 mRNA levels of asthma patients’ (with or without allergic history) PBMCs, as measured by means of qRT-PCR. (D) IL-37 
mRNA levels of asthma patients’ (with and without rhinitis history) PBMCs, as measured by means of qRT-PCR. 
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rhIL-37 administration (Figure 5C), MIP-1a(CCL3), 

MIP-1b(CCL4), MIG(CXCL9), RANTES(CCL5), 

BLC(CXCL13) etc. in 20 of them. In addition, protein 

function annotation Gene Ontology (GO) and KEGG 

pathway were evaluated (Figure 5D and Supplementary 

Figure 1C–1E).  

Elisa validation results  
 

In order to validate the differential expression proteins 

affected by IL-37, Elisa was performed MIP-1a(CCL3), 

MIP-1b(CCL4), RANTES(CCL5), MIG(CXCL9), 

BLC(CXCL13) in asthmatic PBMCs stimulated by

 

 
 

Figure 2. Correlations of IL-37 levels with clinical characteristics. Each points represents one person. (A) There is no correlation 

between IL-37 mRNA levels and % sputum eosinophils (r=-0.28, p=0.30). (B) There is no correlation between IL-37 mRNA levels and % 
peripheral blood eosinophils (r=-0.40, p=0.09). (C) There is no correlation between IL-37 mRNA levels and %FEV1/FVC (r=-0.10, p=0.74).  
(D) There is no correlation between IL-37 mRNA levels and peripheral blood IgE (r=-0.44, p=0.14). (E) ACT-scores were negatively correlated 
with IL-37 mRNA levels (r=-0.74, p=0.04). (F) There is no correlation between IL-37 mRNA levels and mini-AQLQ-scores (r=-0.28, p=0.30). Data 
were analyzed using Spearman’s rank correlation. 
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rhIL-37 (Table 2). The results showed that MIP-1a, 

MIP-1b, RANTES down-regulated after 24 hours rhIL-

37 treatment. MIG and BLC presented a low level and 

had no significant change after rhIL-37 administration 

(Figure 6). 

 

DISCUSSION 
 

Reported studies have been revealed that the level of IL-

37 has been lowered in asthma patients relative to the 

healthy controls [15–18]. The level of IL-37 was 

lowered in patients suffering from allergic asthma 

relative to nonallergic asthma [17]. In our study, we 

detect IL-37 mRNA of PBMCs from 19 asthma patients 

and 7 healthy volunteers. The level in asthma patients 

was lower than that in healthy control which consistent 

with previous studies. This implies that the loss of IL-37 

function may be a part of the pathogenesis of asthma and 

in the majority of inflammatory diseases. Further, we 

evaluated the correlation between the expression of IL-

37 and clinical features in human PBMCs from 19 

asthma patients and 7 health, which has not been 

clarified in previous studies. The obtained results 

revealed that IL-37 expression was negatively correlated 

with FeNO, ACT-score, atopy and rhinitis history.  
 

Previous studies told us that extracellular IL-37 

interacts with IL-18Rα on the cell surface. Different 

from the way IL-18 works, IL-18Rα does not recruit IL-

18R β, but IL-1R8 to transfer anti-inflammatory signals 

[11, 12]. Immunohistochemistry of these receptor of 

mice lung showed that IL-18Ra and SIGIRR expression 

in OVA/PBS group decreased compared with control 

mice, but increased after IL-37 treatment, while IL-18b 

expression in OVA/IL-37 group was no difference with 

OVA/PBS group. These were consistent with previous 

results in the aspect of extracellular receptor binding 

function. 

 

Asthma is an inflammatory disease of the lower airway 

caused by a mix of environmental factors, genetic 

predisposition, and perhaps metabolite and microbiome 

changes [25]. Type 2 inflammation (type 2 T helper cell 

lymphocyte) is common in asthma patients, and it is 

linked to certain inflammatory cells (mast cells, 

eosinophils, type 2 T helper cell lymphocyte, IgE-

producing plasma cells, and basophils) and cytokine 

profiles (IL-13, IL-5, IL-4) [26]. In the present study, 

we utilized traditional methods such as AHR 

measurement and histological examination to 

authenticate an asthma model. Additionally, cytokine 

antibody array revealed that IL-37 could result in 

reduced expressions of MCP-5, IL-4, IL-5, IL-2Ra, 

MIP-1a(CCL3), MIP-1b(CCL4), TCA-3(CCL1), 

MCSF, MIG(CXCL9), RANTES(CCL5), BLC 

(CXCL13), IL-6, L-Selectin, MCP-1, CD30, TNF RI, 

Clusterin, Eotaxin, PIGF-2, and elevated expressions of 

EDAR, Shh-N. As reported previously, among

 

 
 

Figure 3. IL-37 expression and the administration of rhIL-37 in the challenge phase attenuates OVA-induced eosinophilic 
airway inflammation and airway hyper-reactivity (AHR). (A) Protocol for OVA-induced asthmatic airway inflammation and the time 

points of rhIL-37 intervention during the sensitization phase. (B) The differential cell counts in BALF (n=10 mice per group). Numbers of cells 
were counted in ten random 1000X oil lens fields. (C) Airway resistance to methacholine was measured at 24 hours after final OVA challenge 
by using Flexivent FX-Mouse AN modular and invasion system (n=10 mice per group). (D) Representative photomicrographs of lung sections 
stained with H&E. original magnification, 10x, 20x, 40x. Columns and error bars represented mean±SEM. n=10 per group. *p< 0.05, **p< 
0.01, ***p<0.01. Similar results were obtained from three to five independent experiments. 
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those biomarkers, monoclonal antibodies against IL-4 

and IL-5 have been developed for the treatment of 

asthma [27, 28]. IL-6 [29, 30], RANTES [31], Clusterin 

[32–35], MIG [36], BLC [37] and MIP-1a/b [38] have 

been found to exhibited raised levels in asthma. 

However, their relationship with IL-37 has not been 

reported. Our bioinformatics analysis of these factors 

showed the enriched KEGG pathways terms included 

“TNF signaling cascade”, “NOD-like receptor signaling 

cascade”, “NF-kappa B signaling cascade”, “JAK-

STAT signaling cascade”, and “IL-17E signaling 

cascade”. The underlined cascades have a role in the 

immune response of asthma, and IL-37 may regulate the 

progression of asthma through these proteins and 

pathways. 

 

At last, we validate the expression of MIP-1a(CCL3), 

MIP-1b(CCL4), RANTES(CCL5), MIG(CXCL9), 

BLC(CXCL13) in human PBMCs from asthmatics after 

rhIL-37 treatment. We observed that after IL-37 

stimulation for 24 hours, the elevated levels of MIP-

1a(CCL3), MIP-1b(CCL4), RANTES(CCL5) de-

creased, which consistent with previous studies and 

cytokine antibody array. MIG(CXCL9) and 

 

 
 

Figure 4. Immunohistochemistry detection of IL-18Ra, IL-18Rb, SIGIRR in mice lung tissue from PBS, OVA/PBS, OVA/rhIL-37 
group (n=10 mice per group). Representative photomicrographs of immunohistochemistry staining for IL-18Ra (A), IL-18Rb (B) and SIGIRR 
(C) in mice lung tissue from each group. (D) Quantitation of IL-18Ra, IL-18Rb, SIGIRR expression. IL-18Ra and SIGIRR expression in the lung 
tissue of the OVA/IL-37 group was significantly upregulated compared to the OVA/PBS group, while the difference of IL-18Rb expression in 
the lung tissue of the OVA/IL-37 group was not statistically significant upregulated compared to the OVA/PBS group. Columns and error bars 
represented mean±SEM. n=10 per group. **p< 0.01, ***p<0.001. ****p<0.0001. 
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Figure 5. Visualization of cytokine antibody array analysis. (A) Clustering heatmap. Red represents OVA/IL-37 group, blue represents 
OVA/PBS group. (B) Volcano plot shows 26 differentially expressed proteins (DEPs)(blue dot) between OVA/PBS and OVA/IL-37, which are 
defined as those with adjust p value(adj.P.Val) less than 0.05 and foldchange over 1.2 or less than 0.83(absolute LogFC>0.263). Top 10 DEPs 
have been marked on the picture. (C) There are 20 DEPs result from intersection of Control v.s. OVA/PBS and OVA/PBS v.s. OVA/IL-37. (D) 
Protein function annotation KEGG pathway (OVA/PBS v.s. OVA/IL-37). 
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Table 2. PBMCs donors’ information. 

Name Sex 
Age 

(years) 

BMI 

(kg/cm2) 

FEV1/FVC 

(%) 

Blood 

eos(%) 

Sputum 

eos(%) 

Secrum 

IgE(KU/L) 

FeNO 

(ppb) 

P.LI male 33 29.90 58.17 5.2 30 99 44 

PF.Mao male 38 37.70 77.25 4.6 28 120 22 

GL.Liu female 43 22.30 49.61 6.2 20 176 51 

SM.ZH female 32 23.40 75.78 5.5 19 176 47 

HY.Ton female 28 20.40 79.40 4.8 37 143 32 

QQ.Nie male 38 29.4 53.12 4.3 40 111 54 

BMI, Body Mass Index; FEV1, Forced expiatory volume in 1st second; FVC, Forced vital capacity; FeNO, Fractional exhaled 
nitric oxide. 

BLC(CXCL13) with lower levels did not change. A 

meta-analysis published in 2020 revealed that 

RANTES(CCL5) -403G/A and -28C/G genetic poly-

morphisms significantly contribute to the development 

of childhood asthma [31]. Several studies have 

described the CCL5-dependent recruitment of 

eosinophils during allergic airway inflammation. Those 

effects were decreased by neutralization of CCL5 

receptors [39]. In our study, CCL5 secretion from 6 

asthmatic PBMCs was inhibited by IL-37, which also 

consistent with previous studies and the performance of 

cytokine antibody array.  

The expression of CXCL9 and CXCL13 showed a low 

level in PBMCs, and there was no significant change 

after IL-37 treatment. The underlying mechanism of 

allergic asthma is the evidence that appear to be large 

and localized in nature, but that these events may appear 

at systemic levels [40]. The reason may be related to the 

difference between systemic (PBMCs) and local (mice 

lung tissue) effects.  

 

However, there are several limitations in our study. The 

number of enrolled patients is relatively small, and its 

relationship with clinical characteristics need fully

 

 
 

Figure 6. Elisa analysis of chemokines concentration in PBMCs culture supernatant with or without IL-37 treatment. Columns 

and error bars represented mean±SEM. n=6 per group. *p< 0.05, **p< 0.01, ***p<0.001. Similar results were obtained from three 
independent experiments. 
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clarified. The correlation between them requires a larger 

sample size to confirm. In addition, we should note that 

chemokines are not only expressed functioned in 

leukocytes, but also in structural cells. The expression 

of these cytokine might need to be further verified and 

explored in airway epithelial cells, smooth muscle cells 

and (myo)fibroblasts. 

 

CONCLUSION 
 

In asthma patients, the expression level of IL-37 was 

decreased in PBMCs relative to healthy people. IL-37 

was also found to be negatively correlated with FeNO, 

ACT-score, atopy and rhinitis history in asthmatic 

adults. Bioinformatic analysis revealed 20 proteins 

differential expression after rhIL-37 treatment. MIP-

1a(CCL3), MIP-1b(CCL4), RANTES(CCL5) from 

asthmatic PBMCs decreased after rhIL-37 stimulation, 

while CXCL9 and CXCL13 production remains 

unchanged. 

 

MATERIALS AND METHODS 
 

Animals and ethical approval 
 

Experiments were approved by the China-Japan 

Friendship Hospital Animal Experimental Ethics 

Committee in Beijing, China. 6-8 weeks female 

BALB/c were procured from Vital River Laboratory 

Animal Technology Co. Ltd (China) and were housed 

in a pathogen-free environment in clinic research 

institute of China-Japan Friendship Hospital, Beijing, 

China. Mice were kept in a 12-hour light-dark cycle 

with ad libitum access to food and water.  
 

Thirty mice were randomly categorized into three 

groups i.e., the Control, OVA/PBS, and OVA/IL-37 

groups. In OVA/PBS group, the mice were sensitized 

by intraperitoneal injection of ovalbumin (OVA, 

Sigma-Aldrich, Beijing, 100ug emulsified in Al (OH)3 

/dose) on day 0, day7, day14, then further challenged 

every other day per-nasally from day 22 to day 30 

with 100ug of OVA in 50uL PBS/dose. In the Control 

group, an equal amount of Al (OH)3 (intra-

peritoneally) was given to mice and then nasally 

challenged with PBS at the same time points as the 

actively challenged mice (Figure 1A). The mice in 

OVA/IL-37 group were treated with rhIL-37 (R&D 

System, USA, 200ng/dose) or with PBS as control 

24h before OVA administration. 

 

Measurement of asthma mice model 
 

Whole-body plethysmography (SCIREQ, Canada) 

was used for the determination of AHR after 24 h of 

the final intranasal OVA challenged. The calculation 

of the mean Rrs was carried out from measurements 

during a 5 min period after methacholine chloride 

(MedChemExpress, USA) (3.125-50mg/ml) inhalation. 

Mice were euthanized with pentobarbital (1.5%) after 

AHR measurement, and BALF was taken to determine 

differential BALF cell count. The right lung lobes 

were washed thrice with 1.4 ml ice-cold PBS as 

BALF. The samples of BALF were then subjected to 

centrifugation for 5 min at 400g for the collection of 

cells pellet. This was followed by the supernatant 

collection and storage at -80° C until use. Further, re-

suspension of the cell pellets was carried out with 

PBS to determine differential cell counts through the 

Wright’s-Giemsa staining. The fixation of the left 

lung was carried out with paraformaldehyde (4%) 

overnight at 4° C followed by its embedding in 

paraffin. Staining of paraffin sections (5 μm) was 

performed with hematoxylin and eosin (H&E) for 

eosinophilic infiltration detection. 

 

Immunohistochemistry  

 

Lung sections were dehydrated in graded alcohol 

solutions after being treated with xylene. H2O2 (3%) 

was used to inhibit endogenous peroxidase activity. To 

minimize nonspecific immunoglobulin absorption, 

tissues were flooded with normal goat serum (5%), then 

incubated for 90 minutes with anti-IL-18Rα, anti-IL-

18Rβ, anti-SIGIRR polyclonal antibody (Abcam, USA) 

at a dilution of 1:5000As a negative control, PBS was 

substituted for each primary antibody. Overnight 

incubation of slides was carried out at 4° C, followed by 

three times rinsing with PBS. Furthermore, the 

incubation of the underlined sections was carried out 

with secondary antibodies labeled with peroxidase 

(DAKO, Glostrup, Denmark) at room temperature for 

0.5 hours, followed by washing with PBS before being 

stained with diaminobenzidine. The sections were then 

dehydrated and viewed after being counterstained with 

hematoxylin. Data are represented as the percentage of 

positive staining area in total. 

 

Cytokine antibody array 

 

A mouse cytokine antibody array (Mouse Cytokine 

Array GS4000, Raybiotech lnc, USA) was employed to 

simultaneously detect and quantify 200 cytokines in 

lung sample collected from asthma mouse model and 

rhIL-37 treated asthma mouse model. 1ml 1X Cell 

Lysis Buffer (with Protease Inhibitor Cocktail) was 

used to homogenize the tissue sections. After 30 

minutes’ tissue lysis, the centrifugation (at 13,000 rpm) 

of samples was carried out for 20min, followed by 
collecting the supernatant, and then the protein levels 

were evaluated. The visualization of the signals can be 

performed using a laser scanner (InnoScan 300 
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Microarray Scanner, France) that has a Cy3 wavelength 

(green channel). Lung samples from 5 mice per 

experimental group were analyzed.  

 
Human samples collection 

 
Human peripheral blood was collected from patients 

with asthma (PA) (n=19) and healthy control 

(HC)(n=7) with matched age and sex recruited from 

pulmonary outpatient department of China-Japan 

Friendship Hospital in Beijing. The diagnosis of 

asthma was made in accordance with the Global 

Initiative for Asthma guidelines, all subjects with 

symptoms of respiratory tract infection in previous 3 

weeks, and with peroral steroid treatment in previous 

3 months, and with smoking history were excluded. 

Informed consent was provided by each participant 

included in this study. Serum samples were obtained 

by centrifugation of 12ml venous blood. The serum 

separation was achieved through 15 minutes’ 

centrifugation at 1,000×g followed by its storage at -80° 

C. Ficoll density gradient (Amersham Biosciences) was 

used for the isolation of PBMCs from samples of blood 

collected in EDTA-coated vacutainer tubes (BD, 

Biosciences, Canada). 

 
Clinical information and examination of patients 

 
Pulmonary function tests, FeNO (Fractional Exhaled 

Nitric Oxide), Percentage of eosinophils in induced 

sputum, Methacholine airway provocation test were 

obtained from Clinical Diagnosis Department of 

Respiratory Diseases Center, China-Japan Friendship 

Hospital, Beijing, China. Percentage of eosinophils in 

secrum, Secrum total IgE were detected by Laboratory 

Department of China-Japan Friendship Hospital in 

Beijing, China. 

 
Quantification of IL-37 mRNA using real-time PCR 

 
After PBMCs isolation, TRIzol Reagent (Invitrogen, 

USA) was used to extract the total RNA. All step were 

performed according to manufactures’ instructions. 1μg 

of total RNA was reversely transcribed into cDNA via 

ReverTra Ace RT Master Mix with gDNA Remover 

(TOYOBO, Japan). RT-PCR was carried out on the 

ABI 7500 RT-PCR system using SYBR Green (DBI 

Bioscience, Germany). The primers employed in the 

current study are given below: IL37 forward:5’- 

TTCTTTGCATTAGCCTCATCCTT-3’, reverse: 5’-

CGTGCTGATTCCTTTTGGGC-3’ GAPDH forward: 

5’-CCGGTACTCGTTTGACTCCT-3’, reverse:5’-

TGCTTCACCACCTTCTTGATG-3’. The calculation 

of the target gene relative expression was carried out 

using the 2-ΔΔ CT method. Normalization was achieved 

with GAPDH. 

Cytokine concentration measurements 
 

ELISA kits were used for the determination of CCL3, 

CCL4, CCL5, CXCL9, CXCL13 in human serum 

according to manufacturer’s instructions (Multisciences, 

China). 
 

Statistical analysis 
 

All data were analyzed using non-parametric tests using 

the software GraphPadPrism, and all data were 

expressed as mean SEM (version 7.0a). When 

comparing more than two groups, a one-way ANOVA 

with multiple comparison tests was employed. To 

compare variation between groups, the two-tailed 

Mann-Whitney test was employed. Spearman 

correlation analysis was applied to determine the 

correlation between IL-37 and clinical features. P-

values < 0.05 were regarded as statistically 

considerable. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. (A) Volcano plot shows 82 differentially expressed proteins (DEPs) (blue dot) between Control and OVA/PBS, 
which are defined as those with adjust p value (adj.P.Val) less than 0.05 and foldchange over 1.2 or less than 0.83(absolute LogFC>0.263). (B) 
Clustering heatmap. Red represents OVA/PBS group, blue represents Control group. (C) Protein function annotation KEGG pathway (Control 
v.s. OVA/PBS). (D) Protein function annotation Gene Ontology (GO)-BP (biological process) subtype (Control v.s. OVA/PBS). (E) Protein 
function annotation Gene Ontology (GO)-BP (biological process) subtype (OVA/PBS v.s. OVA/IL-37). 

 


