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INTRODUCTION 
 

Lung cancer is malignant with high incidence and 

mortality all over the world [1, 2]. The 5-year survival 

rate of lung cancer is 4–17% based on different stages 

when diagnosed [3]. Lung adenocarcinoma (LUAD) is 

the most common type of lung cancer in histology 

[1, 2]. 

 

The pathogenesis of LUAD is complicated [4]. In 

addition to genetic factors, the main risk factors are 
smoking, asbestos, radon and other environmental factors 

[5]. Although the targeting and immunotherapy of LUAD 

have made great progresses in recent years, its prognosis 

is still poor [6]. The main reason is the polymer 

heterogeneity of lung cancer [7]. Since the current 

diagnostic methods relying on low-dose CT scans and 

classic serum tumor markers are limited and not specific, 

LUAD is usually at an advanced stage when diagnosed 

[8, 9]. Therefore, it is greatly significant to carry out 

more in-depth explorations of LUAD, and to find new 

biomarkers related to its diagnosis and prognosis. 

 

Metastatic progression is one of the biggest challenges, 

which limits the effect of cancer therapies. Proteolysis is 

involved in the invasion by cleavage of proteins that 

mediate adherence to neighboring cells. Cathepsins are a 

family of lysosomal proteases involved in proliferation, 
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invasion and metastasis of different kinds of cancers [10]. 

The human cysteine cathepsin family is comprised of 

eleven members including Cat B, C, F, H, L, K, O, S, V, 

W, and X/Z, which shares a conserved active site. 

CTSL2 gene encodes cathepsin like 2 (cathepsin L2, also 

known as cathepsin V) [11]. CTSL2 is a lysosomal 

cysteine protease, and may be associated with tumor 

metastasis [10, 12]. Overexpression of CTSL2 has been 

found in various human cancers, including breast cancer, 

squamous cell carcinoma, thymic carcinoma, et al. [13–

15]. Besides, CTSL2 is regarded as a potential drug 

target [16]. These findings indicate that CTSL2 may be a 

biomarker for cancer diagnosis and prognosis. Therefore, 

we focus on the role of CTSL2 in LUAD.  

 

In this study, bioinformatics analysis of CTSL2 in 

LUAD was performed. The association between CTSL2 

expression and clinical features in LUAD was studied. 

CTSL2 expression in the overall survival and on the 

risk of LUAD was illustrated. Furthermore, in vitro cell 

experiments of CTSL2 expression on cell proliferation 

and migration of LUAD cells were carried out. CTSL2 

is found to have predictive value, and high CTSL2 

expression is in association with poor prognosis of 

LUAD.  

 

RESULTS 
 

Characteristics of patients with lung cancer 

 

Totally, 517 LUAD patients were involved, including 277 

(53.58%) females, and 240 (46.42%) males (Table 1). As 

for LUAD stage, there were 277 (53.58%) in I, 122 

(23.60%) in II, 84 (16.25%) in III, and 26 (5.03%) in IV. 

Moreover, the T2 (53.77%), N0 (64.41%), and M0 

(67.12%) showed the highest percentage. It can be seen 

that 99.61% were primary lung cancer. 

 

High CTSL2 expression in LUAD 

 

The expression of CTSL2 in lung adenocarcinoma and 

normal lung tissues were compared (Figure 1A). The 

tumor CTSL2 level was significantly increased (P < 

0.001) in comparison with normal tissue. The 

comparison of tumor and paired normal tissue further 

verified the high CTSL2 expression in LUAD (P < 

0.001; Figure 1B). 

 

Correlation between CTSL2 expression and clinical 

characteristics 

 

As shown in Table 2 and Figure 2, high CTSL2 

expression was significantly associated with age (P = 

0.02), vital status (P < 0.001), and T classification (P = 

0.03). Meanwhile, gender, stage, N and M classification, 

and residual tumor showed no significant differences. 

 

High CTSL2 expression is an independent risk 

factor for overall survival 

 

As shown in Figure 3A, high expression of CTSL2 was 

associated with poor prognosis (P = 0.0011). The 

subgroup analysis (Figure 3B–3P) showed that high 

expression of CTSL2 was significantly associated with 

 

 
 

Figure 1. CTSL2 expression in lung adenocarcinoma tissues. (A) CTSL2 expression in normal and tumor tissues. (B) CTSL2 expression in 
paired tissues. 
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Table 1. Clinical characteristics of the lung adenocarcinoma patients. 

Characteristics N (%) 

Age (years)  

<55 71 (13.73) 

> = 55 427 (82.59) 

NA 19 (3.68) 

Gender  

Female 277 (53.58) 

Male 240 (46.42) 

Stage  

I 277 (53.58) 

II 122 (23.60) 

III 84 (16.25) 

IV 26 (5.03) 

NA 8 (1.55) 

T classification  

T1 170 (32.88) 

T2 278 (53.77) 

T3 47 (9.09) 

T4 19 (3.68) 

TX 3 (0.58) 

N classification  

N0 333 (64.41) 

N1 96 (18.57) 

N2 74 (14.31) 

N3 2 (0.39) 

NX 11 (2.13) 

NA 1 (0.19) 

M classification  

M0 347 (67.12) 

M1 25 (4.84) 

MX 141 (27.27) 

NA 4 (0.77) 

Radiation therapy  

No 400 (77.37) 

Yes 60 (11.61) 

NA 57 (11.03) 

Residual tumor  

R0 345 (66.73) 

R1 13 (2.51) 

R2 4 (0.77) 

RX 25 (4.84) 

NA 130 (25.15) 

Vital status  

Deceased 187 (36.17) 

Living 330 (63.83) 

Sample type  

Primary tumor 515 (99.61) 

Recurrent tumor 2 (0.39) 

Abbreviations: NA: not available; X represents uncertain. 

 

poor prognosis in stage I (P = 0.025), N0 (P = 0.015), 

and M0 (P = 0.0065). As shown in Table 3, the high 

expression of CTSL2 was significantly correlated with 

poor overall survival (HR = 1.62, 95% CI = 1.21–2.18, 

P = 0.001). As shown in Table 3 and Figure 4, high 

CTSL2 expression was confirmed to be an independent 

risk factor for overall survival (HR = 1.52, 95% CI = 

1.12–2.05, P = 0.006). 



 

www.aging-us.com 22318 AGING 

Table 2. Logistic analysis of the association between CTSL2 expression and clinical characteristics. 

Characteristics Total High Low χ2 P 

Age <55 71 42 (17.65) 29 (11.15) 3.771 0.052 
 > = 55 427 196 (82.35) 231 (88.85)   

Gender Female 277 123 (50.2) 154 (56.62) 1.882 0.170 
 Male 240 122 (49.8) 118 (43.38)   

Stage I 277 123 (50.62) 154 (57.89) 2.778 0.423 
 II 122 64 (26.34) 58 (21.8)   

 III 84 43 (17.7) 41 (15.41)   

 IV 26 13 (5.35) 13 (4.89)   

T classification T1 170 67 (27.35) 103 (37.87) 11.503 0.019 
 T2 278 147 (60) 131 (48.16)   

 T3 47 24 (9.8) 23 (8.46)   

 T4 19 7 (2.86) 12 (4.41)   

 TX 3 0 (0) 3 (1.1)   

N classification N0 333 149 (60.82) 184 (67.9) 10.893 0.023 
 N1 96 55 (22.45) 41 (15.13)   

 N2 74 37 (15.1) 37 (13.65)   

 N3 2 2 (0.82) 0 (0)   

 NX 11 2 (0.82) 9 (3.32)   

M classification M0 347 164 (67.21) 183 (68.03) 0.210 0.902 
 M1 25 13 (5.33) 12 (4.46)   

 MX 141 67 (27.46) 74 (27.51)   

Radiation 
therapy 

No 400 179 (84.83) 221 (88.76) 1.222 0.269 

 Yes 60 32 (15.17) 28 (11.24)   

Residual tumor R0 345 173 (89.18) 172 (89.12) 1.733 0.677 
 R1 13 5 (2.58) 8 (4.15)   

 R2 4 3 (1.55) 1 (0.52)   

 RX 25 13 (6.7) 12 (6.22)   

Vital status Deceased 187 107 (43.67) 80 (29.41) 10.746 0.001 
 Living 330 138 (56.33) 192 (70.59)   

Sample type Primary tumor 515 243 (99.18) 272 (100) 0.614 0.433 

  Recurrent tumor 2 2 (0.82) 0 (0)     

X represents uncertain. 

 

Diagnostic value of CTSL2 for LUAD 

 

The ROC curves were drawn to examine the diagnostic 

value of for LUAD. The area was 0.881, indicating a 

modest diagnostic value of CTSL2 expression (Figure 

5A). As shown in Figure 5B–5E, the AUC values were 

0.763 for stage I, 0.827 for stage II, 0.816 for stage III, 

and 0.771 for stage IV, respectively. Furthermore, a 

nomogram model was established for predicting the 

survival probability of LUAD patients in different 

years, which involved stage and CTSL2 expression 
(Figure 6). To evaluate the discrimination and 

performance of the model, DCA, calibration, and ROC 

curves were plotted, indicating that the nomogram was 

stable in predicting the prognosis of LUAD patients 

(Supplementary Figure 1). 

 

CTSL2-related signaling pathways by GSEA 

 

The gene set enrichment analysis (GSEA) was carried 

out to identify differentially activated signaling 

pathways in low and high expression of CTSL2. As 

shown in Table 4, the significant gene sets enriched in 

the high CTSL2 expression were observed. As shown 

in Figure 7A–7K, different enrichments were observed 
in cell cycle, basal transcription factors, spliceosome, 

p53 signaling pathway, oocyte meiosis, mismatch 

repair, DNA replication, ubiquitin mediated 
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Figure 2. CTSL2 expression of patients with lung adenocarcinoma grouped by (A) age, (B) gender, (C) stage, (D) vital status, (E) T 

classification, (F) N classification, (G) M classification, and (H) residual tumor. 

 

 
 

Figure 3. Kaplan-Meier curve for overall survival in lung adenocarcinoma. (A) CTSL2 in all tumors; (B–G) Subgroup analysis for stage 

I/II, III/IV, I, II, III, and IV; (H–P) Subgroup analysis for T1, T2, T3, T4, N0, N1, N2, M0, and M1. 
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Table 3. Univariate and multivariate Cox regression analyses of clinical characteristics associated with overall 
survival. 

Characteristics 
Univariate analysis Multivariate analysis 

HR 95% CI P HR 95% CI P 

Age 0.82 0.55–1.22 0.322    

Gender 1.05 0.78–1.40 0.760    

Stage 1.68 1.47–1.93 <0.001 1.54 1.24–1.92 <0.001 

T classification 1.52 1.26–1.82 <0.001 1.20 0.99–1.45 0.064 

N classification 1.67 1.41–1.97 <0.001 1.11 0.89–1.40 0.357 

M classification 1.40 1.04–1.90 0.029 0.92 0.67–1.26 0.611 

Radiation therapy 1.25 0.89–1.75 0.199    

Residual tumor 1.20 1.01–1.42 0.037 1.10 0.92–1.30 0.310 

CTSL2 expression 1.62 1.21–2.18 0.001 1.52 1.12–2.05 0.006 

Abbreviations: HR: hazard ratio; CI: confidence interval. 

 

proteolysis, nucleotide excision repair, homologous 

recombination, and base excision repair. 

 

Validation using independent external database 

 

Two independent external datasets were used to 

validate the prognostic value of CTSL2 expression. By 

analyzing GSE30219, we found patients with high 

CTSL2 expression showed decreased overall survival 

(Figure 8A–8H). Consistently, decreased overall 

survival was also observed in patients with high 

CTSL2 expression by analyzing GSE50081 (Figure 

8I–8P). Furthermore, 12 distinct LUAD datasets 

(including Beer Lung, Bhattacharjee Lung, Garber 

Lung, Hou Lung, Landi Lung, Okayama Lung, 

Selamat Lung, Stearman Lung, Su Lung, TCGA Lung, 

Weiss Lung, and Yamagata Lung) indicated the 

CTSL2 expression was significantly increased by 

pooled analysis in the Oncomine database (Figure 9A–

9B) [17–27]. Besides, significantly increased CTSL2 

expression was observed in the TIMER database 

(Figure 9C). Of note, high expression of CTSL2 is 

usually found in different kinds of solid tumors, 

including lung cancer, cervical carcinoma, 

cholangiocarcinoma, colorectal cancer, et al. 

 

High CTSL2 expression in LUAD tissue and cell  

 

As shown in Figure 10A, CTSL2 expression was 

significantly higher in LUAD than adjacent normal 

tissue (P < 0.001). Besides, the CTSL2 expression was 

significantly increased (P < 0.01) in lung cancer cell 

lines in comparison with normal cell lines (Figure 10B). 

Notably, A549 cell line showed the highest CTSL2 

expression among all the lung cancer cell lines, and 

used for the subsequent experiments. 

 

CTSL2 promoted the proliferation and migration of 

A549 cells 

 

The function of CTSL2 on A549 cell proliferation was 

studied by transfection of siRNA and non-silencing 

 

 
 

Figure 4. Forest plot of the multivariate Cox regression analysis in lung adenocarcinoma. 
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RNA sequences. As shown in Figure 10C, the qRT-

PCR was performed to validate the over-expression and 

knockdown efficiency. It can be observed that CTSL2 

expression was significantly decreased after transfection 

of si-CTSL2 (P < 0.01), and increased after transfection 

of O-CTSL2 in A549 cells (P < 0.01).  

 

 
 

Figure 5. Diagnostic value of CTSL2 expression in lung adenocarcinoma. (A) ROC curve for CTSL2 in normal lung tissue and tumor; 

(B–E) Subgroup analysis for stage I, II, III, and IV. 

 

 
 

Figure 6. Nomogram for predicting probability of patients with 1-, 2- and 3-year overall survival. 1-, 3- and 5-year related 

survival probabilities were obtained by draw a line straight down to the Risk axis. 
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Table 4. Gene sets enriched in the high CTSL2 expression phenotype. 

Gene set name Size ES NES 
NOM  

p-value 
FDR  

q-value 

KEGG_CELL_CYCLE 118 –0.654 –1.935 <0.001 0.103 

KEGG_BASAL_TRANSCRIPTION_FACTORS 35 –0.557 –1.909 <0.001 0.069 

KEGG_SPLICEOSOME 114 –0.522 –1.894 0.008 0.055 

KEGG_P53_SIGNALING_PATHWAY 67 –0.561 –1.829 0.002 0.079 

KEGG_OOCYTE_MEIOSIS 112 –0.499 –1.795 0.006 0.081 

KEGG_MISMATCH_REPAIR 23 –0.714 –1.781 0.002 0.078 

KEGG_DNA_REPLICATION 36 –0.769 –1.770 0.002 0.073 

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 134 –0.323 –1.753 0.019 0.074 

KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 –0.533 –1.724 0.022 0.085 

KEGG_HOMOLOGOUS_RECOMBINATION 26 –0.723 –1.627 0.006 0.146 

KEGG_BASE_EXCISION_REPAIR 33 –0.515 –1.580 0.046 0.161 

Abbreviations: ES: enrichment score; NES: normalized enrichment score; NOM: nominal; FDR: false discovery rate. 

 

 

 
 

Figure 7. Enrichment plots from GSEA of (A) cell cycle, (B) basal transcription factors, (C) spliceosome, (D) p53 signaling pathway, (E) oocyte 

meiosis, (F) mismatch repair, (G) DNA replication, (H) ubiquitin mediated proteolysis, (I) nucleotide excision repair, (J) homologous 
recombination, and (K) base excision repair in lung adenocarcinoma cases with high CTSL2 expression. 
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The role of CTSL2 on proliferation and migration of 

A549 cells was studied. As shown in Figure 11A, over-

expression and knockdown of CTSL2 promoted and 

inhibited the proliferation of A549 cells, respectively. 

The results of CCK-8 were verified by the LIVE/DEAD 

staining (Figure 11B–11C). Compared with control and 

si-NC group, si-CTSL2 group showed significantly 

higher percentage of dead cells (P < 0.01). The results 

of colony formation were consistent with those of 

CCK-8 and LIVE/DEAD staining (Figure 11D–11E). 

Over-expression of CTSL2 showed significantly 

increased number of colonies (P < 0.05). The cell 

migration assay showed that si-CTSL2 significantly 

reduced and O-CTSL2 significantly increased the 

migration distance of A549 cells (Figure 11F–11G). 
 

DISCUSSION 
 

Exploration of biomarker have been performed in 

cancer such as breast cancer and liver cancer [28–30]. 

 

 
 

Figure 8. Kaplan–Meier curve for overall survival in lung adenocarcinoma in the validation datasets GSE30219 ( A–H) and GSE50081 

(I–P). 
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However, not too much progress has been made in 

LUAD. We first demonstrated that CTSL2 was highly 

expressed in LUAD, which was significantly associated 

with age, vital status, and T classification. Moreover, 

CTSL2 showed the moderate diagnostic value for 

LUAD. Data mining has been emerged as an approach 

to find novel biomarkers [31, 32]. The existed 

biomarkers have not shown satisfied diagnostic and 

 

 
 

Figure 9. Expression analysis of CTSL2 by Oncomine and TIMER databases. (A) Expression of CTSL2 in different types of human 

cancers in the Oncomine database; (B) CTSL2 is over-expression (red) in lung adenocarcinoma by Oncomine meta-analysis comparing with 
normal tissue; (C) Expression of CTSL2 in different types of human cancers in the TIMER database. 
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Figure 10. CTSL2 expression in human LUAD tissues and cell lines. (A) Expression of CTSL2 in 35 LUAD tissues and adjacent normal 

tissues by qRT-PCR; (B) CTSL2 expression levels in HaCaT, BEAS-2B, A549, SPCA-1, 95-D, PG-49, and NCI-H292 by qRT-PCR; (C) CTSL2 
expression in A549 cells transfected with control, si-NC, si-CTSL2, and O-CTSL2 by qRT-PCR. **P < 0.01. 

 

 
 

Figure 11. CTSL2 promoted cell proliferation and migration of LUAD cells. (A) CCK-8 proliferation curve of A549 cells; (B) Co-staining 

of calcein AM and PI of A549 cells, the live cells were stained with green fluorescence, and the dead cells were stained with red fluorescence; 
(C) Percentage of dead cells in different groups; (D) Colony formation of A549 cells; (E) Relative number of colonies in different groups; (F) 
Cell migration of A549 cells during 24 h; (G) Migration distance in different groups. *P < 0.05, **P < 0.01. All the experiments were repeated 
for three times. 
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prognostic value [33–35]. Therefore, it is necessary to 

explore novel biomarkers to further solve this problem 

[36–37]. The thymidine kinase 1 was found to improve 

its diagnostic value for LUAD when combined with 

carcinoembryonic antigen [38]. Moreover, newly 

reported biomarkers including uridine-cytidine kinase 2 

and long non-coding RNA XLOC_009167 have shown 

potential value in prognosis [39–40]. Together with 

these findings, our finding that high CTSL2 expression 

predicts poor prognosis in patients with LUAD also 

contributes to the biomarker exploration for clinical 

practice. 

 

CTSL2 belongs to the cathepsins family, which are 

involved in proliferation, invasion, and metastasis of 

different kinds of cancers. Upregulation of cathepsin L 

protein was observed in the conditional K-rasG12D 

mouse LUAC model [41]. High CTSL2 expression 

was found in squamous cell carcinoma by high-

density oligonucleotide microarray [14]. mRNA level 

of CTSL2 is significantly increased in endometrial 

cancer especially in G3 tumors, indicating it may lead 

to the progression of endometrial cancer [42]. In our 

study, we found high CTSL2 expression in LUAD 

tissue and cell by performing bioinformatic analysis 

and q-PCR. Similarly, Michael et al. reported the 

prognostic significance of CTSL2 in breast ductal 

carcinoma in situ [43]. Moreover, our GSEA analysis 

suggested that high CTSL2 expression may be 

associated with cell cycle, basal transcription factors, 

spliceosome, p53 signaling pathway, oocyte meiosis, 

et al. The phenomenon that CTSL2 promoted the 

proliferation and migration of A549 cells may be 

associated with these biological processes and signaling 

pathways, which needs to be investigated in the future.  

 

In conclusion, high expression of CTSL2 was found in 

LUAD and associated with clinical progression. High 

CTSL2 expression was an independent risk factor for 

OS in LUAD patients. CTSL2 promoted the 

proliferation and migration of LUAD cells. CTSL2 

may serve as a biomarker for diagnosis and prognosis 

of LUAD. High CTSL2 expression predicts poor 

prognosis in patients with LUAD. 

 

MATERIALS AND METHODS 
 

Data mining 

 

Public TCGA (The Cancer Genome Atlas) database was 

analyzed for data mining with no ethical concern, 

involving 517 LUAD patients. The RNA expression of 

CTSL2 was box-plotted. ROC (Receiver operating 

characteristic) curve was drawn with the AUC (area 

under curves) calculated using pROC package [44]. The 

high-expressed and low-expressed groups were 

determined by identified CTSL2 threshold level. The 

survival package in R and Cox model was used as 

previously reported [45]. The covariates included in the 

multivariate Cox regression model were stage, T, N, M 

classification, residual tumor, and CTSL2 expression. 

GSE30219 (analyzing 293 lung tumor and 14 normal 

lung specimen) and GSE50081 (analyzing 181 Stage I 

and II non-small cell lung carcinoma) were used for 

external validation. Evaluation of subgroups was 

performed as well. GSEA was carried out for 

identification of CTSL2 expression-related genes and 

examination of the survival significances. Oncomine 

database and TIMER database were used for validation 

of CTSL2 expression. 

 

Sample collection 

 

We collected LUAD and adjacent tissues from 35 

patients. The samples were kept in liquid nitrogen 

immediately after resection, and stored at −80°C. The 

study was approved by the First Hospital of Jilin 

University Ethics Committee and conformed to the 

Declaration of Helsinki. 

 

Cell culture and cell transfection 

 

BEAS-2B, HaCaT, A549, SPCA-1, 95-D, NCI-H292 

and PG-49 cell lines were purchased from American 

Tissue Culture Collection. BEAS-2B, A549, 95-D, and 

NCI-H292 and were cultured in Dulbecco’s modified 

Eagle’s medium supplemented with 10% fetal bovine 

serum. HaCaT, SPCA-1, and PG-49 were cultured in 

Roswell Park Memorial Institute-1640 supplemented 

with 10% fetal bovine serum. Antibiotics penicillin and 

streptomycin (1 %) were used. The cells were cultured 

at 37°C with 5% CO2. The lentiviral vector containing 

siRNA targeting CTSL2 was constructed. As previously 

reported, the transfection of four groups including (a) 

si-CTSL2: si-CTSL2 transfected group, (b) O-CTSL2: 

CTSL2 overexpressed group, (c) si-NC: an empty 

lentiviral vector transfected group as negative control, 

(d) control: un-transfected group. The validation of 

over-expression and knockdown efficiency was 

performed using qRT-PCR.  

 

qRT-PCR 

 

The total RNA extraction was carried out following the 

instruction of manufacturer (Invitrogen, Thermo Fisher 

Scientific, USA). Then, the RNA was reversely 

transcribed into cDNA using the kit (Roche, Basel, 

Switzerland). The qRT-PCR was performed and the 

expression of CTSL2 was quantified using 2−ΔΔCt 
method. The primers were as follows (5′-3′): CTSL2 

forward primer, GAAGTCAGAAAGGAAGTACAGA 

GG; CTSL2 reverse primer, CTCTCCAGTCAACAGA 
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TCGTG; β-actin forward primer, ACCCCAAAGCCAA 

CAGA; β-actin reverse primer, CCAGAGTCCATCAC 

AATACC. 

 

Cell proliferation assay 

 

First, plasmid was added into each plate, followed 

by culturing for 24 h. After adding CCK-8 solution 

(10 μL), the cells were placed for 20 min. The 490 nm 

absorbance was measured, and the cell viability was 

calculated. Calcein AM and PI co-staining and colony 

formation assay were further performed [44].  

 

Wound healing assay 

 

Calcein AM was used to stain the live cells [44]. The 

cell migration was recorded using fluorescence 

microscope, and the migration distance was calculated. 

 

Statistical analysis 

 

R version 3.5.2 package and ggplot2 package in R were 

used for bioinformatics analysis [45–46]. The Wilcoxon 

rank-sum test and Kruskal-Wallis test were used. The 

chi-squared test and Fisher's exact test were used for 

assessing association. Kaplan-Meier and Cox regression 

were performed to evaluate the effect of CTSL2 

expression in the overall survival [47]. GSEA was 

performed using data from TCGA. The student’s t-test 

(unpaired, two-tailed) was used to analyze experiment 

data. P < 0.05 was used as the threshold of statistical 

significance. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Evaluation of the discrimination and performance of the nomogram model. DCA (top panel), 

calibration plots (middle panel) and ROC (bottom panel) of the nomogram for the probability of OS at 1, 3 and 5 years.  


