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ABSTRACT

Cathepsin like 2 (CTSL2) is a lysosomal cysteine protease, and may be associated with tumor metastasis.
However, CTSL2 has not been reported as a biomarker in lung adenocarcinoma (LUAD). In this study,
bioinformatics analysis using data from The Cancer Genome Atlas was performed. Wilcoxon rank-sum test
and chi-square test were carried out. Kaplan-Meier and Cox regression were performed to evaluate the effect
of CTSL2 expression in the overall survival. Our results indicated that CTSL2 in tumor was significantly higher
than that in normal tissue (P < 0.001). High CTSL2 expression was significantly associated with age (P = 0.02),
vital status (P < 0.001), and T classification (P = 0.03), and correlated with poor overall survival (HR = 1.62,
95% Cl = 1.21-2.18, P = 0.001). CTSL2 expression was an independent risk factor for overall survival in
patients with LUAD (HR = 1.52, 95% Cl = 1.12-2.05, P = 0.006). A nomogram was plotted for illustration of
CTSL2 expression on the risk of LUAD. Furthermore, in vitro cell experiments showed the CTSL2 promoted the
proliferation and migration of A549 cells. In summary, high CTSL2 expression predicts poor prognosis in
patients with LUAD.

INTRODUCTION is still poor [6]. The main reason is the polymer
heterogeneity of lung cancer [7]. Since the current
Lung cancer is malignant with high incidence and diagnostic methods relying on low-dose CT scans and
mortality all over the world [1, 2]. The 5-year survival classic serum tumor markers are limited and not specific,
rate of lung cancer is 4-17% based on different stages LUAD is usually at an advanced stage when diagnosed
when diagnosed [3]. Lung adenocarcinoma (LUAD) is [8, 9]. Therefore, it is greatly significant to carry out
the most common type of lung cancer in histology more in-depth explorations of LUAD, and to find new
[1, 2]. biomarkers related to its diagnosis and prognosis.
The pathogenesis of LUAD is complicated [4]. In Metastatic progression is one of the biggest challenges,
addition to genetic factors, the main risk factors are which limits the effect of cancer therapies. Proteolysis is
smoking, asbestos, radon and other environmental factors involved in the invasion by cleavage of proteins that
[5]. Although the targeting and immunotherapy of LUAD mediate adherence to neighboring cells. Cathepsins are a
have made great progresses in recent years, its prognosis family of lysosomal proteases involved in proliferation,
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invasion and metastasis of different kinds of cancers [10].
The human cysteine cathepsin family is comprised of
eleven members including Cat B, C,F, H, L, K, O, S, V,
W, and X/Z, which shares a conserved active site.
CTSL2 gene encodes cathepsin like 2 (cathepsin L2, also
known as cathepsin V) [11]. CTSL2 is a lysosomal
cysteine protease, and may be associated with tumor
metastasis [10, 12]. Overexpression of CTSL2 has been
found in various human cancers, including breast cancer,
squamous cell carcinoma, thymic carcinoma, et al. [13—
15]. Besides, CTSL2 is regarded as a potential drug
target [16]. These findings indicate that CTSL2 may be a
biomarker for cancer diagnosis and prognosis. Therefore,
we focus on the role of CTSL2 in LUAD.

In this study, bioinformatics analysis of CTSL2 in
LUAD was performed. The association between CTSL2
expression and clinical features in LUAD was studied.
CTSL2 expression in the overall survival and on the
risk of LUAD was illustrated. Furthermore, in vitro cell
experiments of CTSL2 expression on cell proliferation
and migration of LUAD cells were carried out. CTSL2
is found to have predictive value, and high CTSL2
expression is in association with poor prognosis of
LUAD.

RESULTS
Characteristics of patients with lung cancer

Totally, 517 LUAD patients were involved, including 277
(53.58%) females, and 240 (46.42%) males (Table 1). As
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for LUAD stage, there were 277 (53.58%) in I, 122
(23.60%) in 11, 84 (16.25%) in 111, and 26 (5.03%) in IV.
Moreover, the T2 (53.77%), NO (64.41%), and MO
(67.12%) showed the highest percentage. It can be seen
that 99.61% were primary lung cancer.

High CTSL2 expression in LUAD

The expression of CTSL2 in lung adenocarcinoma and
normal lung tissues were compared (Figure 1A). The
tumor CTSL2 level was significantly increased (P <
0.001) in comparison with normal tissue. The
comparison of tumor and paired normal tissue further
verified the high CTSL2 expression in LUAD (P <
0.001; Figure 1B).

Correlation between CTSL2 expression and clinical
characteristics

As shown in Table 2 and Figure 2, high CTSL2
expression was significantly associated with age (P =
0.02), vital status (P < 0.001), and T classification (P =
0.03). Meanwhile, gender, stage, N and M classification,
and residual tumor showed no significant differences.

High CTSL2 expression is an independent risk
factor for overall survival

As shown in Figure 3A, high expression of CTSL2 was
associated with poor prognosis (P 0.0011). The
subgroup analysis (Figure 3B—3P) showed that high
expression of CTSL2 was significantly associated with
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Figure 1. CTSL2 expression in lung adenocarcinoma tissues. (A) CTSL2 expression in normal and tumor tissues. (B) CTSL2 expression in

paired tissues.
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Table 1. Clinical characteristics of the lung adenocarcinoma patients.

Characteristics N (%)
Age (years)
<55 71 (13.73)
> =55 427 (82.59)
NA 19 (3.68)
Gender
Female 277 (53.58)
Male 240 (46.42)
Stage
| 277 (53.58)
1 122 (23.60)
11 84 (16.25)
v 26 (5.03)
NA 8 (1.55)
T classification
T1 170 (32.88)
T2 278 (53.77)
T3 47 (9.09)
T4 19 (3.68)
TX 3(0.58)
N classification
NO 333 (64.41)
N1 96 (18.57)
N2 74 (14.31)
N3 2(0.39)
NX 11 (2.13)
NA 1(0.19)
M classification
MO 347 (67.12)
M1 25 (4.84)
MX 141 (27.27)
NA 4 (0.77)
Radiation therapy
No 400 (77.37)
Yes 60 (11.61)
NA 57 (11.03)
Residual tumor
RO 345 (66.73)
R1 13 (2.51)
R2 4 (0.77)
RX 25 (4.84)
NA 130 (25.15)
Vital status
Deceased 187 (36.17)
Living 330 (63.83)
Sample type
Primary tumor 515 (99.61)
Recurrent tumor 2 (0.39)

Abbreviations: NA: not available; X represents uncertain.

poor prognosis in stage | (P = 0.025), NO (P = 0.015),
and MO (P = 0.0065). As shown in Table 3, the high
expression of CTSL2 was significantly correlated with
poor overall survival (HR = 1.62, 95% CI = 1.21-2.18,

P = 0.001). As shown in Table 3 and Figure 4, high
CTSL2 expression was confirmed to be an independent
risk factor for overall survival (HR = 1.52, 95% CI =
1.12-2.05, P = 0.006).
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Table 2. Logistic analysis of the association between CTSL2 expression and clinical characteristics.

Characteristics Total High Low 1 P

Age <55 71 42 (17.65) 29 (11.15) 3.771 0.052
>=55 427 196 (82.35) 231 (88.85)

Gender Female 277 123 (50.2) 154 (56.62) 1.882 0.170
Male 240 122 (49.8) 118 (43.38)

Stage I 277 123 (50.62) 154 (57.89) 2.778 0.423
1 122 64 (26.34) 58 (21.8)
i 84 43 (17.7) 41 (15.41)
v 26 13 (5.35) 13 (4.89)

T classification ~ T1 170 67 (27.35) 103 (37.87) 11.503 0.019
T2 278 147 (60) 131 (48.16)
T3 47 24 (9.8) 23 (8.46)
T4 19 7 (2.86) 12 (4.41)
X 3 0 (0) 3 (1.1)

N classification NO 333 149 (60.82) 184 (67.9) 10.893 0.023
N1 96 55 (22.45) 41 (15.13)
N2 74 37 (15.1) 37 (13.65)
N3 2 2 (0.82) 0 (0)
NX 11 2 (0.82) 9 (3.32)

M classification MO 347 164 (67.21) 183 (68.03) 0.210 0.902
M1 25 13 (5.33) 12 (4.46)
MX 141 67 (27.46) 74 (27.51)

th]ae‘rj;";‘)t}',O” No 400 179 (84.83) 221 (88.76) 1.222 0.269
Yes 60 32 (15.17) 28 (11.24)

Residual tumor RO 345 173 (89.18) 172 (89.12) 1.733 0.677
R1 13 5 (2.58) 8 (4.15)
R2 4 3 (1.55) 1 (0.52)
RX 25 13 (6.7) 12 (6.22)

Vital status Deceased 187 107 (43.67) 80 (29.41) 10.746 0.001
Living 330 138 (56.33) 192 (70.59)

Sample type Primary tumor 515 243 (99.18) 272 (100) 0.614 0.433
Recurrent tumor 2 2 (0.82) 0 (0)

X represents uncertain.

Diagnostic value of CTSL2 for LUAD

The ROC curves were drawn to examine the diagnostic
value of for LUAD. The area was 0.881, indicating a
modest diagnostic value of CTSL2 expression (Figure
5A). As shown in Figure 5B-5E, the AUC values were
0.763 for stage I, 0.827 for stage Il, 0.816 for stage IlI,
and 0.771 for stage IV, respectively. Furthermore, a
nomogram model was established for predicting the
survival probability of LUAD patients in different
years, which involved stage and CTSL2 expression
(Figure 6). To evaluate the discrimination and
performance of the model, DCA, calibration, and ROC
curves were plotted, indicating that the nomogram was

stable in predicting the prognosis of LUAD patients
(Supplementary Figure 1).

CTSL2-related signaling pathways by GSEA

The gene set enrichment analysis (GSEA) was carried
out to identify differentially activated signaling
pathways in low and high expression of CTSL2. As
shown in Table 4, the significant gene sets enriched in
the high CTSL2 expression were observed. As shown
in Figure 7A-7K, different enrichments were observed
in cell cycle, basal transcription factors, spliceosome,
p53 signaling pathway, oocyte meiosis, mismatch
repair, DNA replication, ubiquitin  mediated
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Figure 2. CTSL2 expression of patients with lung adenocarcinoma grouped by (A) age, (B) gender, (C) stage, (D) vital status, (E) T

classification, (F) N classification, (G) M classification, and (H) residual tumor.
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Figure 3. Kaplan-Meier curve for overall survival in lung adenocarcinoma. (A) CTSL2 in all tumors; (B—G) Subgroup analysis for stage
1/1L, 1/1V, 1, 10, 11, and IV; (H=P) Subgroup analysis for T1, T2, T3, T4, NO, N1, N2, MO, and M1.

Www.aging-us.com 22319 AGING



Table 3. Univariate and multivariate Cox regression analyses of clinical characteristics associated with overall

survival.

Univariate analysis

Multivariate analysis

Characteristics

HR 95% ClI P HR 95% CI P

Age 0.82 0.55-1.22 0.322

Gender 1.05 0.78-1.40 0.760

Stage 1.68 1.47-1.93 <0.001 1.54 1.24-1.92 <0.001
T classification 1.52 1.26-1.82 <0.001 1.20 0.99-1.45 0.064
N classification 1.67 1.41-1.97 <0.001 1.11 0.89-1.40 0.357
M classification 1.40 1.04-1.90 0.029 0.92 0.67-1.26 0.611
Radiation therapy 1.25 0.89-1.75 0.199

Residual tumor 1.20 1.01-1.42 0.037 1.10 0.92-1.30 0.310
CTSL2 expression 1.62 1.21-2.18 0.001 1.52 1.12-2.05 0.006

Abbreviations: HR: hazard ratio; Cl: confidence interval.

proteolysis, nucleotide excision repair, homologous
recombination, and base excision repair.

Validation using independent external database

Two independent external datasets were used to
validate the prognostic value of CTSL2 expression. By
analyzing GSE30219, we found patients with high
CTSL2 expression showed decreased overall survival
(Figure 8A-8H). Consistently, decreased overall
survival was also observed in patients with high
CTSL2 expression by analyzing GSE50081 (Figure
81-8P). Furthermore, 12 distinct LUAD datasets
(including Beer Lung, Bhattacharjee Lung, Garber
Lung, Hou Lung, Landi Lung, Okayama Lung,
Selamat Lung, Stearman Lung, Su Lung, TCGA Lung,
Weiss Lung, and Yamagata Lung) indicated the
CTSL2 expression was significantly increased by
pooled analysis in the Oncomine database (Figure 9A—
9B) [17-27]. Besides, significantly increased CTSL2
expression was observed in the TIMER database

(Figure 9C). Of note, high expression of CTSL2 is
usually found in different kinds of solid tumors,
including lung  cancer, cervical carcinoma,
cholangiocarcinoma, colorectal cancer, et al.

High CTSL2 expression in LUAD tissue and cell

As shown in Figure 10A, CTSL2 expression was
significantly higher in LUAD than adjacent normal
tissue (P < 0.001). Besides, the CTSL2 expression was
significantly increased (P < 0.01) in lung cancer cell
lines in comparison with normal cell lines (Figure 10B).
Notably, A549 cell line showed the highest CTSL2
expression among all the lung cancer cell lines, and
used for the subsequent experiments.

CTSL2 promoted the proliferation and migration of
A549 cells

The function of CTSL2 on A549 cell proliferation was
studied by transfection of siRNA and non-silencing

Multivariate analysis of overall survival in lung cancer patients

pvalue

Hazard ratio

stage <0.001 1.541(1.237-1.921) ——
T_classification 0.064 1.197(0.990-1.448) ——
N_classification 0.357 1.113(0.887-1.396) ——
M_classification 0.611 0.921(0.671-1.264) _
residual_tumor 0.310 1.095(0.919-1.305) ——

CTSL2 0.006 1.518(1.125-2.049) —E—

10 141 20
Hazard ratio

Figure 4. Forest plot of the multivariate Cox regression analysis in lung adenocarcinoma.
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RNA sequences. As shown in Figure 10C, the gRT- expression was significantly decreased after transfection

PCR was performed to validate the over-expression and of si-CTSL2 (P < 0.01), and increased after transfection
knockdown efficiency. It can be observed that CTSL2 of O-CTSL2 in A549 cells (P < 0.01).
A normal vs tumor B normal vs tumor in stage | c normal vs tumor in stage Il

e J

10 o8 08 04 02 0.0
1-specificity

D normal vs tumor in stage lll E normal vs tumor in stage IV
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Figure 5. Diagnostic value of CTSL2 expression in lung adenocarcinoma. (A) ROC curve for CTSL2 in normal lung tissue and tumor;
(B—E) Subgroup analysis for stage |, Il, I, and IV.
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Figure 6. Nomogram for predicting probability of patients with 1-, 2- and 3-year overall survival. 1-, 3- and 5-year related
survival probabilities were obtained by draw a line straight down to the Risk axis.
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Table 4. Gene sets enriched in the high CTSL2 expression phenotype.

Gene set name Size ES NES pl}lv(g:\Se qﬁ/glFfJ e
KEGG_CELL_CYCLE 118 -0.654 -1.935 <0.001 0.103
KEGG_BASAL_TRANSCRIPTION_FACTORS 35 -0.557 -1.909 <0.001 0.069
KEGG_SPLICEOSOME 114 -0.522 -1.894 0.008 0.055
KEGG_P53_SIGNALING_PATHWAY 67 -0.561 -1.829 0.002 0.079
KEGG_OOCYTE_MEIOSIS 112 -0.499 -1.795 0.006 0.081
KEGG_MISMATCH_REPAIR 23 -0.714 -1.781 0.002 0.078
KEGG_DNA_REPLICATION 36 -0.769 -1.770 0.002 0.073
KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 134 -0.323 -1.753 0.019 0.074
KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 -0.533 -1.724 0.022 0.085
KEGG_HOMOLOGOUS_RECOMBINATION 26 -0.723 -1.627 0.006 0.146
KEGG_BASE_EXCISION_REPAIR 33 -0.515 -1.580 0.046 0.161

Abbreviations: ES: enrichment score; NES: normalized enrichment score; NOM: nominal; FDR: false discovery rate.
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Figure 7. Enrichment plots from GSEA of (A) cell cycle, (B) basal transcription factors, (C) spliceosome, (D) p53 signaling pathway, (E) oocyte
meiosis, (F) mismatch repair, (G) DNA replication, (H) ubiquitin mediated proteolysis, (I) nucleotide excision repair, (J) homologous
recombination, and (K) base excision repair in lung adenocarcinoma cases with high CTSL2 expression.
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The role of CTSL2 on proliferation and migration of
Ab549 cells was studied. As shown in Figure 11A, over-
expression and knockdown of CTSL2 promoted and
inhibited the proliferation of A549 cells, respectively.
The results of CCK-8 were verified by the LIVE/DEAD
staining (Figure 11B-11C). Compared with control and
si-NC group, si-CTSL2 group showed significantly
higher percentage of dead cells (P < 0.01). The results
of colony formation were consistent with those of
CCK-8 and LIVE/DEAD staining (Figure 11D-11E).
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Over-expression of CTSL2 showed significantly
increased number of colonies (P < 0.05). The cell
migration assay showed that si-CTSL2 significantly
reduced and O-CTSL2 significantly increased the
migration distance of A549 cells (Figure 11F-11G).

DISCUSSION

Exploration of biomarker have been performed in
cancer such as breast cancer and liver cancer [28-30].
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Figure 8. Kaplan—Meier curve for overall survival in lung adenocarcinoma in the validation datasets GSE30219 (A-H) and GSE50081

(1-P).
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CTSL2 showed the moderate diagnostic value for
LUAD. Data mining has been emerged as an approach
to find novel biomarkers [31, 32]. The existed
biomarkers have not shown satisfied diagnostic and

However, not too much progress has been made in
LUAD. We first demonstrated that CTSL2 was highly
expressed in LUAD, which was significantly associated
with age, vital status, and T classification. Moreover,
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Figure 9. Expression analysis of CTSL2 by Oncomine and TIMER databases. (A) Expression of CTSL2 in different types of human
cancers in the Oncomine database; (B) CTSL2 is over-expression (red) in lung adenocarcinoma by Oncomine meta-analysis comparing with
normal tissue; (C) Expression of CTSL2 in different types of human cancers in the TIMER database.
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prognostic value [33-35]. Therefore, it is necessary to
explore novel biomarkers to further solve this problem
[36—37]. The thymidine kinase 1 was found to improve
its diagnostic value for LUAD when combined with
carcinoembryonic antigen [38]. Moreover, newly
reported biomarkers including uridine-cytidine kinase 2
and long non-coding RNA XLOC_009167 have shown
potential value in prognosis [39-40]. Together with
these findings, our finding that high CTSL2 expression
predicts poor prognosis in patients with LUAD also
contributes to the biomarker exploration for clinical
practice.

CTSL2 belongs to the cathepsins family, which are
involved in proliferation, invasion, and metastasis of
different kinds of cancers. Upregulation of cathepsin L
protein was observed in the conditional K-ras®2P
mouse LUAC model [41]. High CTSL2 expression
was found in squamous cell carcinoma by high-
density oligonucleotide microarray [14]. mRNA level
of CTSL2 is significantly increased in endometrial
cancer especially in G3 tumors, indicating it may lead
to the progression of endometrial cancer [42]. In our
study, we found high CTSL2 expression in LUAD
tissue and cell by performing bioinformatic analysis
and g-PCR. Similarly, Michael et al. reported the
prognostic significance of CTSL2 in breast ductal
carcinoma in situ [43]. Moreover, our GSEA analysis
suggested that high CTSL2 expression may be
associated with cell cycle, basal transcription factors,
spliceosome, p53 signaling pathway, oocyte meiosis,
et al. The phenomenon that CTSL2 promoted the
proliferation and migration of A549 cells may be
associated with these biological processes and signaling
pathways, which needs to be investigated in the future.

In conclusion, high expression of CTSL2 was found in
LUAD and associated with clinical progression. High
CTSL2 expression was an independent risk factor for
OS in LUAD patients. CTSL2 promoted the
proliferation and migration of LUAD cells. CTSL2
may serve as a biomarker for diagnosis and prognosis
of LUAD. High CTSL2 expression predicts poor
prognosis in patients with LUAD.

MATERIALS AND METHODS
Data mining

Public TCGA (The Cancer Genome Atlas) database was
analyzed for data mining with no ethical concern,
involving 517 LUAD patients. The RNA expression of
CTSL2 was box-plotted. ROC (Receiver operating
characteristic) curve was drawn with the AUC (area
under curves) calculated using pROC package [44]. The
high-expressed and low-expressed groups were

determined by identified CTSL2 threshold level. The
survival package in R and Cox model was used as
previously reported [45]. The covariates included in the
multivariate Cox regression model were stage, T, N, M
classification, residual tumor, and CTSL2 expression.
GSE30219 (analyzing 293 lung tumor and 14 normal
lung specimen) and GSE50081 (analyzing 181 Stage |
and Il non-small cell lung carcinoma) were used for
external validation. Evaluation of subgroups was
performed as well. GSEA was carried out for
identification of CTSL2 expression-related genes and
examination of the survival significances. Oncomine
database and TIMER database were used for validation
of CTSL2 expression.

Sample collection

We collected LUAD and adjacent tissues from 35
patients. The samples were kept in liquid nitrogen
immediately after resection, and stored at —80°C. The
study was approved by the First Hospital of Jilin
University Ethics Committee and conformed to the
Declaration of Helsinki.

Cell culture and cell transfection

BEAS-2B, HaCaT, A549, SPCA-1, 95-D, NCI-H292
and PG-49 cell lines were purchased from American
Tissue Culture Collection. BEAS-2B, A549, 95-D, and
NCI-H292 and were cultured in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine
serum. HaCaT, SPCA-1, and PG-49 were cultured in
Roswell Park Memorial Institute-1640 supplemented
with 10% fetal bovine serum. Antibiotics penicillin and
streptomycin (1 %) were used. The cells were cultured
at 37°C with 5% CO,. The lentiviral vector containing
SiRNA targeting CTSL2 was constructed. As previously
reported, the transfection of four groups including (a)
si-CTSL2: si-CTSL2 transfected group, (b) O-CTSL2:
CTSL2 overexpressed group, (¢) si-NC: an empty
lentiviral vector transfected group as negative control,
(d) control: un-transfected group. The validation of
over-expression and knockdown efficiency was
performed using qRT-PCR.

gRT-PCR

The total RNA extraction was carried out following the
instruction of manufacturer (Invitrogen, Thermo Fisher
Scientific, USA). Then, the RNA was reversely
transcribed into cDNA using the kit (Roche, Basel,
Switzerland). The gRT-PCR was performed and the
expression of CTSL2 was quantified using 2 4ACt
method. The primers were as follows (5'-3"): CTSL2
forward primer, GAAGTCAGAAAGGAAGTACAGA
GG; CTSL2 reverse primer, CTCTCCAGTCAACAGA
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TCGTG,; B-actin forward primer, ACCCCAAAGCCAA
CAGA,; B-actin reverse primer, CCAGAGTCCATCAC
AATACC.

Cell proliferation assay

First, plasmid was added into each plate, followed
by culturing for 24 h. After adding CCK-8 solution
(10 uL), the cells were placed for 20 min. The 490 nm
absorbance was measured, and the cell viability was
calculated. Calcein AM and PI co-staining and colony
formation assay were further performed [44].

Wound healing assay

Calcein AM was used to stain the live cells [44]. The
cell migration was recorded using fluorescence
microscope, and the migration distance was calculated.

Statistical analysis

R version 3.5.2 package and ggplot2 package in R were
used for bioinformatics analysis [45-46]. The Wilcoxon
rank-sum test and Kruskal-Wallis test were used. The
chi-squared test and Fisher's exact test were used for
assessing association. Kaplan-Meier and Cox regression
were performed to evaluate the effect of CTSL2
expression in the overall survival [47]. GSEA was
performed using data from TCGA. The student’s t-test
(unpaired, two-tailed) was used to analyze experiment
data. P < 0.05 was used as the threshold of statistical
significance.
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Supplementary Figure 1. Evaluation of the discrimination and performance of the nomogram model. DCA (top panel),
calibration plots (middle panel) and ROC (bottom panel) of the nomogram for the probability of OS at 1, 3 and 5 years.
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