
 

www.aging-us.com 22345 AGING 

INTRODUCTION 
 

Aneurysmal subarachnoid hemorrhage (aSAH) is a life-

threatening medical event caused by the rupture of an 

intracranial aneurysm, resulting in blood leakage into 

the subarachnoid space [1]. According to the relevant 

literature, aSAH accounts for 75%-80% of nontraumatic 

SAH, with an annual incidence of approximately 6-16 

cases per 100,000 individuals worldwide [2]. The 

mortality rate of SAH is estimated to be approximately 

40-50%, with a 36% mortality rate within 30 days of the 

development of symptoms [3–5].  
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ABSTRACT 
 

Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening medical condition with a high mortality 
and disability rate. aSAH has an unclear pathogenesis, and limited treatment options are available. Here, we 
aimed to identify critical genes involved in aSAH pathogenesis using peripheral blood gene expression data of 
43 patients with aSAH due to ruptured intracranial aneurysms and 18 controls with headache, downloaded 
from Gene Expression Omnibus. These data were used to construct a co-expression network using weighted 
gene co-expression network analysis (WGCNA). The biological functions of the hub genes were explored, and 
critical genes were selected by combining with differentially expressed genes analysis. Fourteen modules 
were identified by WGCNA. Among those modules, red, blue, brown and cyan modules were closely 
associated with aSAH. Moreover, 364 hub genes in the significant modules were found to play important 
roles in aSAH. Biological function analysis suggested that protein biosynthesis-related processes and 
inflammatory responses-related processes were involved in the pathology of aSAH pathology. Combined 
with differentially expressed genes analysis and validation in 35 clinical samples, seven gene (CD27, ANXA3, 
ACSL1, PGLYRP1, ALPL, ARG1, and TPST1) were identified as potential biomarkers for aSAH, and three genes 
(ANXA3, ALPL, and ARG1) were changed with disease development, that may provide new insights into 
potential molecular mechanisms for aSAH. 
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The most common symptom of aSAH is severe 

headache, usually accompanied by nausea, vomiting, 

photophobia, and neck rigidity [6]. Moreover, as the 

disease progresses, patients may also experience 

symptoms such as drowsiness, confusion, focal 

neurological deficits, hemiparesis, and coma [6]. 

According to previous reports, approximately 30% to 

40% of the aSAH case may present with a warning 

headache which occurs a few weeks before 

hemorrhage [7–10].  

 

The prognosis of patients with aSAH is mainly related 

to early brain injury, early cerebral vasospasms, and 

delayed cerebral ischemia, which is considered to be the 

main cause of unfavorable outcomes [11]. Several 

studies suggested that severe early brain injury after 

aSAH may be the leading factor contributing to death 

and poor prognosis in aSAH [12, 13]. Early 

identification of individuals with aSAH and timely 

adjustment of treatment are the main approaches for 

improving patient prognosis. 

 

In order to identify aSAH samples at an early stage, we 

hypothesized that potential biomarkers may exit in the 

peripheral blood, for prediction of aSAH. Accordingly, in 

this study, we analysed the peripheral blood samples of 43 

patients with aSAH due to ruptured intracranial 

aneurysms and those of 18 individuals with headaches 

using the weighted gene co-expression analysis 

(WGCNA) to select hub genes associated with aSAH. 

Subsequently, critical genes were identified by combining 

these data with differentially expressed genes (DEG) 

analysis and validation in 35 clinical samples. We 

identified three genes, ALPL, ANAXA3 and ARG1, that 

may be associated with aSAH disease progression. The 

workflow of the current analysis is shown in Figure 1. 

 

RESULTS 
 

Data processing 

 

For the data matrix, 12,095 unique genes were 

annotated with GPL10558 platform annotation file, and 

7,987 of these genes were found to be protein-coding 

genes after referring to the human genome assembly 

GRCh38. The dataset included 43 aSAH samples and 

18 control samples; no outlying samples were identified 

with the criterion Z.ku lower than the -5 base on 

Euclidean distance based sample network analysis. 

Thus, all samples expression data were applied to 

construct the co-expression network. 

 

Weighted gene co-expression network construction  

 

In WGCNA, we calculated the soft thresholding power 

base on the scale-free topology criterion using the 

pickSoft Threshold function. A beta value of 3 (R2 > 

0.9) was chosen to construct the gene network by 

applying the default WGCNA approach (Figure 2A). In 

this analysis, 21 modules were identified with a 

minimum module size of 30, the medium sensitivity of 

2 to branch splitting. We merged the modules with their 

pairwise correlation is larger than 0.8 so that to avoid 

modules eigengenes are highly correlated. Finally, 14 

modules were picked out and they were displayed in 

Figure 2B. 

 

Identification of significant modules 

 

To select modules that were significantly associated 

with aSAH, the association between module eigengenes 

and clinical characteristics was evaluated with Pearson 

correlation analysis. Figure 2C shows the correlations 

between module eigengenes and aSAH. Among the 

modules, red (P = 0.004), blue (P = 1e-05), brown (P = 

5e-04) and cyan (P = 7e-06) were closely associated 

with aSAH (P < 0.01). Genes with a high significance 

for aSAH and with high module membership in the 

selected four modules were identified depending on the 

gene significance (GS) and module membership (MM) 

measures. GS and MM were highly correlated in red 

(correlation coefficient = 0.77, P = 1e-09), blue 

(correlation coefficient = 0.94, P = 1e-200), brown 

(correlation coefficient = -0.85, P = 1e-200), and cyan 

(correlation coefficient = -0.91, P = 1e-200) modules, 

indicating that the red and blue modules contained 

genes with high positive correlations with aSAH, 

whereas the brown and cyan modules contained genes 

with negative correlations with aSAH (Figure 3A). The 

gene expression of genes in the aSAH group in the red 

(P < 0.01) and blue (P < 0.0001) modules was 

significantly higher than that of the genes in the control 

group, whereas the opposite results was observed for 

the brown (P < 0.001) and cyan (P < 0.0001) modules 

(Figure 3B).  

 

Identification of hub genes and functional 

enrichment analysis 

 

In each significant module, hub genes were identified 

based on the following criteria: absolute value of  

the correlation between the gene and aSAH higher 

than 0.2 and the absolute value of the correlation  

of the module higher than 0.8. Based on these 

thresholds, 364 hub genes were identified (Table 1). 

Then, the hub genes list was uploaded to Metascape 

(http://metascape.org/) to explore the biological 

functions of the hub genes. The top 10 biological 

processes (BPs) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) terms annotated with hub genes are 

displayed in Figure 4. The BP annotations showed that 

the hub genes were significantly enriched in the 

http://metascape.org/
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Figure 1. The workflow of this analysis. 

 

 
 

Figure 2. 4 modules were selected by WGCNA. (A) The panel shows analysis of the scale-free fit index and mean connectivity for 

various soft-thresholding powers (β). (B) Genes with the highest median absolute deviation enriched modules in co-expression network, 20 
co-expression cluster were identified after merging the high related modules with cutoff value 0.2. (C) Correlation between each module and 
phenotype. Among the modules, red (P = 0.004), blue (P = 1e-05), brown (P = 5e-04) and cyan (P = 7e-06) showed closely associated with 
aSAH (P < 0.01). 
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ribonucleoprotein complex biogenesis, ribosome 

biogenesis, translational initiation, nuclear-transcribed 

mRNA catabolic process, nonsense-mediated decay, 

viral gene expression, SRP-dependent cotranslational 

protein targeting to membrane, cotranslational protein 

targeting to the membrane, noncoding RNA 

processing, rRNA processing, and peptide biosynthetic 

process. The KEGG pathway enrichment analysis 

showed that the hub genes mainly participated in 

ribosome, hematopoietic cell lineage, tuberculosis, 

human T-cell leukemia virus 1 infection, ribosome 

biogenesis in eukaryotes, spliceosome, Th17 cell 

differentiation, RNA transport, toxoplasmosis, and 

human T-lymphotropic virus-I infection. 

 

Identification and validation of critical genes 

 

In order to select critical genes from the hub genes, 

we analyzed the DEGs between aSAH and control 

individuals using the limma package, according to the 

cut-off criteria of |log2 fold change (FC)| greater than 

or equal to 1 and adjusted P value less than 0.05. 

Among all genes, 13 genes (CD27, IL2RB, FCER1A, 

ANXA3, ACSL1, HP, PGLYRP1, ALPL, ARG1, 
TPST1, SLPI, ECHDC3, and ORM1) were screened as 

DEGs (Table 2). The expression profile heatmap of 

the DEGs is shown in Figure 5A. Among the genes, 7 

overlapped genes (CD27, ANXA3, ACSL1, PGLYRP1, 

ALPL, ARG1, and TPST1) were identified between 

DEGs and hub genes, including in one down-

regulated gene (CD27) and six up-regulated genes 

(ANXA3, ACSL1, PGLYRP1, ALPL, ARG1, and 

TPST1) in aSAH (Figure 5B, 5C). These genes were 

defined as critical genes with playing a key role in the 

aSAH development. Receiver operating characteristic 

(ROC) curve was plotted and the area under the curve 

(AUC) was calculated to distinguish individuals with 

aSAH from controls. The AUCs of almost all critical 

gene was higher than 0.8 in the datasets, indicated 

they may be act as potential biomarker in diagnosing 

aSAH (Figure 6).  

 

To further test our analysis, we detected the expression 

of critical genes based on clinical data. The expression 

of the selected critical genes was significantly different 

between the aSAH and control groups (Figure 7A). 

 

 
 

Figure 3. Gene Significance (GS) and module membership (MM) were calculated with Pearson correlation analysis. (A) The GS 
and MM are highly correlated in red (cor = 0.77, P = 1e-09), blue (cor = 0.94, P = 1e-200), brown (cor = -0.85, P = 1e-200) and cyan (cor = -
0.91, P = 1e-200) module, indicated that the red and blue module contain genes that have high positive correlation with aSAH while the 
brown and cyan module contain genes that high negative correlations with aSAH. (B) The GS of aSAH group in red (*: p < 0.01) and blue (***: 
P < 0.0001) module were significantly higher than control group, while the opposite result was shown in the brown (**: P < 0.001) and cyan 
module (***: P < 0.0001). 
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Table 1. Hub genes in significant modules. 

Modules Genes 

Red 
ARRB2, CSF3R, DENND3, DYSF, GMIP, KDM6B, MAPK3, MTF1, PGD, PLEKHO2, RXRA, SEMA4A, 

TBC1D3G, THOC5, TOM1, USP32 

Blue 

ABCF1, ABHD14A, ACSL1, ADA, AIP, AKIRIN2, AKR1B1, ALPK1, ALPL, ANXA3, APEX1, ARG1, 

ARHGAP24, ARPC2, ATP6V0E1, ATP6V1C1, B4GALT5, BASP1, BAZ1A, BCL2, BIN1, BOLA2, BRD9, 

BTBD10, BUB3, C12orf57, C16orf58, CA4, CAB39, CD2, CD27, CD3D, CD7, CD81, CEBPB, CMTM6, 

COMMD7, CPD, CR1, CS, CSF3R, CSGALNACT2, CSNK1D, CTBS, CUTA, DCTD, DDX24, DENND3, 

DNMT1, DNTTIP1, DYSF, ECH1, EIF3F, EIF3G, EIF3H, EIF3K, EIF3L, ELMO2, ERP29, ESD, ESYT1, ETS2, 

EVI2B, EXOC6, FAM102A, FARS2, FBL, FLT3LG, FN3KRP, FPR1, FPR2, FRAT1, FYN, GK, GLO1, GNG5, 

GOT2, GPR141, GTDC1, GTPBP4, GZMM, HAL, HIGD2A, HINT2, HLA-DMA, HLA-DMB, IL10RA, IMP4, 

IMPDH2, ITGAM, ITM2A, ITPR3, ITPRIP, IVNS1ABP, JMJD8, JUNB, KCNJ15, KIF1B, KLF6, KLHL2, LAT, 

LAT2, LIMK2, LIN7A, LRG1, LSM2, LY9, MAL, MANSC1, MCL1, MCTP2, MEGF9, MFNG, MRPL37, 

MRPS24, MTMR3, NAE1, NAMPT, NDEL1, NDUFS8, NGDN, NHP2, NOL11, NOP56, NR2C2AP, NUMB, 

OCIAD2, OSBPL9, OSTF1, PACSIN2, PCSK7, PEBP1, PFKFB4, PGD, PGS1, PHF21A, PHTF1, PLSCR3, 

PLXNC1, POLR1E, POLR2H, PPIH, PRKCD, PRMT1, PTEN, PVRIG, PYGL, QPCT, RANBP1, RASGRP4, 

RCC2, REPS2, RFTN1, RNF149, RNF24, RNPS1, ROPN1L, RPL10A, RPL12, RPL15, RPL18A, RPL19, RPL22, 

RPL24, RPL3, RPL35, RPL36, RPL5, RPL6, RPS16, RPS20, RPS27, RPS27A, RPS29, RPS3, RPS4X, RUVBL1, 

SAMSN1, SCAMP3, SF3A3, SH3GLB1, SLA, SLC25A44, SLC9A8, SMAP2, SNRPB, SNRPF, SP100, SPAG9, 

SPI1, SRGN, SSBP4, STAT3, STX3, STXBP5, TGFA, TLR4, TLR8, TMED3, TMEM109, TMEM160, 

TMEM203, TNFRSF1A, TNFRSF25, TPST1, TRIB1, TRIM25, TUBB, UFC1, URM1, USP32, VNN3, XRCC6, 

ZFAND3, ZNF281, ZNF428 

Brown 

ABHD14A, ACAD9, ACTR5, AFG3L2, ALKBH3, BRD9, C16orf58, C8orf33, CCNDBP1, CD320, COPS6, 

CSE1L, CTNNBIP1, CTNNBL1, DCTD, DDX54, DNAJC9, DUS1L, EBP, ECHS1, EIF2B4, EIF3L, ELAC2, 

ENO2, ERP29, EXOSC1, EXOSC5, FARS2, FLT3LG, FNBP4, FXYD5, GGA2, GNL2, GRWD1, GSS, HIC2, 

IDUA, ITFG2, LCMT1, LONP1, LTBP3, LZTR1, MDC1, MFSD3, MORC2, MPRIP, MPV17, MRPL11, 

MRPL12, MRPL2, MRPL38, MRPS9, N6AMT1, NFX1, NHP2, NOP2, NUBP1, NUDC, NXT1, PAAF1, PACS2, 

PDCL3, PDXP, PEX14, PHB, PIGP, PLSCR3, POMT1, PRMT7, PRPF31, PTRH1, RASSF1, RNF220, RNF26, 

RPAIN, RPL19, RSAD1, SDHAF1, SIGMAR1, SLC25A1, SLC7A6, SNRPB, TACO1, TEX10, TMEM109, 

TMEM147, TMEM41A, TNFRSF25, TOMM40, TRIM68, TRMT1, TTC31, TYSND1, UCKL1, VAC14, WDR18, 

WDR74, ZBTB9, ZC3HC1, ZDHHC14, ZFP90, FYVE16 

Cyan 

ACTR1A, AKAP11, API5, BRIX1, BUB3, C11orf1, C16orf58, CA4, CCND2, CD2, DDX47, DNAJC9, DNMT1, 

DOCK10, ETS1, FNBP4, GIMAP6, GOLGA8B, GTPBP4, HADH, HIBADH, IL7R, ITK, KHDRBS1, KIFAP3, 

LANCL1, LRIG1, LY9, MATR3, MPHOSPH10, NAE1, NOL11, NSA2, NUP54, PDCL3, PDLIM7, PEBP1, 

PGLYRP1, PPP3CC, PSMG2, PVRIG, RALGAPA1, RFTN1, RPL15, RPL22, RRN3, SET, SH2D1A, SLC7A6, 

SMARCAD1, STAMBPL1, SUCLG2, TARBP1, TC2N, TFB2M, THOC1, THUMPD1, TRAT1, TUBB, UBE2N, 

UBE2Q2, WBP11, WWP1, XPO4, ZNF529 

 

 
 

Figure 4. Top 10 biological processes (BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis terms of hub 
genes. 
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Table 2. DEGs identified with limma package. 

 LogFC AveExpr t P.Value Adj.P.Val B Change 

CD27 -1.10594 9.404925 -6.84003 3.87E-09 7.72E-06 10.67715 Down 

IL2RB -1.0878 9.875714 -6.45442 1.80E-08 2.37E-05 9.234499 Down 

FCER1A -1.49737 9.451985 -6.38427 2.37E-08 2.37E-05 8.973335 Down 

ANXA3 1.525969 10.78493 5.864546 1.82E-07 5.68E-05 7.056242 Up 

ACSL1 1.08668 12.80813 5.031488 4.35E-06 0.000395 4.081304 Up 

HP 1.29243 9.336274 4.982566 5.22E-06 0.000414 3.911711 Up 

PGLYRP1 1.053254 11.36885 4.885738 7.46E-06 0.000505 3.578054 Up 

ALPL 1.032425 13.71477 4.861184 8.16E-06 0.000537 3.49388 Up 

ARG1 1.751164 9.920118 4.756838 1.19E-05 0.000649 3.138231 Up 

TPST1 1.001745 8.967003 4.088617 0.000126 0.003169 0.950828 Up 

SLPI 1.003622 9.238332 4.083136 0.000128 0.003208 0.933614 Up 

ECHDC3 1.008504 8.890846 3.535259 0.000772 0.010721 -0.7168 Up 

ORM1 1.069796 10.33428 2.994054 0.003936 0.033948 -2.19028 Up 

 

ANXA3, ACSL1, PGLYRP1, ALPL, ARG1, and TPST1 

were obviously up regulated in patients with aSAH, 

whereas CD27 was down regulated, the results were 

consistent with our analysis. We also detected the gene 

expression in patients with aSAH at 3 days and 7 days 

after diagnosis. Interestingly, the expression levels of 

ALPL, ANAXA3, and ARG1 were reduced over time 

(Figure 7B). 

 

 
 

Figure 5. Differentially expressed genes (DEGs) and critical genes. (A) Heatmap of DEGs. (B) 7 critical genes were selected. (C) 

Expression of 7 critical genes in GSE36791. 
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DISCUSSION 
 

aSAH accounts for 75%-80% of all cases of SAH and is 

associated with a high mortality rate of approximately 40–

50%, with a 30-day fatality rate of 36% [2, 4, 5]. The 

molecular mechanisms involved in the pathophysiology 

of aSAH remain unclear. Therefore, exploring 

susceptibility modules and genes for aSAH may 

contribute to the early diagnosis and treatment of SAH, 

thereby reducing mortality and serious adverse 

reactions. 

 

In this study, four modules were found to be highly 

associated with aSAH, based on WGCNA. 

Additionally, 364 hub genes were identified. BP and 

KEGG enrichment analyses suggested that protein 

biosynthesis-related processes and inflammatory 

response-related processes were significantly involved 

in the pathology of aSAH. Among the hub genes, seven 

were found to be differentially expressed between 

aSAH and control groups and were identified as critical 

genes involved in the development of aSAH, with 

potential applications in the early prediction of aSAH. 

Finally, we validated our results using clinical data 

obtained from quantitative reverse transcription 

polymerase chain reaction (qRT-PCR). 

 

Among the critical genes identified in this study, CD27, 
ANXA3, PGLYRP1, and ARG1 are closely associated 

with the immune system. CD27, a transmembrane 

glycoprotein, plays an important role in immune 

response and is expressed on most B lymphocytes cells, 

T lymphocytes cells, and natural killer (NK) cells  

[14, 15]. The expression of CD70, which is primarily 

 

 
 

Figure 6. ROC curves of critical genes. The AUC of almost all critical gene was higher than 0.8. 
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controlled by antigen receptor and Toll-like receptor 

stimulation on T cells, B cells and dendritic cells is a 

key factor in determining the contribution of CD27 to 

the immune response [16]. CD27 binds to the receptor 

CD70, and plays important roles in regulation of the 

activation of T lymphocytes cell and the synthesis of 

immunoglobulin. In this study, CD27 was obviously 

down regulated in the aSAH group with that in the 

control group, suggesting that decreased CD27 

transcription was related to B lymphocytes, T lympho-

cytes, and NK cells in patients with aSAH. This finding 

was consistent with the result from Joanna et al., who 

revealed that decreased CD27 mRNA expression was 

related to T lymphocytes in aSAH [17]. ANXA3, 
PGLYRP1, and ARG1 were all participated in the 

recognition of bacteria by neutrophils. ANXA3 is 

particularly abundant in neutrophils, accounting for 

approximately 1% of all cytosolic proteins [18] and 

contributing to neutrophil antimicrobial activity by 

promoting phagolysosome fusion [19]. PGLYRP1, 

which belongs to a family of PGN-binding proteins 

(PGRPs), highly conserved among insects and 

mammals, is an antibacterial protein found in neutrophil 

tertiary granules. PGRP1 plays critical roles in 

neutrophil production of reactive oxygen species and 

modulation of immune response [20, 21]. ARG1 is 

stored in granules of neutrophils. Once released and 

activated, ARG1 can degrade extra cellular arginine, 

resulting in inhibition of the activation and proliferation 

of T lymphocytes cells [22]. We found that ARG1 was 

significantly upregulated in the SAH group, suggesting 

that high expression of ARG1 may be related to 

decreased T lymphocytes activation and proliferation in 

patients with aSAH. Therefore, these results suggested 

that there was an abundance of transcripts related to 

monocytes and neutrophils with a simultaneous 

decrease in transcripts related to T lymphocytes in 

patients with aSAH. 

 

ACSL1 is an enzyme that converts free long-chain fatty 

acids into fatty acyl-CoA esters, and thereby plays 

critical roles in both in lipid biosynthesis and fatty acid 

degradation [23]. Thus, disordered lipid metabolism 

may be involved in the development of aSAH. A 

previous study also demonstrated that related membrane 

lipid metabolism is altered in spastic basilar arteries 

after SAH [24]. Statins have been used and show 

significant benefits in models of traumatic brain injury 

and the related disease processes, including cerebral 

ischemia, intracerebral haemorrhage, and SAH [25]. 

 

 
 

Figure 7. The expression of critical genes tested by qRT-PCR with clinical data. (A) ANXA3, ACSL1, PGLYRP1, ALPL, ARG1, TPST1 
were obviously up regulated in aSAH patients, while CD27 was down regulated. (B) The expression of ALPL, ANAXA3, and ARG1 were 
obviously reduced over time. (*: p < 0.05). 



 

www.aging-us.com 22353 AGING 

The most compelling preclinical data has been obtained 

in experimental SAH, where statins have been shown to 

reduce vasospasm and improve outcomes after SAH in 

the animal experiments [26–28]. Similarly, statin 

treatment has been shown to improve outcomes in 

murine models of intracranial hemorrhage [29, 30] and 

acute ischemic stroke [31–33]. ALPL encodes tissue-

nonspecific alkaline phosphatase (ALP), which has key 

roles in skeletal mineralization via the regulation of 

diphosphate levels. ALP can also promote vascular 

calcification by catalyzing the hydrolysis of organic 

pyrophosphate, an inhibitor of vascular calcification 

[34]. A number of studies have reported that a close 

relationship between serum ALP and increased 

morbidity and mortality in patients with cardiovascular 

diseases [35, 36]. Moreover, elevated serum ALP levels 

have been shown to be associated with increased 

mortality rates, poor functional outcomes, and disease 

recurrence in patients with stroke [37, 38]. Zhu et al. 

evaluated the association between the outcomes and 

serum ALPL level in 196 patients with aSAH and found 

that higher serum ALP levels are associated with an 

increased risk of vasospasm, delayed cerebral ischemia-

induced clinical deterioration, and functional outcomes 

after aSAH [39]. Thus, ALPL may be a predictive 

biomarker for patients with aSAH.  

 

TPST1, a type of homologous tyrosyl protein 

sulfotransferase (TPST) enzymes, plays a critical role 

in protein tyrosine sulfation for transfer of sulfate 

from the cofactor PAPS (3'-phosphoadenosine 5'-

phosphosulfate) to a context-dependent tyrosine in a 

protein substrate [40]. To date, the functional 

importance of protein tyrosine sulfation is still 

unclear; however, this process has been shown to play 

a role in altering biological activities of proteins, 

modulating the proteolytic processing of bioactive 

peptides [41], influencing the half-life of proteins in 

circulation [42], and regulating extracellular protein-

protein interactions, as observed for inflammatory 

leukocyte adhesion [43, 44]. The recent discovery of 

tyrosine sulfation of chemokine receptors suggests an 

even broader role in inflammatory responses [45, 46]. 

The role of TPST1 in aSAH is unknown, and further 

studies are needed to explore the potential 

mechanisms.  

 

With the development of sequencing technology, 

genomics is playing an important role in disease 

diagnosis, mechanism research, drug development and 

treatment, especially in tumor diagnosis and treatment. 

Nowadays, sequencing technologies are increasingly 

used in clinical settings, and key genes may play an 
important role in the occurrence and development of a 

certain disease. Therefore, the expression of key genes 

can be used to determine the diagnosis of aneurysm, and 

the intervention of key genes can be used to treat 

aneurysm, thus preventing the occurrence of serious 

complications. 

 

In conclusion, in this study, we found that protein 

biosynthesis-related processes and inflammatory 

responses related processes were involved in the 

pathology of aSAH. Additionally, we found that 

CD27, ANXA3, ACSL1, PGLYRP1, ALPL, ARG1, and 

TPST1 were significant potential biomarkers to guide 

the identification and treatment of aSAH. According 

to our PCR data, the levels of ALPL, ANAXA3, and 

ARG1 were reduced over time in patients with aSAH. 

However, further studies are needed to determine the 

relationships of these changes with the disease status. 

Moreover, our study lacked extensive clinical 

experimental verification of the identified genes. 

Thus, in future analyses, it will be necessary to verify 

our findings in clinical studies. 

 

MATERIALS AND METHODS 
 

Microarray data processing 

 

The GSE36791 gene expression matrix was retrieved 

and obtained from the Gene Expression Omnibus 

(GEO) (https://www.ncbi.nlm.nih.gov/geo/) by using 

the GEO query package in the R environment 

(Version 4.2.0) [47]. Gene expression data from 

peripheral blood samples were obtained from 43 

patients with SAH caused by a ruptured intracranial 

aneurysm and 18 patients with headaches symptoms as 

the control group, the detail characteristics of all 

samples were displayed in Table 1 of the paper-Gene 

expression profiling of blood in ruptured intracranial 

aneurysms: in search of biomarkers [17]. The 

corresponding annotation file-GPL10558 matrix which 

includes more than 47,000 probes and targets to more 

than 31,000 annotated genes, was downloaded and 

applied to convert the probe into the target gene. If the 

target gene was annotated with two or more probes, the 

mean value was calculated for subsequent analysis. 

Among the targeted genes, the protein-coding genes 

were obtained by referring to the human genome 

assembly GRCh38. The matrix was normalized without 

transformation by using the Bead Array package [48]. 

In this analysis, the data were log2 transformed. The 

outlying microarray samples were identified with 

Euclidean distance-based sample network methods and 

a Z.ku cut-off of -5 was calculated as ku-mean(k) / 

sqrt(var[k]) [49]. 
 

Weighted gene co-expression network construction  
 

WGCNA was performed to identify clusters that were 

highly correlated with all three phenotypes using the 

https://www.ncbi.nlm.nih.gov/geo/
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WGCNA package [49]. First, the soft threshold beta 

was chosen via scale free topology with the R 

function pickSoft Threshold. Second, we applied a 

power adjacent function to select adjacencies between 

all protein-coding genes and to transform data into a 

topological overlap matrix (TOM), and the 

corresponding dissimilarity (1-TOM) was evaluated. 

Third, the parameters of cutree Dynamic function 

were set as a minimum gene size of 30 and  

a medium sensitivity of 2 for branch splitting to 

calculate the average linkage hierarchical clustering 

tree. Finally, highly correlated modules were merged 

with a pairwise correlation coefficient higher than 0.8 

for the identification of modules with very similar 

expression profiles depending on the clustering 

methods. 

 

Identification of significant modules  

 

To select modules that were significantly associated 

with aSAH, the associations between module 

eigengenes and aSAH were evaluated via Pearson 

correlation analysis. The modules with the P-value < 

0.01 were considered to be significantly associated with 

aSAH. Since the module eigengene is an optimal 

summary of the gene expression profiles of a given 

module, it is natural to correlate eigengenes with these 

characteristics and to find the most important 

associations. To quantify the similarity of all genes on 

the array to the identified module. We quantify 

associations of individual genes with aSAH by defining 

GS as the absolute value of the correlation between the 

gene and the specific trait and by defining the 

quantitative measure of MM as the correlation of the 

module eigengene and the gene expression profile.  

 

Identification of hub genes and functional 

enrichment analysis 

 

In each significant module, hub genes were screened 

according to the following criterion, including the 

absolute value of the correlation between the aSAH 

and gene higher than 0.2 and the absolute value of  

the correlation of the module higher than 0.8 [50].  

To explore the biological function of the hub  

genes, we performed Gene Ontology (GO) and  

KEGG enrichment analysis using Metascape 

(http://metascape.org/) [51]. The top 10 GO terms and 

KEGG terms were visualized with the ggplot2 

package in the R programming language [52].  

 

Identification of critical genes  

 
In this analysis, the critical genes were identified based 

on two traits: significant differential expression between 

aSAH and control samples and high interconnections 

with genes in the module. Briefly, critical genes were 

defined as differentially expressed hub genes. The 

limma package [53] was applied to identify differential 

expressed genes (DEGs) between two groups in the 

expression data with the cut-off criteria |log2 fold 

change (FC)| ≥ 1 and adjust P value < 0.05 [54]. Then, 

the critical genes were screened and visualized with the 

Venn diagrams package [55]. The expression of critical 

genes was displayed and they were verified in another 

dataset. Additionally, ROC curves were plotted with the 

pROC package to verify the diagnostic performance of 

critical genes. 

 

Validation of critical genes using qRT-PCR 

 

Finally, we validated the obtained results from 

microarray data of peripheral blood samples by using 

qRT-PCR on samples from 25 patients with aSAH and 

10 healthy controls recruited from the Department of 

Neurosurgery, Jinling Hospital, the First School of 

Clinical Medicine, Southern Medical University, 

China. Blood was collected from patients with aSAH 

at three time points: before therapy, 3 days after 

aSAH, and 7 days after aSAH, and that from the 

control samples was collected at the physical 

examination center. All samples were obtained in the 

fasting condition. The characteristics of the recruited 

patients are shown in Table 3. Whole blood samples 

were homogenized in TRIzol reagent (Servicebio, 

Wuhan, China). Total cellular RNA was then extracted 

and transcribed into cDNA using a Servicebio RT 

First-strand cDNA Synthesis Kit (Servicebio, Wuhan, 

China). qPCR was subsequently performed by using 

2×SYBR Green qPCR Master Mix (Low ROX; 

Servicebio, Wuhan, China) with the CFX Real-time 

PCR system (Bio-Rad Laboratories, MN, USA). Table 

4 lists all primer oligos, which were synthesized by 

Servicebio Biotechnology (Wuhan, China). The 

mRNA levels of glyceraldeyhyde 3-phosphate 

dehydrogenase (GAPDH) were used for normalization 

of mRNA expression (The average qRT-PCR values 

are shown in Supplementary Table 1). Subsequently, 

relative quantification was performed based on the 

comparative threshold cycle (2-ΔΔCT) method. The 

qPCR experiment of each clinical sample was repeated 

for 3 times, and the mean value were calculated for 

differential comparation. The differential gene 

expression between the two groups was analyzed using 

a non-parametric test, and P values less than 0.05 were 

considered statistically significant. 

 

Data availability 

 
The data used to support the findings of this study are 

from previously reported studies and datasets, which 

have been cited. 

http://metascape.org/
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Table 3. The characteristics of recruited patients. 

Characteristics aSAH Control 

Age 64.62 ± 12.26 63.25 ± 13.54 

Male/Female 14/11 6/4 

Hypertension 72.00 % 70.00% 

Diabetes 32.00% 30.00% 

Stroke (cerebral ischemia) 30.00% 20.00% 

 

Table 4. Primer sequences of critical genes used in this study. 

Critical genes Direction Primer sequences 

ARG 
Forward primer TGGCAAGGTGATGGAAGAAAC 

Reverse primer TCCCGAGCAAGTCCGAAAC 

CD27 
Forward primer CTGTCGGCACTGTAACTCTGGTC 

Reverse primer TCAGCGAAGGGTTTGGAAGAG 

 ANXA3 
Forward primer GCTGAAAGATGACTTGAAGGGTG 

Reverse primer CCTTCATTTGCCTGCTTGTCC 

ACSL1 
H-ACSL1-S CCCATGAGCTGTTCCGGTATT 

H-ACSL1-A ACCCGCCACTTCCACTGACT 

PGLYRP1 
Forward primer GAGCCTGCCCTTACGCTATGT 

Reverse primer ACGAGCCCGTCTTCTCCAAT 

ALPL 
Forward primer AAGGACGCTGGGAAATCTGTG 

Reverse primer CGTCAATGTCCCTGATGTTATGC 

TPST1 
Forward primer CCAAGTAATCAAGCCAGTCAATG 

Reverse primer GTTGGAATTCTCCCTTATAGACCCT 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Table 
 

Supplementary Table 1. The average qRT-PCR values. 

Genes Control aSAH (1 day) 3 days 7 days 

ALPL 30.55±1.46 32.42±1.49 29.77±1.42 27.96±2.02 

PGLYRP1 30.35±0.89 31.57±1.37 30.91±0.98 30.64±1.04 

ACSL1 21.01±1.30 22.76±0.90 22.27±1.01 21.92±1.28 

CD27 32.03±0.97 29.86±1.37 30.20±1.33 29.58±1.31 

TPST1 28.12±2.30 30.83±1.70 29.23±2.26 29.46±2.17 

ANXA3 31.08±1.09 32.52±1.23 31.17±1.47 29.08±1.08 

ARG1 30.14±1.81 32.40±1.27 30.59±1.39 28.80±1.56 

 


