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INTRODUCTION 
 

As the fourth most frequently diagnosed cancer and 

the fourth leading cause of cancer-related death, 

cervical cancer accounted for 570,000 new cases and 

311,000 deaths in 2018 worldwide [1]. Endocervical 

adenocarcinoma (EAC) comprises 10–25% of cervical 

carcinoma, and has been increasing in incidence in 

recent years [2]. The management of EAC is currently 

based on International Federation of Gynecology  

and Obstetrics (FIGO) staging and National 

Comprehensive Cancer Network (NCCN) guidelines 

[3]. However, these systems aren’t yet comprehensive 

in clinical practice when applied to EAC. The FIGO 

staging usually takes into account the tumor size and 

extent of invasion, which are hard to measure in 

occult EAC. In addition, although EAC and  

squamous cervical carcinoma have different 

histological morphology, sites of origin and spreading 

patterns, they are staged and treated equally in 
accordance with NCCN guidelines [4]. Thus, these 

systems have limited reproducibility for staging EAC 

and may lead to inappropriate treatment decision 

making. 
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ABSTRACT 
 

Endocervical adenocarcinoma (EAC) is an aggressive type of endocervical cancer. At present, molecular research 
on EAC mainly focuses on the genome and mRNA transcriptome, the investigation of small RNAs in EAC has not 
been fully described. Here, we systematically explored small RNAs in 14 EAC patients with different subtypes 
using small RNA sequencing. MiRNAs and tRNA-derived RNAs (tDRs) accounted for the majority of mapped 
reads and the total number of miRNAs and tDRs maintained a relative balance. To explore the correlations 
between small RNAs expression and EAC with different clinical characteristics, we performed the weighted 
gene co-expression network analysis (WGCNA) and screened for hub small RNAs. From the key modules, we 
identified 9 small RNAs that were significantly related to clinical characteristics in EAC patients. Gene ontology 
and pathway analyses revealed that these molecules were involved in the pathogenesis of EAC. Our work 
provided new insights into EAC pathogenesis and successfully identified several small RNAs as candidate 
biomarkers for diagnosis and prognosis of EAC. 
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To overcome such deficiencies and provide clinically 

meaningful means of stratifying EAC, a novel Silva 

system was developed in 2013 based on the pattern of 

stromal invasion morphology [5]. Pattern A is 

characterized by well-demarcated glands with no 

destructive invasion or lymph-vascular space invasion 

(LVSI), pattern B represents localized destructive 

invasion, and pattern C demonstrates diffusely 

infiltrative glands. This new system was then validated 

in several subsequent studies and showed better 

performance in predicting nodal metastasis and 

prognosis [6–9]. Moreover, the treatment modality for 

each pattern has been proposed, and may help to 

develop a precise treatment-decision system based on 

different Silva patterns [10]. For Silva pattern A 

patients, adjuvant treatment and nodal sampling can be 

exempted with negative excision margins. The 

treatment of pattern B patients should be personalized 

based on the issue of lymphovascular invasion, while 

for pattern C patients, lymph node assessment and 

radical hysterectomy are required, if applicable, with 

additional adjuvant or preoperative therapy. Although 

this new Silva pattern can refine treatment strategies, it 

relies on postoperative histopathologic examinations in 

most cases and thus a preoperative biomarker to predict 

Silva patterns is urgently needed. 

 

Biomarkers, such as proteins, metabolites and small 

molecules, are able to indicate specific processes, 

events or conditions [11, 12]. In the field of cancer, 

small molecules have been applied in numerous clinical 

scenarios to assist making diagnoses or evaluating 

prognosis [13]. Small RNAs (sRNAs) have been the 

focus of many researches in the last decades, among 

which are micro RNAs (miRNAs) with great potential 

for biomarker utility. Micro RNAs are 20-25nts in 

length and play an important role in multiple biological 

processes, mainly via post-transcriptional regulation of 

gene expression [14]. The potential of miRNAs in 

cancer diagnosis is increasingly recognized [15]. In 

addition to miRNAs, another type of sRNAs has 

emerged as critical regulators of gene expression - 

tRNA-derived small RNAs (tDRs) [16]. The tDRs have 

been identified to be involved in cell proliferation, 

apoptosis, and metastasis in various kinds of human 

carcinoma. These dysregulated tDRs interact with PIWI 

proteins to regulate gene expression in a sequence-

specific manner [17]. Some of the newly identified 

tDRs have been considered as new biomarkers and 

therapeutic targets for the treatment of cancer. For 

example, tDRs have been exploited as diagnostic and 

prognostic biomarkers in chronic lymphocytic leukemia 

[18]. Taken together, these findings strongly suggest a 
functional role for miRNAs and tDRs in cancer 

progression. However, whether miRNAs and tDRs play 

a role in EAC is not well understood. 

To fill this gap, we performed small RNA-sequencing 

on 14 EAC tissues of different Silva patterns with qPCR 

confirmation. In addition, we applied the weighted gene 

co-expression network analysis (WGCNA) to find the 

miRNAs and tDRs closely correlated with clinical traits. 

This study may provide a novel perspective into new 

biomarkers or therapeutic targets for EAC.  

 

RESULTS 
 

Characteristics of the study population 

 

The clinicopathological characteristics of the 20 

patients are listed in Table 1. The median follow-up 

period was 90 (18-162) months, during which 6 

patients died and 7 patients experienced recurrences. 

Of the 20 patients, 14 patients were diagnosed with 

EAC, including 2 pattern A, 3 pattern B, 6 pattern C 

and 3 Gastric type. In terms of the clinical traits of 

EAC with different Silva patterns, patients with 

pattern C appear to have larger tumor sizes and deeper 

invasion than the other two patterns (Table 2). 

 

Small RNA profiles in different subtypes of EAC 

 

First of all, the small RNA profiles of the 14 EAC 

samples with different histological subtypes were 

shown in Figure 1A. In EAC samples, miRNAs and 

tDRs accounted for about 75% of all mapped reads. 

Through literature review, we found that this 

phenomenon not only exists in EAC, but also in other 

different types of human samples [19]. In order to 

further confirm this phenomenon, we performed small 

RNA sequencing on another six squamous and adeno-

squamous cervical cancer samples. There was no 

significant difference in the fraction of transcriptome-

aligned reads for different histologic subtypes of 

cervical cancer and the total number of tDRs and 

miRNAs remained relatively balanced. To analyze 

tDRs reads in further detail, we grouped tDRs based 

on their biogenesis and relative length. In all subtypes 

of tDRs, tRF-5 was predominant in abundance (Figure 

1B). The Venn diagram shows that EAC of Silva 

pattern A, B, C and Gastric subtype have great 

differences in the distribution of tDRs types based on 

the anticodon of amino acids (Figure 1C). Since tDRs 

are produced by endonuclease RNase Z, Dicer 1 and 

ANG, we next compared the expression of these 

genes between different subtypes of EAC. As shown 

in Figure 1D, 1E, the expression of Dicer1 and 

ELAC2 in pattern C was significantly higher than that 

of other subtypes (Pv0.05, Student T test). 

Collectively, we discovered that differentially 

expressed miRNAs and tDRs existed in different 

histological types of EAC indicating potential clinical 

value. 
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Table 1. Baseline characteristics of the 20 patients.  

Characteristics Number (n=20) 

Age  

  Mean ± SD 46.7±9.6 

Histology (%)  

  SCC  2 (10) 

  AC 14 (70) 

  AS 2 (10) 

  NEC 2 (10) 

FIGO stage (%)  

  1B1 12 (60) 

  1B2 3 (15) 

  2A1 3 (15) 

  2A2 2 (10) 

Adjuvant treatment (%)  

  No 7 (35) 

  Yes 13 (65) 

HPV infect (%)  

  No 1 (5) 

  Yes 12 (60) 

  Unknown 7 (35) 

LN metastasis (%)  

  No 10 (50) 

  Yes 10 (50) 

Surgical margin (%)  

  No 20 (100) 

  Yes 0 (0) 

Parametrial invasion (%)  

  No 16 (80) 

  Yes 4 (20) 

Tumor size, cm (%)  

  ≤2 5 (25) 

  (2,4) 7 (35) 

  >4 8 (40) 

LVSI (%)  

  No 7 (35) 

  Yes 13 (65) 

DSI (%)  

  Negative 2 (10) 

  <2/3 4 (20) 

  ≥2/3 14 (70) 

Abbreviation: SCC, squamous cervical cancer; AC, 
adenocarcinoma; AS, adenosquamous carcinoma; NEC, 
neuroendocrine carcinomas. 

Construction of weighted gene co-expression 

network by analyzing of miRNA or tDRs  

 

To further explore the association between the 

differentially expressed miRNAs and tDRs and clinical 

traits, we conducted weighted gene co-expression 

network analysis (WGCNA). The investigated clinical 

phenotypes included Silva pattern A/B/C/Gastric 

subtypes, non-LNM (lymph node metastasis)/ 

LNM, non-LVSI/mild-LVSI/Substantial-LVSI, non-

PNI (perineural invasion) /PNI and non-

recurrence/recurrence (Figure 2A). By setting soft-

thresholding power as 4 (scale free R2 = 0.87) and cut 

height as 0.25, we identified 10 modules (Figure 2B–2D; 

non-clustering miRNA/tDRs shown in grey) in the 

miRNA profile. As shown in Figure 2E, some modules 
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Table 2. Comparison of clinicopathological characteristics in 14 AS patients with different silva 
pattern.  

Characteristics Pattern A Pattern B Pattern C Gastric type 

Age     

  Mean ± SD 52.5±5 43.7±10.6 48±11 48±12.8 

FIGO stage (%)     

  1B 2 (100) 2 (66.7) 6 (100) 3 (100) 

  2A 0 (0) 1 (33.3) 0 (0) 0 (0) 

Adjuvant treatment (%)    

  No 2 (100) 1 (33.3) 1 (16.7) 1 (33.3) 

  Yes 0 (0) 2 (66.7) 5 (83.3) 2 (66.7) 

HPV infection (%)     

  No 0 (0) 0 (0) 0 (0) 1 (33.3) 

  Yes 2 (100) 3 (100) 4 (66.7) 0 (0) 

  Unknown 0 (0) 0 (0) 2 (33.3) 2 (66.7) 

LN metastasis (%)     

  No 2 (100) 2 (66.7) 2 (33.3) 1 (33.3) 

  Yes 0 (0) 1 (33.3) 4 (66.7) 2 (66.7) 

Surgical margin (%)     

  No 2 (100) 3 (100) 6 (100) 3 (100) 

  Yes 0 (0) 0 (0) 0 (0) 0 (0) 

Parametrial invasion (%)     

  No 2 (100) 3 (100) 5 (83.3) 2 (66.7) 

  Yes 0 (0) 0 (0) 1 (16.7) 1 (33.3) 

Tumor size, cm (%)     

  ≤2 2 (100) 0 (0) 0 (0) 0 (0) 

  (2,4) 0 (0) 1 (33.3) 1 (16.7) 2 (66.7) 

  >4 0 (0) 2 (66.7) 5 (83.3) 1 (33.3) 

LVSI (%)     

  No 1 (50) 2 (66.7) 2 (33.3) 0 (0) 

  Yes 1 (50) 1 (33.3) 4 (66.7) 3 (100) 

DSI (%)     

  <1/3 2 (0) 0 (0) 0 (0) 2 (14.3) 

  [1/3-2/3] 0 (0) 1 (33.3) 0 (0) 0 (0) 

  ≥2/3 0 (0) 2 (66.7) 6 (100) 3 (100) 

 

correlated significantly (P < 0.01) with some of the 

indicated variables. The blue module was positively 

correlated with Silva pattern A (R =0.81, P < 0.001) and 

the yellow module was positively correlated with 

Gastric subtype (R =0.67, P < 0.01). By setting soft-

thresholding power as 20 (scale free R2 = 0.84) and cut 

height as 0.25, we identified 16 modules (Figure 3A–3D; 

non-clustering DEGs shown in grey) in the tDRs profile. 

The dark green module was positively correlated with 

the Silva pattern A (R =0.81, P < 0.001) while the dark 

turquoise module was significantly associated with the 

Gastric subtype (R =0.78, P < 0.005). Moreover, the sky 

blue module was positively correlated with the 

substantial-LVSI (R =0.81, P < 0.001) (Figure 3E). 

Screening for hub miRNA/tDRs and functional 

enrichment analysis of hub miRNA/ tDRs target 

genes 

 

To further understand the relationship between modules 

and clinical phenotypes, we screened for the hub 

miRNAs or tDRs in specific modules. The cut-off 

values of miRNA/tDRs were: module membership 

(MM) >0.8, correlation coefficient of clinical trait > 0.7, 

and the counts of per million mapped reads (CPM) > 

100. Notably, four miRNA/tDRs were identified from 

the miRNAs and tDRs profiles in the miRNA-based 

blue coexpression module and tDRs-based dark green 

coexpression module to be positively associated with 
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Figure 1. Catalog of small RNA profiles in different subtypes of EAC. (A) Distribution of RNA Biotypes Differs between Biofluids. 

Reads mapping to miRNAs, tRNAs or other RNA biotypes as a fraction of total reads mapping to the human transcriptome. Boxes represent 
median and interquartile ranges, whiskers represent 1.5 times the interquartile range, and dots represent outliers. (B) Heatmap depicting all 
subtypes of tDRs of each sample. (C) Venn plot shows that EAC of A, B, C and Gastric type have great differences in the distribution of tDRs 
types based on the anticodon of amino acids. (D, E) RT-PCR analysis shows a significant increase of Dicer1 and ELAC2 expression in pattern C 
compared with pattern A/B/Gastric. (Student t test, *P <0.05). 
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Figure 2. Construction of weighted gene co-expression network by analyzing of miRNA. (A) Sample dendrogram and clinical 
variable heatmap based on miRNA. (B) Determination of network topology from different soft-threshold powers. (C) Check scale-free 
topology. (D) Clustering dendrograms of identified co-expressed miRNAs in modules. (E) Heatmaps of the correlation between eigengene and 
clinical traits based on miRNA. 
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Figure 3. Construction of weighted gene co-expression network by analyzing of tDRs. (A) Sample dendrogram and clinical variable 
heatmap based on tDRs. (B) Determination of network topology from different soft-threshold powers. (C) Check scale-free topology. (D) 
Clustering dendrograms of identified co-expressed tDRs in modules. (E) Heatmaps of the correlation between eigengene and clinical traits 
based on tDRs. 
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the Silva pattern A, including hsa-miR-101-3p, hsa-miR-

195-5p, tRF-1:32-Val-CAC-3 and tRF-1:28-Gly-CCC-2. 

To demonstrate potential biological functions of the hub 

miRNA/tDRs for Silva pattern A, we performed GO and 

KEGG analyses with the target genes of the miRNA/tDRs 

and concluded that the most enriched signal pathways for 

the Silva pattern A were focal adhesion and PI3K-Akt-

mTOR signaling pathways which were common 

tumorigenesis-related pathways (Figure 4A, 4B). In 

addition, three miRNA/tDRs were identified positively 

associated with the Gastric subtype, including hsa-miR-

214-3p, Other-13:26-tRNA-Lys-CTT-1-M11 and Other-

2:23-tRNA-Val-AAC-1-M7. GO and KEGG analysis 

showed that cadherin binding involved in cell-cell 

adhesion was the most enriched signal pathway for 

Gastric subtype, potentially implying a unique cell-cell 

interaction (Figure 5A). Furthermore, a total of 3 hub 

tRNAs were discovered positively associated with 

substantial-LVSI, including other-14:33-tRNA-Lys-CTT-

1-M2, other-3:35-tRNA-Lys-CTT-1-M2 and other-14:28-

tRNA-Lys-CTT-10. GO and KEGG analysis suggested 

that the most relevant pathway was ubiquitin mediated 

proteolysis pathway (Figure 5B, 5C). To summarize, we 

identified several hub miRNA/tDRs closely associated 

with significant clinical phenotypes such as Silva pattern 

A, gastric subtype and substantial LVSI exhibiting 

concordant biological functions. 

 

qRT-PCR confirmed the hub miRNA/tDRs 

 

Subsequently, qRT-PCR was used to validate the 

expression of the hub miRNAs/tDRs that were 

identified from WGCNA analysis in EAC samples, 

including seven tDRs and two miRNAs. Among them, 

the expression of the following four tRNAs (other-

14:33-tRNA-Lys-CTT-1-M2, tRF-1:32-Val-CAC-3, 

tRF-1:28-Gly-CCC-2, and other-14:28-tRNA-Lys-CTT-

10) were too low to be quantized with qPCR. No 

significant differences were found for other-3:35-tRNA-

Lys-CTT-1-M2 and Other-13:26-tRNA-Lys-CTT-1-

M11 in different subtypes of EAC tissues (P > 0.05), 

whereas significant differences were verified for hsa-

miR-214-3p, hsa-miR-195-5p and Other-2:23-tRNA-

Val-AAC-1-M7 (Figure 6) indicating promising value 

to become potential biomarkers for EAC. 

 

DISCUSSION 
 

Cervical carcinoma is one of the most common cancers 

of women, which has a higher incidence in developing 

countries. With the popularization of the screening 

programs, the incidence of cervical carcinoma, 

especially squamous cell carcinoma has declined. 

However, because human papilloma virus (HPV) 

infection does not always accompany cervical 

adenocarcinoma and the lesion can be endogenous, the 

existing screening methods are less effective in the 

diagnosis of cervical adenocarcinoma. Compared with 

cervical squamous cell carcinoma, the prognosis for 

cervical adenocarcinoma is poor. Small non-coding 

RNA is an important part of epigenetic modification, 

which can modify gene expression without changing 

DNA sequence and plays a fundamental role in diverse 

biologic processes [20]. Deregulation of miRNAs,

 

 
 

Figure 4. Gene ontology enrichment analyses with the target genes of hub miRNA/tDRs in silva pattern A. (A) KEGG pathway 

analysis for the target genes of hsa-miR-101-3p, hsa-miR-195-5p, tRF-1:32-Val-CAC-3 and tRF-1:28-Gly-CCC-2. (B) Mapping of focal adhesion 
signaling pathway. Red marked nodes are associated with hub miRNA/tDRs. 
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piRNAs and tDRs, e.g., has been implicated in several 

metabolic diseases as well as in cancer [21–23]. 

 

In this study, we first performed a standardized RNA-

sequencing method to explore small RNAs in different 

subtypes of EAC. This work expands researchers' 

understanding of the transcriptome of cervical cancer 

and fills the gap of small RNAs in EAC research. In 

each EAC subtype tested, the total number of miRNAs 

and tDRs maintained a relative balance, at about 75%. 

These results were also verified in another 6 non-EAC 

cervical cancer samples. Through literature review, we 

found that this phenomenon not only exists in cervical 

cancer, but also in other different types of samples: the 

total amount of miRNAs and tDRs reached a relative 

balance in different kinds of human biofluids [19]. Our 

findings demonstrate the dynamic balance between 

miRNAs and tDRs, which might lay a foundation for 

further study of the mechanism.  

 

Compared with other bioinformatics methods, WGCNA 

focuses on the association between clinical traits and

 

 
 

Figure 5. Gene ontology enrichment analyses with the target genes of hub miRNA/tDRs in silva pattern gastric and 
substantial-LVSI. (A) KEGG pathway analysis for the target genes of hsa-miR-214-3p, Other-13:26-tRNA-Lys-CTT-1-M11 and Other-2:23-

tRNA-Val-AAC-1-M7 in Silva pattern Gastric. (B) KEGG pathway analysis for the target genes of other-14:33-tRNA-Lys-CTT-1-M2, other-3:35-
tRNA-Lys-CTT-1-M2 and other-14:28-tRNA-Lys-CTT-10 in substantial-LVSI patients. (C) Mapping of ubiquitin mediated proteolysis pathway. 
Red marked nodes are associated with hub miRNA/tDRs. 

 

 
 

Figure 6. Validation of hub miRNA/tDRs in different subtypes of EAC tissues. A, B and C represents Silva A, B, C pattern respectively. 
All data were analyzed using Student’s t-test. The asterisk indicates a significant difference between two groups (***P< 0.001, ****P< 
0.0001). 
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co-expression modules leading to higher biological 

significance and reliability [24]. To explore the 

correlations between small RNAs expression and 

clinical characteristics of EAC, we performed WGCNA 

analysis and screened for hub small RNAs. Further 

target gene prediction and gene ontology analysis 

demonstrated that the most relevant signal pathways for 

the Silva pattern A of EAC were PI3K-Akt-mTOR 

signaling pathways and focal adhesion, which is 

consistent with the clinicopathological characteristics of 

the Silva pattern A. It is well known that PI3K-Akt-

mTOR signaling pathway regulates fundamental 

cellular functions such as transcription, proliferation 

and metabolism, component genes of which are 

commonly activated in cancer [25]. Additionally, the 

dynamic status of focal adhesion was closely associated 

with cell migration. Silva pattern A EAC is featured by 

an obvious boundary from the surrounding stroma 

without invasiveness, which might be attributed to focal 

adhesion. In contrast, hub small RNAs related with 

Gastric subtype of EAC were enriched in cadherin 

binding involved in cell-cell adhesion. Dysfunction of 

cadherin adhesion is closely related to the epithelial 

transition in cancer cells and tumor invasiveness [26], in 

accordance with the great malignancy and strong 

invasiveness of the Gastric subtype. Moreover, we 

discovered that the signal pathways related with 

substantial LVSI was ubiquitin mediated proteolysis 

pathway. To further verify this correlation, we extracted 

DEGs from patients with positive and negative LVSI in 

the Cancer Genome Atlas (TCGA) cervical cancer 

cohort and found that the DEGs were also enriched in 

proteolysis pathway. These results confirmed a close 

association between proteolysis signaling pathway and 

the clinical phenotype of LVSI, providing a research 

direction for subsequent functional experiments.   

 

In conclusion, we constructed an extensive catalog of 

small RNAs in EAC tissues through small RNA 

sequencing approaches. This work not only provides a 

resource for investigators exploring the distribution and 

function of small RNAs but also helps to identify small 

RNAs that may have potential as novel biomarkers for 

EAC. 

 

MATERIALS AND METHODS 
 

Ethical approval 

 

The researchers were granted approval to conduct the 

research by Departmental Research Ethics Committee at 

Obstetrics and Gynecology Hospital, Fudan University, 

Shanghai, China. The study protocol was approved by 

the institutional review board of Obstetrics and 

Gynecology Hospital. All participants signed informed 

consent forms. 

RNA extraction 

 

According to the manufacturer's instructions, TRIzol 

(Invitrogen, CA, USA) was used to extract total RNA 

from frozen tissue. Use NanoDrop ND-1000 instrument 

(NanoDrop-Thermo, DE, USA) to evaluate the quantity 

and concentration of each RNA sample, and check the 

integrity by agarose gel electrophoresis. 

 

Library preparation and sequencing 

 

Before preparing the total RNA sample library, 

perform the following treatments to remove the 

modification of RNA interference small RNA 

sequence library construction: 3-aminoacyl (charged) 

deacylation to 3-OH for 3-adapter connection; 3-cP 

(2,3-cyclic phosphoric acid) was removed to 3-OH for 

3-adapter connection; 5-OH (hydroxyl group) was 

phosphorylated to 5-P for 5-Adapter connection; m1A 

and m3C are removed for effective reverse 

transcription. The size of the sequencing library is 

selected for the RNA biotype, and the sequencing gel 

cutter was performed with an automatic sequencer, 

including 3 adaptor and 5'- adaptor connection, cDNA 

synthesis and library PCR amplification. The quality 

of the library was checked using Agilent Bioanalyzer 

2100 (Invitrogen, CA, USA). Sequencing was per-

formed on Illumina NextSeq 500 (Illumina, DE, USA) 

by Aksomics (Shanghai, China). 

 

Sequencing data analysis 

 

Solexa pipeline was used to perform image analysis and 

base calling. Sequencing quality was examined by 

FastQC software and trimmed reads were aligned to 

mature-tRNA and pre-tRNA sequence getting from the 

Genomic tRNA Database using NovoAlign software. 

The remaining reads were aligned to transcriptome 

sequences (mRNA/rRNA/snRNA/snoRNA/piRNA/ 

miRNA). The processed data has been uploaded to the 

Supplementary Material. 

 

Weighted gene co-expression network analysis 

(WGCNA) 

 

WGCNA was applied to the count per million (CPM) 

expression data. In the WGCNA model based on 

miRNA data, when β = 4, the scale R2 was 0.88, 

which could obtain higher average connectivity 

degree. In the WGCNA model based on tDRs data, 

when β = 20, the scale R2 was 0.84, which could 

obtain higher average connectivity degree. In the 

cluster dendrogram, cluster highly absolutely related 
genes into the first group of modules (Dynamic Tree 

Cut), and then merge related modules (r>0.80) 

together (Merged dynamic). 
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Gene ontology analysis 

 

Target gene prediction of tDRs was conducted based on 

TargetScan and Miranda algorithms (Supplementary 

Table 1). Putative genes with context less than -0.3 

were selected to performed Gene Ontology 

(GO)analysis. miRTarBase database was used to predict 

target genes of miRNA. Putative genes with 

experimental verification data were selected to perform 

Gene Ontology (GO) analysis. 

 

qRT-PCR validation 

 

The hub genes were further confirmed by qPCR. U6 small 

nuclear RNA (snRNA) was used as inter control. Firstly, 

total RNA was extracted using TRIzol reagent 

(Invitrogen). Then, the total RNA was pretreated using 

rtStar™ tRF and tiRNA Pretreatment Kit (Cat# AS-FS-

005, Arraystar) to remove 3’-aminoacyl and 3’-cP for 3’ 

adaptor ligation, phosphorylates 5’-OH for 5’-adaptor 

ligation, and demethylates m1A, m1G, and m3C for 

efficient cDNA reverse transcription. Purify the RNA by 

phenol-chloroform extraction and ethanol precipitation. 

The post-treated RNA was reverse-transcribed into cDNA 

using rtStar™ First-Strand cDNA Synthesis Kit (3’ and 5’ 

adaptor) (Cat# AS-FS-003, Arraystar) according to the 

manufacturer’s protocols. Then, qPCR amplification was 

performed using ViiA 7 Real-time PCR System (Applied 

Biosystems, MA, USA). The standard curves method was 

used for analysis of the differential expression of tDRs in 

samples. For each tDRs or U6 that needs to be measured, 

select a cDNA template that is sure to express the tDRs or 

U6 for qPCR amplification. Perform a 10-fold gradient 

dilution of the qPCR product: set the qPCR product 

concentration to 1, respectively dilute to 1 × 10-1, 1 × 10-2, 

1 × 10-3, 1 × 10-4, 1 × 10-5,1×10-6, 1×10-7 these are several 

gradient concentrations of cDNA used as template to 

produce standard curves to quantify the efficiency (e) of 

primers in qPCR. PCR was performed in 10 μl reaction 

volume, including 2 μl of cDNA, 5 μl of 2×master mix, 

0.5 μl of forward primer (10 μM), 0.5 μl of reverse primer 

(10 μM) and 2 μl of double-distilled water. The reaction 

was pre-denatured at 95° C for 10 min, followed by 40 

amplification cycles at 95° C for 10 s, 60° C for 60 s. 

According to the gradient dilution cDNA standard curve, 

the relative tDRs expression levels of each samples are 

directly generated by the machine and were normalized 

by U6. All reactions were performed in triplicate. The 

primers used in this study were in the Supplementary 

Table 2. 

 

Statistical analysis 

 

Categorical variables were described as the frequency (n) 

and proportion (%) while continuous variables were 

presented as the mean ± SE (standard error). Differences 

in the variables between groups were tested using t-tests, 

nonparametric tests, chi-square tests, or ANOVA tests 

[27]. All hypothetical tests were two-sided, and a p value 

less than 0.05 was considered statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. Small RNA sequencing data of patients with cervical cancer. 

Supplementary Table 2. The qRT-PCR primers utilized in the study. 

 


