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ABSTRACT 
 

Cytotoxic T cells expressing cell surface CD8 played a key role in anti-cancer immunotherapy, including 
kidney renal clear cell carcinoma (KIRC). Here we set out to comprehensively analyze and evaluate the 
significance of CD8+ T cell-related markers for patients with KIRC. We checked immune cell response in KIRC 
and identified cell type-specific markers and related pathways in the tumor-infiltrating CD8+ T (TIL-CD8T) 
cells. We used these markers to explore their prognostic signatures in TIL-CD8+ T by evaluating their 
prognostic efficacy and group differences at various levels. Through pan-cancer analysis, 12 of 63 up-
regulated and 162 of 396 down-regulated genes in CD8+ T cells were found to be significantly correlated 
with the survival prognosis. Based on our highly integrated multi-platform analyses across multiple 
datasets, we constructed a 6-gene risk scoring model specific to TIL-CD8T. In this model, high TIL-CD8 sig 
score was corresponding to a higher incidence frequency of copy number variation and drug sensitivity to 
sorafenib. Moreover, the prognosis of patients with the same or similar immune checkpoint gene levels 
could be distinguished from each other by TIL-CD8 sig score. 
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INTRODUCTION 
 

Kidney cancer is among the ten most commonly 

occurring malignant tumors in both men and women 

and is well known as the most deadly urinary tract 

cancer. Even with active surgical treatment, most 

patients will inevitably die from tumor recurrence and 

metastasis [1–4]. According to the latest statistics from 

the United States, the incidence of kidney cancer ranks 

6th among male and 9th among female cancer patients 

[1, 2]. The total number of new kidney cancer patients 

is expected to reach 76,000 in 2021 [2]. Kidney renal 

clear cell carcinoma (KIRC) is the most common 

pathological type, accounting for about 70% of all  

[5, 6]. 80% of patients with advanced renal cancer who 

had received active surgical resection treatment, 

survived less than 2 years [5, 6]. Recent studies have 

reported multiple genes that are possibly involved in the 

occurrence and development of kidney cancer, such as 

VHL, MET and FLCN. U.S. Food and Drug 

Administration (FDA) has approved 7 drugs targeting 

the VHL signaling pathway, but the guiding 

significance for overall clinical outcome and the 

survival of kidney cancer patients were very limited. 

The lack of efficient treatment options is urging for 

more basic research on the development and prognosis 

prediction of KIRC in order to have a more thorough 

understanding of the pathogenesis at a molecular level, 

so as to provide some novel targets for therapeutic 

interventions [7, 8]. 

 

In recent years, large comprehensive patient data 

cohorts have become available leading to plenty of 

important clinical targets identified in various cancer 

types [9–12]. New tumor-related predictive indicators 

have also been discovered through bioinformatics 

analysis techniques [13–15]. Here we set out to 

thoroughly analyze datasets related to KIRC to explore 

and dissect the important role of CD8 (+) T cells in 

tumor immune infiltration and immunotherapy [16–20]. 

Our findings would be helpful for clarifying the 

significance of CD8 (+) T cell related markers in KIRC. 

 

RESULTS 
 

De-batch effect of immune cells in GEO chips 

 

To compare immune cell response in KIRC and identify 

cell type-specific markers and related pathways  

in the tumor-infiltrating CD8+T (TIL-CD8T) cells, 

transcriptome data was collected from immune cells 

across multiple studies. The expression results of the 

immune cell chip data was downloaded from the GEO 
database (Table 1), and the data underwent an inter-

study bias correction by the inSilicoMerging software 

package. The chip data distribution before and after 

batch effect calibration, were displayed in (Figure 1A, 

1B), respectively. 

 

Screening for specific marker genes of TIL-CD8 T 

cells 

 

To explore CD8 T cell response upon tumor infiltration 

and identify a set of genes that were unique markers for 

TIL-CD8T cells, a systematic transcriptome analysis 

across multiple immune cells was performed by the 

Seurat's Findmarkers function. Genes with significant 

differential expressions (|logFC|>1 and p<0.05) were 

considered to be specifically expressed by TIL-CD8 T 

cells. In total of 63 genes were found to be up-regulated 

in CD8 T cells, while 396 genes were down-regulated 

(Figure 1C). As the next step, an analysis was put into 

practice to clarify whether these genes were correlated 

with patient survival data. Through the pan-cancer 

analysis, 12 of 63 up-regulated and 162 of 396 down-

regulated genes were found to be significantly 

correlated with the survival prognosis (Supplementary 

Table 1). Annotations for all cell lines were provided  

in (Supplementary Material 1), while the details  

of all cell lines were summarized in (Supplementary 

Material 2). 

 

GO and KEGG enrichment analyses of specific 

marker genes of TIL-CD8 T cells 

 

In order to further investigate the biological function of 

TIL-CD8 T cell-specific marker genes, GO enrichment 

analysis and KEGG pathway enrichment analysis on the 

differentially expressed genes were performed. 

Specifically, the results of the top significant enrich-

ment analyses for molecular function (MF), biological 

process (BP) and cellular component (CC) 

(Supplementary Figure 1A–1C) were evaluated, 

respectively. Neutrophil activationa and degranulation 

as well as T cell activation were included in the top 

biological GO categories. The enrichment analyses 

results of KEGG pathway were shown in (Sup-

plementary Figure 1D), which chemokine signaling 

pathway was listed as the top hit. 

 

TIL-CD8T-related prognostic factors in KIRC 

screened by univariate cox regression analysis 

 

Then, the prognostic value of the identified marker 

genes was assessed. After filtering out patients with no 

survival information in the TCGA-KIRC cohort, a total 

of 307 samples with clinical survival data were further 

analyzed. Through univariate Cox regression analysis, 

38 prognostic factors related to KIRC TIL-CD8T were 
obtained. The maximum selection rank sum statistics of 

the R software package "maxsat" was used to 

determine the cutoff value of the prognostic factors. 
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Table 1. Summary of immune cell types in the chip. 

Population Data set Cell numbers 

B cell activated GSE28490, GSE49910 9 

CD4 T cell activated  GSE28726, GSE49910 7 

CD4 T cell resting GSE28726 4 

CD8 T cell activated  GSE49910 6 

CD8 T cell resting GSE49910 4 

Dendritic cells activated GSE59237 4 

Dendritic cells resting GSE59237 6 

Eosinophils GSE28698 3 

Immature dendritic cells GSE23371, GSE6863 6 

Mast cells activated GSE25320 4 

Monocytes GSE49910 6 

Myeloid dendritic cells GSE42058 4 

Neutrophils GSE39889, GSE49910 7 

NK activated GSE27838, GSE8059 11 

NK resting GSE8059 1 

NKT activated GSE28726 6 

Plasmacytoid dendritic cells GSE37750 8 

T gamma delta  GSE13906, GSE27291 10 

T helper 17 GSE51540 9 

 

The Kaplan-Meier curve of top 6 factors (PDK4, MPP1, 

ASGR1, MS4A14, FCER1A, MX2) was shown in 

(Figure 2A–2F), and the cutoff values of the prognostic 

factors were shown in (Supplementary Table 2). 

 

Construction of a TIL-CD8T-related tumor gene 

risk scoring model for KIRC (6 genes) 

 

Through univariate Cox regression analysis, 38 TIL-

CD8T-related genes were found to be significantly 

related to the prognosis of patients with KIRC 

(Supplementary Figure 2A). Then, the "cv.glmne" 

function of the R "glmnet" package was used for 

LASSO regression implement to further screen 

prognostic-related genes. The family parameter was set 

as "cox" and nfold=10. According to the lambda, the 

complexity of the model was optimized by LASSO 

regression. The "cv.glmne" analysis result contained two 

optimization models, one was "lambda.min" and the 

other was "lambda.1se". The lambda between these two 

values was considered appropriate. The model 

constructed by "lambda.1se" was the simplest, which the 

number of involved genes was few, while the accuracy 

of "lambda.min" was higher. Here, 13 prognostic-related 

genes in the LASSO model corresponding to 

"lambda.min" was collected for follow-up analyses. 

 

After the above analysis, 13 genes related to the 

prognosis of KIRC patients were identified 

(Supplementary Figure 2B, 2C). Then, based on these 

13 genes, a multivariate Cox regression analysis was 

used for the TIL-CD8T risk scoring model construction. 

During the construction process, both the prediction 

accuracy and the simplicity of the model was taken into 

account. The "stepAIC" function in the "MASS" 

software package was used to screen the 13-variable 

factors in the multivariate Cox regression model.  

The parameter was set as "direction=both", "both" 

corresponded to the stepwise regression analysis 

method, starting from no predictor variables, and then 

adding the most contributory (calculate the "AIC" value 

according to the model after adding the variables, and 

select the smaller "AIC" value Variables) predictor 

variables in turn (such as forward selection). After 

adding each new variable, any variables that no longer 

provided improved model fit (the AIC value of the 

model could not be reduced after the variable was 

enrolled) would be deleted. Based on our multi-step 

iterative analyses, the following risk scoring model was 

constructed, which involved 6 genes: 

 

TILCD8Sigscore = (-0.121 * PDK4) + (-0.492 * MPP1) 

+ (0.22 * ASGR1) + (0.176 * MS4A14) + (-0.184 * 

FCER1A) + (0.5 * MX2) 

 

Verification of the TIL-CD8T-related tumor gene 

risk scoring model by external data 

 

In order to verify the prediction efficiency of the above 

model in an independent data set, the model was used to 
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calculate the risk scores (TIL-CD8T-Sigscore) in KIRC 

sample chip data (GSE22541, GSE29609 and TCGA-

KIRC). The disease-free survival (DFS) in GSE22541 

was used as an index for clinical benefit evaluation. It 

was found that the survival prognosis of patients with 

low TIL-CD8T-Sigscore in these data sets was 

significantly better than those with high risk scores 

(Figure 3A–3B). The AUC of the 5-year OS, predicted 

by the TCGA data, was 0.765 (Figure 3C), while the 

AUC of the 5-year survival time predicted by the 

GSE22541 data was 0.629 (Figure 3D). In contrast, the 

survival prognosis of patients with low risk score of 

GSE29609 was worse than those of the high risk score 

group (Figure 3F). In order to further assess the 

correlation between clinical information and the 

individual expression of prognostic factors, this 

information was visualized in a heatmap. As shown in 

(Figure 3E), high risk group corresponded to the high 

mortality. This trend could also be found in TNM 

staging (Figure 3E). 

Genes expression profile included in the scoring 

model across KIRC cell lines 

 

The expression profile of the 6 genes risk scoring model 

was compared between KIRC cell line and CD8 T cell 

data set, and then the Wilcoxon rank sum test was used 

to evaluate the differential expression significance of 

these genes in the CD8 T and KIRC cell lines. However, 

no significant expression difference or specificity 

corresponding to certain KIRC cell lines was found 

(Supplementary Figure 3A–3F). 

 

Single-sample gene set enrichment analysis 

(ssGSEA) of immune cell infiltration level in TIL-

CD8T Sig score group 

 

Next, the immune infiltration levels in the high and low 

TIL-CD8T Sig score groups were further evaluated. 

ssGSEA was used in 19 immune cell subgroups. 

Dendritic and mast cells were found to be enriched in 

 

 
 

Figure 1. Elimination of inter-study bias in immune cell chip data. The batch effect correction of each chip was completed by the 
inSilicoMerging software package of Bioconductor. (A) Principal component analysis (PCA) analysis of each chip data before batch effect was 
removed; (B) PCA analysis of each chip data after the batch effect was removed; (C) The differential expression (|logFC|>1 and p<0.05) gene 
heat map of CD8 T cells and other immune cells. 
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Figure 2. Kaplan-Meier survival curve for TIL-CD8T-related prognostic factors. The abscissa axis represents survival time; the 
ordinate axis represents survival probability. The survival curves of different colors represent different expression status of related genes. (A) 
Kaplan-Meier survival curve of PDK4 (P < 0.0001): Hazard Ratio=0.76, 95%CI [0.69, 0.84]; C-index= 0.66. (B) Kaplan-Meier survival curve of 
MPP1 (P < 0.0001): Hazard Ratio=0.60, 95%CI [0.45, 0.81]; C-index= 0.62. (C) Kaplan-Meier survival curve of ASGR1 (P = 0.00011): Hazard 
Ratio=1.34, 95%CI [1.17, 1.54]; C-index= 0.62. (D) Kaplan-Meier survival curve of MS4A14 (P = 0.00019): Hazard Ratio=1.33, 95%CI [1.12, 
1.57]; C-index= 0.59. (E) Kaplan-Meier survival curve of FCER1A (P < 0.0001): Hazard Ratio=0.81, 95%CI [0.73, 0.89]; C-index= 0.63. (F) Kaplan-
Meier survival curve of MX2 (P < 0.0001): Hazard Ratio=1.69, 95%CI [1.36, 2.09]; C-index= 0.61. 
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Figure 3. Prognostic efficacy evaluation of risk scoring model and external data verification. (A) Kaplan-Meier overall survival 

curve of patients in the TCGA-KIRC cohort. The abscissa axis represents survival time; the ordinate axis represents survival probability. The 
survival curves of different colors represent different risk score subgroups. (B) Kaplan-Meier overall survival curve of patients in the 
GSE22541 cohort. The abscissa axis represents survival time; the ordinate axis represents survival probability. The survival curves of different 
colors represent different risk score subgroups. (C) The predictive efficiency of the risk scoring model in the TCGA-KIRC cohort (AUC= 0.765). 
The abscissa axis represents false positive rate; the ordinate axis represents true positive rate. (D) The predictive efficiency of the risk scoring 
model in the GSE22541 cohort (AUC= 0.629). The abscissa axis represents false positive rate; the ordinate axis represents true positive rate. 
(E) Heatmap representation of the expression levels of genes included in the KIRC scoring model of the low and the high-risk groups, and the 
distribution of clinicopathological characteristics in the low and high-risk groups. (F) Kaplan-Meier overall survival curve of patients with KIRC 
in the GSE29609 cohort. The abscissa axis represents survival time; the ordinate axis represents survival probability. The survival curves of 
different colors represent different risk score subgroups. 
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the low score group, while Act.B, Act.dendritic, 

Act.CD4 T, Act.CD8 T, Monocyte, Th17, NK.T,  

NK, Eosinophil, Plas.dendritic and Neutrophil cells 

were hyper-infiltrated in the high score group 

(Supplementary Figure 4A). 

 

The landscape analysis of mutation and copy 

number variation (CNV) in high and low TIL-

CD8Sig score groups 

 

In order to clarify the correlation between TIL-CD8 Sig 

score and gene mutations, the R software package 

maftools was used to deal with the publicly available 

mutation annotation format (maf) files (Figure 4A), and 

evaluate the relationship between different TIL-CD8Sig 

scores and CNV (Figure 4B). It was found that the gene 

mutations and CNV status of patients in different TIL-

CD8Sig score groups were different, and the CNV 

frequency was significantly different from each other 

(Figure 4C). 

 

Differences of the immunotherapy efficacy in 

patients with different TIL-CD8 Sig scores predicted 

by tumour immune dysfunction and exclusion 

(TIDE) score 

 

In order to investigate the differences of the 

immunotherapy efficacy in patients with different  

TIL-CD8 Sig scores, the TIDE score was used for 

prediction practice. The TIDE method could integrate 

the expression characteristics of T cell dysfunction  

and rejection to simulate tumor immune escape,  

and then adopt untreated tumor data to predict  

the clinical response of immune checkpoint  

blockade (ICB). The TIDE online analysis website 

(http://tide.dfci.harvard.edu/) was used to calculate the 

TIDE score, and evaluate the difference among different 

TIL-CD8Sig score groups. However, no significant 

difference was found in the two groups (Supplementary 

Figure 4B). 

 

The drug resistance (Sorafenib) prediction in TIL-

CD8Sig score group 

 

Sorafenib represents one of the standard treatment 

options for patients with metastatic renal cell carcinoma. 

However, highly treatment resistant is common in 

KIRC. The mechanism of drug resistance was still not 

well understood. To reveal the relationship between 

TIL-CD8 Sig score and drug resistance in patients with 

KIRC, the R software package pRRophetic was adopted 

for predicting the sensitivity of Sorafenib. Through 

analysis, it was found that the sensitivity of Sorafenib 

(Supplementary Figure 4C) in the low-scoring group 

was significantly different from that of the high-scoring 

group. 

Independence verification of prognostic factors 

 

To further verify the predictive value of TIL-CD8Sig 

score as a prognostic factor, Univariate and Multivariate 

Cox regression analyses were used to deal with the data 

of TCGA-KIRC and GSE22541. Through these 

analyses, it was found that the 6-gene TIL-CD8 Sig 

score model could be used as an independent prognostic 

factor in both TCGA and GSE22541 (Supplementary 

Figure 5A–5D). 

 

Construction of nomogram for the prediction of 

overall survival rate 
 

Nomograms had been previously shown as a reliable 

alternative tool that could help clinicians make 

individual predictions for survival. By integrating the 

TIL-CD8Sig score groups and clinicopathological risk 

factors, a nomogram for predicting the overall survival 

rate of TCGA-KIRC was constructed (Figure 5A). 

Through the standard curve diagram, it was found that 

the performance of the nomogram was equivalent to 

that of the ideal model (Figure 5B). Decision curve 

analysis (DCA) was used to quantify the clinical utility 

of it. For the overall survival probabilities of 2, 3, and 5 

years, the decision curve showed that the nomogram 

could provide a better net benefit than the alternatives 

(Figure 5C). 

 

Analyses of the combination of TIL-CD8 Sig score 

and immune check sites expression as the prognostic 

factors in KIRC 

 

Immune checkpoint molecules, such as PD-1 and PD-

L1, had been identified as crucial regulators of the 

immune response. However, the prognostic sig-

nificance of these immune checkpoint molecules was 

still controversial. We wanted to further investigate the 

relationship between TIL-CD8 Sig score and the PD-

1/PD-L1 expression levels. As shown in (Figure 6A), 

the TIL-CD8 Sig score was significantly correlated 

with both PD-1 and PD-L1 (PD-1: spearman 

correlation coefficient rho= 0.441, P <0.001; PD-L1: 

spearman correlation coefficient rho=0.129, P=0.024). 

To further evaluate the expression patterns of immune 

checkpoint genes in different TIL-CD8Sig score 

groups, it was found that the PD-1 (Wilcoxon rank sum 

test P<0.001) and PD-L1 (Wilcoxon rank sum test 

P<0.01) expression levels in the high-risk group were 

significantly higher than those of the low-risk group 

(Figure 6B). 
 

Finally, to further clarify the impact of the interaction 

between TIL-CD8Sig score and immune checkpoint 

genes on survival, the patients were divided into 4 

groups based on the combination of TIL-CD8Sig score 

http://tide.dfci.harvard.edu/
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(high/low) and immune checkpoint genes (high/low). 

Survival comparisons were put into practice in the 4 

groups, and the results were displayed in (Figure 6C). 

The comparison results showed that the prognosis of 

patients with the same or similar immune checkpoint 

gene levels could be distinguished from each other by 

TIL-CD8Sig score (PD-1: log rank P <0.0001; PD-L1: 

log rank P = <0.0001) (Figure 6C). 

 

 
 

Figure 4. Genetic landscape analysis of mutation and copy number variation (CNV) in high and low TIL-CD8Sig score groups. 
(A) Mutation waterfall graph of different TIL-CD8Sig score subgroups in the TCGA-KIRC cohort. (B) CNV spectrum of different TIL-CD8Sig score 
subgroups in the TCGA-KIRC cohort. Different colors represent different CNV types (gain or loss); the abscissa axis represents chromosome 
locus; the ordinate axis represents CNV frequency. (C) The difference of mutation frequency in different TIL-CD8 Sig score subgroups. The 
abscissa axis represents different scoring groups; the ordinate axis represents mutation frequency. 
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DISCUSSION 
 

Previous studies have raised that CD8+ T cell 

infiltration can play an important role in anti-tumor 

immunotherapy [18–22]. Indeed, several immuno-

therapy targets had been identified in CD8+ T cells 

[23], suggesting that CD8T should be considered for 

other anti-cancer therapies. Here we aimed to clarify the 

significance of CD8+ T cell infiltration related markers 

for KIRC patients. 

Our work relied on processing data from various 

database. In order to reduce the bias and heterogeneity 

of the data source, the most commonly used TCGA 

database for downstream bioinformatics analysis was 

given priority [24, 25]. After ensuring that de-batch 

effect and inter-study bias had been efficiently removed 

by calibration, and the distribution of GEO chip data 

had became uniform, a large sets of data from GEO 

were collected for further verification (Table 1). 63 

genes were found to be up-regulated in CD8 T cells, 

 

 
 

Figure 5. Nomogram and decision analysis curve for predicting the overall survival of KIRC patients. (A) Combining the TIL-

CD8Sig score of the TCGA-KIRC cohort data and clinical pathological risk factors to predict the 2-year, 3-year and 5-year overall survival 
probability. (B) According to the consistency of the prediction and observation results, the correction map of the nomogram was drawn. The 
performance of the nomogram was shown by the chart relative to the dotted line, which the dotted line indicated a perfect forecast. (C) 
Nomograph's decision analysis curve. None: Hypothetical events will not occur in any patients (horizontal solid line); All: Hypothetical events 
will occur in all patients (dotted line), the expected net income based on the nomogram prediction under different threshold probabilities 
was displayed by it. 
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while 396 genes were found to be down-regulated 

(Figure 1C). Through pan-cancer analyses, 12 of 63 up-

regulated and 162 of 396 down-regulated genes were 

found to be significantly correlated with the survival 

prognosis (Supplementary Table 1), which were rarely 

reported in previous studies [18, 26]. These dysregulated 

genes, identified in our analyses, might be potential 

biomarkers for the prognosis of KIRC [26, 27].

 

 
 

Figure 6. The effect of TIL-CD8Sig and immune checkpoint gene expression on patient survival. (A) The relationship between TIL-
CD8Sig and the expression of immune checkpoint genes (PD-1 and PD-L1). The abscissa axis represents the TIL-CD8Sig Score, and the ordinate 
axis represents the expression level of PD-1/PD-L1. (B) Box plot of the expression distribution of immune checkpoint genes (PD-1 and PD-L1) 
in the high and low risk groups of TIL-CD8Sig. The abscissa axis represents different risk groups; the ordinate axis represents the expression 
level of PD-1/PD-L1. (C) Kaplan-Meier survival curve of OS in four groups of patients stratified by TIL-CD8Sig and immune checkpoint gene 
expression. The abscissa axis represents survival time; the ordinate axis represents survival probability. 
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Neutrophils played an important role in cancer [28], 

and were reported to be related to tumor progression 

and immunity [29]. After biological process (BP) 

enrichment analyses of specific marker genes in  

TIL-CD8 T cells, it was found that neutrophil-

associated terms, such as neutrophil activation and 

degranulation, were enriched (Supplementary Figure 

1A). This suggested that TIL-CD8TSig might 

participant in cancer development by regulating the 

activity of neutrophils [28, 29]. This correlation 

further reinforced the possibility that TIL-CD8TSig 

could be used as a prognostic indicator. For molecular 

function (MF) and cellular component (CC), no 

enrichment analyses results with such obvious 

commonality were found (Supplementary Figure 1B, 

1C). KEGG pathway enrichment analyses were found 

to be mainly enriched in tumor-related signal pathways 

(Supplementary Figure 1D) [30–36]. Chemokine 

signaling pathway, ranked as the first one, had been 

frequently reported in cancers and immunotherapy [31, 

37], but it was rarely reported in KIRC. Similar status 

could also be seen in other pathways (Supplementary 

Figure 1D) [31, 36]. While our analyses represented a 

significant conclusion from our current knowledge,  

the mechanism of TIL-CD8TSig involved signal 

pathways in KIRC were needed to be further 

investigated [30–36]. 

 

Based on our highly integrated multi-platform analyses 

across multiple datasets, the risk scoring model specific 

to TIL-CD8T was constructed. LASSO Cox regression, 

widely used in cancer research for predicting model 

construction, was adopted in our study [38–40]. Based 

on LASSO and TCGA-KIRC, the 6-gene risk scoring 

model corresponded to TIL-CD8T was constructed 

(Figure 2 and Supplementary Figure 2), which was 

further verified by GEO data cohorts (Figure 3). Those 

6 genes in the model (PDK4, MPP1, ASGR1, MS4A14, 

FCER1A and MX2), rarely reported in cancers [41–44], 

were found to be significantly related to the prognostic 

survival of KIRC patients (Figure 2). In the model 

effectiveness evaluation, similar survival-related trend 

could also be found (Figure 3A, 3B, 3F). However, the 

survival trend in GSE29609 was contrary to those of 

TCGA-KIRC and GSE22541 (Figure 3A, 3B, 3F). In 

order to further explore the reasons for the failure of the 

model prediction in GSE29609, the primary data set 

was carefully checked. It was found that the limited 

number of patients and the high degree of heterogeneity 

among individuals might be the main disadvantages that 

led to the failure of the model prediction (Figure 3F). 

The ROC curve showed that the risk scoring model had 

a good predictive effect in TCGA-KIRC and GSE22541 
(Figure 3C, 3D). Overall, it could be concluded that a 

higher risk score in our model corresponded to a higher 

mortality rate, which also indicated that our risk scoring 

model had a better predictive efficiency for the survival 

prognosis of KIRC patients (Figure 3E). 

 

Further analyses showed that there was no significant 

difference in the expression of genes contained in the 

risk scoring model between the KIRC cell lines and 

CD8 T cell data sets (Supplementary Figure 3A–3F), 

which further confirmed the universality of the model 

applicability. ssGSEA analyses showed that much more 

immune cells were enriched and activated in the high 

TIL-CD8T Sig score group (Supplementary Figure 4A). 

Moreover, different TIL-CD8Sig scores corresponded 

to different gene mutations and CNV status (Figure 4A, 

4B), and there was a significant difference in CNV 

frequency between the two groups (Figure 4C). 

Regardless of the group, the VHL gene was still the 

most frequently altered gene (Supplementary Figure 

4B), which was consistent with previous studies in 

KIRC [5, 45]. This also indirectly verified the reliability 

of our analysis results. 

 

In our analyses, we also wanted to explore the 

underlying causes of drug resistant in KIRC, which was 

frequently reported in previous reports [46, 47]. 

Sorafenib is one of the most often used drug for 

metastatic KIRC [46, 47]. Strikingly, it was found that 

IC50 of sorafenib was significantly different between 

high and low TIL-CD8T Sig score groups (Sup-

plementary Figure 4C). These findings suggested that 

the model could be used for evaluating the sensitivity of 

sorafenib based on the TIL-CD8T Sig score in future 

clinical work. This further expanded the scope of 

potential application of our research results. 

 

Moreover, our univariate and multivariate Cox 

regression analyses confirmed that the 6-gene TIL-CD8 

Sig scoring prediction model could be used as an 

independent prognostic factor in both the TCGA-KIRC 

and GSE22541 data cohorts (Supplementary Figure 5). 

The results of the nomogram and decision curve 

analysis also suggested that the prediction model had a 

good predictive efficiency for the prognostic survival of 

patients (Figure 5). Furthermore, TIL-CD8T Sig score 

could be used for distinguishing the survival prognosis 

of patients with the same or similar immune checkpoint 

gene levels (Figure 6), which would be helpful for us to 

choose the use of PD-1/PD-L1 drugs [47, 48]. 
 

Unlike previous reports [49, 50], more indicators were 

analyzed and evaluated in this study. In the process of 

analyses, based on the data of TCGA, as many data 

from external databases as possible were used for 

further verification. Different from the previous co-
expression network and protein-protein interactions 

network analysis [26], the 6 prognostic-related genes 

predicting model was constructed and further well 
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verified, which was also the main innovation and 

attempt of this research. These advantages strengthened 

the significance of our work. 

 

Although different data sets were used to mutually 

verify the analyses conclusions, the limitations of the 

study should be acknowledged. The obvious limitation 

of this hypothetical study was the fact that there was no 

laboratory based real experiments or any clinical study 

were conducted. However, due to the rigorous design 

and analyses process, it was believed that our analyses 

results still had some important guiding significance for 

clinical applications. 

 

CONCLUSIONS 
 

Low levels of TIL-CD8T Sig score was associated with a 

better prognosis in KIRC patients. The 6-gene TIL-CD8 

Sig scoring prediction model might be a good choice for 

the prediction of the prognostic survival, immunotherapy 

options and sorafenib drug sensitivity in KIRC patients. 

 

MATERIALS AND METHODS 
 

Published data sets 

 

The transcriptome data and related clinical information 

of patients with KIRC were obtained through Xena 

(http://xena.ucsc.edu/). 307 KIRC patient data sets 

containing transcriptome and clinical information were 

collected from the TCGA-KIRC sample cohort. All 

clinical data information of TCGA were provided in 

Supplementary Material 3. 68 KIRC patient datasets 

with transcriptome and clinical information were 

obtained through the GEO database (https://www.ncbi. 

nlm.nih.gov/geo/, GSE22541). Data including a total of 

65 KIRC cell lines were extracted through Genomics of 

Drug Sensitivity in Cancer (GDSC) (https://www. 

cancerrxgene.org/) and Cancer Cell Line Encyclopedia 

(CCLE) (https://portals.broadinstitute.org/ccle/). 

Among them, 32 KIRC cell lines were picked up 

through the GDSC database, while 33 KIRC cell lines 

were collected from the CCLE database. 
 

Immune cells related transcriptome data were downloaded 

from the GEO database, including GSE42058, 

GSE49910, GSE51540, GSE59237, GSE6863, GSE8059, 

GSE13906, GSE23371, GSE25320, GSE27291, 

GSE27838, GSE28490, GSE28698, GSE28726, 

GSE37750, and GSE39889. The cell types corresponding 

to every chips were summarized in (Table 1). 

 

Data preprocessing 
 

For the data of immune cells from multiple chips, the 

Bioconductor package inSilicoMerging was used for 

inter-study bias correction. The data of the TCGA-

KIRC cohort was standardized by using log2 

(FPKM+1). 

 

Screening for specific marker genes in tumor 

infiltrating CD8+ T lymphocytes 

 

Tumor infiltrating CD8 T cell gene signature  

(TIL-CD8TSig) was established as follows: 1)  

The differential expression analyses of CD8 T cells 

and other immune cells were performed by the 

Seurat's Findmarkers function of R package. Genes 

with significant differential expressions (|logFC|>1 

and p<0.05) were considered to be specifically 

expressed by TIL-CD8 T cells; 2) TIL-CD8T genes 

related to the prognosis of KIRC patients were 

screened by the univariate Cox regression analysis. 

Then, the optimal combination of forward and 

backward variables of the multivariate Cox regression 

model was used for the screening; 3) Finally, the 

expression value of the prognostic factor weighted by 

the multivariate Cox regression coefficient was 

converted into a risk score (TIL-CD8TSig score) for 

clinical application. 

 

Enrichment analysis of specific marker genes of 

TIL-CD8 T cells 

 

In order to investigate the function of the specifically 

expressed genes of TIL-CD8 T cells, Gene Ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) enrichment analysis for specific marker genes 

were performed by the R package clusterProfiler.  

p-adjusted < 0.05 was considered as the threshold for 

significant enrichment. 

 

Construction of TIL-CD8T-related risk scoring 

model 

 

A large number of TIL-CD8T factors related to 

prognosis were screened by the Least Absolute 

Shrinkage and Selection Operator (LASSO) regression 

model. Then, multivariate Cox regression analysis was 

performed for the prognostic factors optimized by the 

LASSO regression model, and the stepAIC function in 

the MASS (Modern Applied Statistics with S) package 

of the R software was used for stepwise regression 

performance to screen the model factors. 

 

Identification of TILs immune cell subsets 

 

Single-sample gene set enrichment analysis (ssGSEA) 

was used to identify immune cells that were hyper-

infiltrating in the tumor microenvironment. The degree 

of correlation was expressed by the Normalized 

Enrichment Score (NES). 

http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://portals.broadinstitute.org/ccle/
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Pan-cancer analysis of CD8T-related genes in KIRC 

 

All CD8T-related genes were used for pan-cancer 

analysis of differential gene expression and survival 

analysis by an online available tool (http://starbase.sysu. 

edu.cn/panCancer.php). All the R scripts involved in the 

above analysis were provided in Supplementary 

Material 4. 

 

Statement of ethics 

 

Since this research does not involve the interaction with 

human subjects, no ethical issues were encountered, and 

no ethical approval was needed. 

 

Abbreviation 
 

TIL-CD8TSig: Tumor-Infiltrating CD8 T cell gene 

Signature; GDSC: Genomics of Drug Sensitivity in 

Cancer; CCLE: Cancer Cell Line Encyclopedia; GEO: 

Gene Expression Omnibus; TCGA: The Cancer 

Genome Atlas; LASSO: Least Absolute Shrinkage and 

Selection Operator; ssGSEA: Single-sample Gene Set 

Enrichment Analysis; NES: Normalized Enrichment 

Score; DCA: Decision Curve Analysis; GO: Gene 

Ontology; KEGG: Kyoto Encyclopedia of Genes and 

Genomes; TIDE: Tumour Immune Dysfunction and 

Exclusion; FPKM: Fragments Per Kilobase per Million; 

ICB: Immune Checkpoint Blockade; BP: Biological 

Process; MASS: Modern Applied Statistics with S; 

CNV: Copy Number Variation; AIC: Akaike 

Information Criterion. 
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SUPPLEMENTARY MATERIALS 
 

Please browse Full Text version to see the data of Supplementary Materials 1–4. 

 

Supplementary Material 1. Cell_lines_annotations. 

 

Supplementary Material 2. Cell_lines_details. 

 

Supplementary Material 3. Clinical data information of TCGA. 

 

Supplementary Material 4. R Script for all the raw data. 
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Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Enrichment analysis of gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) 
specific marker genes for TIL-CD8 T cells. The size of the dot indicates the number of genes enriched in the items; The color of the dot 
indicates the size of the p-value after correction. (A) Biological process of GO enrichment analysis: items such as neutrophil activation, 
neutrophil degranulation, neutrophil activation involved in immune response, neutrophil mediated immunity, positive regulation of cytokine 
production, regulation of innate immune response and T cell activation were mainly included in the biological process. (B) Molecular 
functions of GO enrichment analysis: items such as carbohydrate binding, cytokine binding, cytokine receptor activity, pattern recognition 
receptor activity, non-membrane spanning protein tyrosine kinase activity, signaling pattern recognition receptor activity and Toll-like 
receptor binding were mainly included in the analysis. (C) Cellular component of GO enrichment analysis: items such as cytoplasmic vesicle 
lumen, vesicle lumen, ficolin−1−rich granule, secretory granule lumen, tertiary granule, secretory granule membrane and ficolin−1−rich 
granule lumen were mainly included in the analysis. (D) KEGG pathway enrichment analysis of marker genes showed that the genes were 
mainly enriched in Chemokine signaling pathway, JAK-STAT signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling 
pathway, C-type lectin receptor signaling pathway, and TNF signaling pathway and Fcepsilon RI signaling pathway. 
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Supplementary Figure 2. Univariate Cox and LASSO regression analysis. 38 TIL-CD8T-related genes related to the prognosis of KIRC 
were screened by univariate Cox regression analysis, and then LASSO regression analysis was used to reduce dimensionality, and 13 genes 
related to the prognosis of KIRC were obtained. (A) Forest plot of univariate Cox regression analysis. (B) Coefficient distribution of LASSO 
regression analysis. (C) Regression equation coefficients of 13 prognostic-related factors screened by LASSO regression analysis. 
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Supplementary Figure 3. The expression status of prognostic factors contained in the model in CD8 T cells and KIRC cell lines. 
The significance of the differential expression in CD8 T cell line and KIRC cell line was analyzed by Wilcoxon rank sum test. The abscissa axis 
represents CD8 T cell line and KIRC cell line; The ordinate axis represents the expression level of related genes. (A) The differential expression 
of the prognostic factor PDK4 between CD8 T cells and KIRC cell lines. (B) The differential expression of the prognostic factor MPP1 between 
CD8 T cells and KIRC cell lines. (C) The differential expression of the prognostic factor ASGR1 between CD8 T cells and KIRC cell lines. (D) The 
differential expression of the prognostic factor MS4A14 between CD8 T cells and KIRC cell lines. (E) The differential expression of the 
prognostic factor FCER1A between CD8 T cells and KIRC cell lines. (F) The differential expression of the prognostic factor MX2 between CD8 T 
cells and KIRC cell lines. 
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Supplementary Figure 4. (A) Volcano map enriched with NES scores of tumor immune cell subgroup GSEA scored by TIL-CD8Sig: The 

single-sample GSEA analysis was used to evaluate the level of immune cell infiltration in the TIL-CD8T Sig score groups. (B) TIDE score results 
of different TIL-CD8Sig score groups. The calculation of the tumor immune dysfunction and exclusion (TIDE) score was finished by the TIDE 
online analysis website (http://tide.dfci.harvard.edu/). The abscissa axis represents different TIL-CD8Sig score groups; the ordinate axis 
represents the TIDE score. (C) The prediction result of sorafenib resistance in different TIL-CD8 Sig score subgroups. The prediction of 
sorafenib drug sensitivity was completed by the R software package pRRophetic. 

 

 

 
 

Supplementary Figure 5. Verification results on the independent prediction efficiency of TIL-CD8Sig score. Univariate Cox 

regression and multivariate Cox regression analysis were used to verify the data of TCGA-KIRC and GSE22541 in KIRC patients. (A) The Forest 
plot of TCGA-KIRC Univariate Cox Regression Analysis. (B) The Forest plot of TCGA-KIRC Multivariate Cox Regression Analysis. (C) The Forest 
plot of GSE22541 Univariate Cox Regression Analysis. (D) The Forest plot of GSE22541 Multivariate Cox Regression Analysis. 
  

http://tide.dfci.harvard.edu/
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Summary of genes related to patient survival and prognosis. 

 

Supplementary Table 2. The cutoff values of the 6 
prognostic genes. 

Gene Cutoff 

PDK4 13.37 

MPP1 11.31 

ASGR1 5.7 

MS4A14 7.72 

FCER1A 6.36 

MX2 9.87 

The first column was the name of the corresponding gene; the 
second column was the cutoff value of the corresponding 
gene. 

 


