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All life forms require the element iron as a constituent 

of their biochemical systems, iron being used in 

producing ATP in mitochondria, in cytochromes and 

hemoglobin, and in many other uses. Iron is essential 

for organismal growth and maintenance, so all life, from 

bacteria and algae to mammals, have developed the 

means to collect and store iron from their environments; 

this centrality of iron for all life suggests that iron may 

be involved in aging. Most organisms, including 

humans, have no systematic means of ridding 

themselves of excess iron. Whether this lack of ways to 

dispose of excess iron came about due to a relative 

scarcity of iron, or because the detrimental results from 

excess iron were relatively rare in an environment in 

which few organisms died from natural aging, is a 

question that remains to be answered. Whatever the 

answer to that may be, most organisms accumulate iron 

as they age [1–3]. 

 

A problem that organisms face in the use of iron in 

biological systems is protecting cells from iron damage. 

The very property of iron that makes it useful, its ability 

to accept or donate electrons, also gives it the ability to 
damage molecules and organelles via the Fenton 

reaction, in which iron reacts with hydrogen peroxide, 

leading to the formation of the highly reactive and toxic 

free radical, hydroxyl. 

Most iron in cells is bound to proteins and other 

molecules that safely store it and prevent it from 

interacting with other macromolecules. In mammals, 

ferritin and transferrin are such proteins; hemoglobin is, 

however, the quantitatively most important iron depot in 

mammals. In theory, these storage proteins should be 

enough to protect organelles and macromolecules from 

iron’s reactivity, but in practice another process 

becomes perhaps more important, and that is iron 

dysregulation. Storage proteins such as ferritin can 

themselves be damaged, leading to “leakage” of free 

iron, which can then react with and damage cellular 

structures, which in turn can lead to organ damage  

and the deterioration associated with aging [4]. Damage 

to ferritin can be caused by glycation due to 

hyperglycemia, a phenomenon seen more widely with 

the development of advanced glycation end products 

(AGEs), and with the glycation of hemoglobin 

(HbA1c), elevated in diabetics. The superoxide anion 

can also damage ferritin, leading to a vicious cycle in 

which leakage of free iron leads to oxidative stress, in 

turn leading to more iron leakage [5]. 
 

Whether this damage associated with aging is in fact a 

cause or consequence of aging of course remains to be 

determined, but as we shall see, there are several other 

reasons to think that iron is a driver of aging. 
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Activation of mTOR 
 

The mechanistic (or mammalian) target of rapamycin 

(mTOR), a molecular sensor that integrates nutritional 

and stress signals with growth and energy needs of the 

cell, plays a crucial role in aging; inhibition of mTOR 

with the drug rapamycin extends lifespan and healthspan 

in laboratory animals [6]. Nutritional and other factors 

that promote mTOR activation promote accelerated 

aging, and their absence may retard aging. For example, 

calorie restriction, the most robust life extension 

paradigm, also inhibits mTOR activation, while in 

humans, obesity resulting from overnutrition is a well-

known cause of early morbidity and mortality [7]. In 

general, growth factors, whether amino acids, glucose, 

or fatty acids, or hormonal signals that they engender, 

such as insulin, promote mTOR activation, while their 

absence, or the presence of stress from exercise or other 

sources that activate the cellular energy sensor AMPK, 

inactivate mTOR. 

 

Iron is one such growth factor. Iron is required for the 

growth of the organism, and iron activates mTOR; iron 

chelators, chemicals that bind free iron, inhibit mTOR 

activity [8]. Iron deficiency downregulates mTOR 

activity [9]. These data fit the paradigm of increased 

mTOR activity and aging, which may be promoted by 

excess iron. 

 

In turn, mTOR also exerts control over iron metabolism, 

and the inhibition of mTOR activity by rapamycin leads 

to inhibition of iron accumulation via the iron-regulating 

hormone hepcidin [10]. Transplant patients taking 

sirolimus (rapamycin) often develop a microcytic 

anemia, which has been linked to sirolimus-induced iron 

deficiency [11]. 

 

Excessive activation of mTOR is seen in type 2 

diabetes, and this activation is associated with insulin 

resistance [12]. mTOR activation in diabetes may be 

responsible for the accumulation of excess iron seen in 

this illness; alternatively, accumulation of iron might 

activate mTOR, leading to diabetes. Increased iron 

stores predict the development of type 2 diabetes, while 

iron depletion can protect against it [13]. Insulin 

resistance is associated with inadequate levels of 

hepcidin, an iron regulatory hormone, which could be 

expected to increase body iron stores [14]. So there’s 

evidence that iron increases insulin resistance, and that 

in turn can lead to higher body iron in a vicious cycle. 

Since type 2 diabetes is an age-related disease, it can be 

seen how excess iron promotes aging. 

 

However, even when ferritin is in the normal range, 

depletion of iron improves glucose tolerance, insulin 

resistance, and markers of cardiovascular disease [5]. 

Iron appears to have a dose-response effect starting 

from near iron deficiency up to iron overloading, 

making it a candidate driver of aging. 

 

Blocking iron extends lifespan 
 

In experimental organisms and animals, blocking iron 

extends lifespan. 

 

In Saccharomyces cerevisiae, limitation of iron 

increases chronological lifespan via inducing autophagy 

[15]. Autophagy is essential for lifespan extension, so 

this may be the ultimate means by which iron restriction 

or depletion extends lifespan, and iron excess promotes 

aging [16]. 

 

Dietary tea extracts increase the lifespan of Drosophila 

by over 20% by blocking the absorption of iron [17]. 

 

A number of geroprotectors increase lifespan in model 

organisms, and many of these either block dietary iron 

absorption or chelate iron and remove it. 

 

Curcumin and its metabolite tetrahydrocurcumin 

increase average lifespan in at least three model 

organisms: C. elegans, Drosophila, and mice [18]. 

Curcumin is a strong iron chelator; animals fed 

curcumin had a decline in liver ferritin [19]. Mice fed 

0.2% curcumin in the diet become iron deficient; levels 

of zinc and copper were not affected [20]. 

 

Epigallocatechin gallate (EGCG), a compound found in 

green tea, extends lifespan of both C. elegans and 

Drosophila [21, 22]. 

 

EGCG extends the lifespan and healthspan of mice, 

attenuating markers of DNA damage and senescence-

associated secretory profile, and increasing activation of 

autophagy [23]. EGCG also extends the lifespan of rats 

by reducing liver and kidney damage and inhibiting 

inflammation and oxidative stress [24]. 

 

EGCG is a strong chelator of iron [25]. EGCG protects 

against alcoholic liver disease in mice through 

decreasing the level of liver iron [26]. 

 

Aspirin extends the lifespan of C. elegans [27] and that 

of mice [28]. In humans, aspirin reduces the risk of 

cancer [29]. 

 

Aspirin use is associated with lower body iron stores, 

perhaps through an increase in gastrointestinal blood 

loss; observational studies have shown that regular 

aspirin users have lower serum ferritin; as cancer cells 

are notoriously iron-hungry, this might partially explain 

the reduced cancer risk with aspirin [30]. Aspirin also 



 

www.aging-us.com 23409 AGING 

recapitulates several features of calorie restriction, 

which could be expected to result in lower levels of 

body iron [31]. Salicylate, the main metabolite of 

aspirin, forms a complex with iron, and this process can 

be used in the quantitative detection of salicylate [32]. 

Bacteria elaborate siderophores in order to capture iron 

from their environment, and one such siderophore seen 

in several species of Pseudomonas is salicylate [33]. 

Aspirin increases the synthesis of ferritin in endothelial 

cells, which would result in lower levels of free iron, 

providing an antioxidant function; aspirin failed to 

promote ferritin synthesis in the presence of the iron 

chelator deferoxamine, indicating an interaction of 

aspirin and iron [34]. All of these data fit well with the 

idea that aspirin extends lifespan and inhibits cancer 

through decreasing body iron as at least one 

mechanism. 

 

A screening of drugs for protection against neuronal 

glucose toxicity found six of them that reduce mortality 

rate in C. elegans: caffeine, tannic acid, ciclopirox, 

acetaminophen, bacitracin, and baicalein [35]. Of these, 

with the possible exception of caffeine, all chelate iron. 

Caffeine has weak iron-binding ability [36]. Tannic 

acid, ciclopirox, bacitracin, and baicalein are strong iron 

chelators [37–40]. Acetaminophen protects against iron-

induced cardiac damage in gerbils [41]. Thus there is 

evidence that a primary mechanism of these life-

extending compounds is the binding of free iron and 

protection against oxidant-induced damage. 

 

Clofibrate increases lifespan in C. elegans [42]. When 

fed to Wistar rats, clofibrate led to a 50% decrease in 

serum iron and a reduction in transferrin mRNA [43]. 

 

Therefore, this is yet another example of a life-

extending drug, the mechanism of which may at least 

partially involve decreased iron stores. 

 

Berberine extends lifespan in mice [44]. Berberine also 

suppresses gero-conversion [45]. Berberine also has “a 

marked capacity” for iron-binding, and effectively 

chelates iron [46]. 

 

Acarbose extends lifespan in mice [47]. Acarbose 

increases fecal excretion of iron and has been known to 

be a cause of iron-deficiency anemia in humans [48, 49]. 

 

Doxycycline extends lifespan in C. elegans [50]. 

Doxycycline has a “strong iron-chelating activity” [51]. 

 

Enalapril is an angiotensin converting enzyme inhibitor 

that increases lifespan in rats [52]. One of the adverse 
effects of ACE inhibitors in humans is a dry cough, 

which is relieved by iron administration, indicating that 

one effect of these drugs concerns iron metabolism [53]. 

Ibuprofen extends lifespan in at least three organisms: 

Saccharomyces cerevisiae, C. elegans, and Drosophila 

[54]. Ibuprofen chelates iron and protects against 

oxidant lung injury by this means [55]. 

 

Metformin increases lifespan and healthspan in mice 

[56]. Many mechanisms have been proposed for the 

effects of metformin. One such mechanism is that, at 

concentrations seen in clinical use, metformin 

suppresses heme production in human erythrocytes, and 

prevents heme oxidation, thus having a role in 

regulating the redox status of iron [57]. In yeast, a 

global genetic screen showed that metformin induces a 

state similar to iron deficiency [58]. 

 

Quercetin, a polyphenol found in food, extends lifespan 

in C. elegans, and it appears to do so by increasing 

resistance to oxidative stress [59]. Quercetin is “a 

powerful chelating agent that can sequester iron(II) in 

such a way to prevent its involvement in the Fenton 

reaction [60].” 

 

Thus, we can see that a large number of life-extending 

compounds also interact with iron, either by chelation, 

inhibition of absorption, or increased iron loss. 

 

Calorie restriction 
 

Calorie restriction (CR) is the most robust life-

extending intervention known. Many mechanisms have 

been proposed to explain lifespan extension by CR, 

such as its effects on insulin and IGF-1 signaling, 

mTOR, sirtuins, AMPK, adiposity, and resistance to 

oxidative stress [61]. CR also affects iron metabolism. 

 

In yeast grown on a low-glucose medium, which is a 

model of CR, oxidative damage in the form of protein 

carbonylation is largely prevented. Intracellular iron 

concentrations changed little, whereas in yeast cells 

grown on non-restrictive media, iron concentrations 

increased up to 5-fold. The pro-oxidant effects of these 

increasing iron concentrations might explain the 

molecular damage seen in unrestricted cells, and the 

lower iron seen in CR yeast might explain the lower 

levels of damage. Thus, lower levels of iron in CR yeast 

can be posited as an important mechanism of increased 

longevity in CR [62]. 

 

CR could also be expected to result in lower ingestion 

of iron. When iron is the only limiting nutrient, yeast 

chronological lifespan is extended through induction 

of autophagy, which is essential for increased 

longevity [15]. 

 

CR was found to substantially decrease the increase in 

liver, kidney, and brain iron seen in rats fed ad libitum. 
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Lipid peroxidation was also markedly suppressed in CR 

animals. Thus, CR has an antioxidant effect which may 

be largely due to decreased levels of body iron [63]. 

 

CR downregulates expression of the iron-regulatory 

hormone hepcidin in the brain, and this leads to less 

accumulation of brain iron in aging, which is a key 

component of neurodegenerative diseases [64]. CR 

leads to less brain iron deposition in old rhesus 

monkeys, along with preserved motor performance [65]. 

 

Attenuation of increasing iron in liver, kidney, brain, 

and other tissues may be an important mechanism of the 

longevity-promoting effects of CR. 

 

Increased dietary iron promotes protein insolubility and 

aging in C. elegans, while pharmacological intervention 

to block uptake of iron mitigated much damage and 

extended normal lifespan [66]. 

 

Heterochronic blood exchange, plasma dilution, 

and blood donation 
 

Heterochronic blood exchange between young and old 

mice results in “rapid inhibition of multiple tissues by 

old blood”, for reasons that are not clear [67]. Since old 

animals accumulate iron, and since they exhibit more 

iron dysregulation resulting in higher levels of free iron, 

iron may be suspected as the mechanism behind this 

inhibition of younger tissues by old blood. 

 

In old animals, mere plasma dilution by exchanging it 

with saline and 5% albumin (an age-neutral blood 

exchange) leads to rejuvenation of muscle, liver, and 

brain in old mice [68]. Since there is no young blood 

involved in this exchange, this makes it doubtful that 

factors in young blood play an important (if any) role in 

rejuvenation seen in heterochronic blood exchange. 

 

Human serum from patients who undergo therapeutic 

plasma exchange (TPE) was also tested for its ability 

to rejuvenate cells. Old human serum strongly reduced 

proliferation of mouse myogenic cells, while a single 

TPE from the same patients reversed this inhibition. 

Accumulation of iron delays muscle regeneration and 

suppresses the differentiation of myoblast cells, and 

this suppression can be reversed with superoxide 

scavenging [69]. 

 

If TPE can lead to serum becoming (or reverting to) a 

rejuvenating intervention, the question is, what was 

removed from the serum that allowed for this effect? 

 
Iron makes a good candidate. In TPE, citrate may be 

used as an anticoagulant; citrate complexes with free 

iron, and the citrate-iron complex is the major species of 

iron found in iron overloaded patients [70]. Patients 

undergoing TPE have a high rate of iron deficiency 

anemia; one study found that 60% of patients developed 

iron deficiency anemia, and 100% of patients had 

decreased serum iron [71]. This may be due to use of 

citrate as an anticoagulant, or due to simple removal of 

plasma, which contains transferrin, and replacement 

with an albumin solution [72]. Other components of 

plasma may be removed or diluted as well, but iron may 

be the critical element here. 

 

Blood donation leads to lower levels of body iron; 

hemoglobin is the main iron depot in the body, hence its 

replacement after donation requires the use of body iron 

stores and decreases them. Several studies have found 

lower mortality in blood donors, even after accounting 

for a healthy donor effect from donors being healthier 

than others even before donation. When only blood 

donors are studied as a single class, there is an inverse 

association between blood donation frequency and 

mortality, with each additional annual donation 

associated with an 7.5% reduced mortality rate [73]. 

Blood donation is associated with a marked decrease of 

body iron in adult men; ferritin values of <15 μg/L 

(depleted) are about 8 times more common in male 

donors than in non-donors, and iron deficiency anemia 

is up to 5 times more common in donors than non-

donors [74]. 

 

Conclusion: Iron squares the circle of life 

extension 
 

It can be seen from all of the above that iron is a 

common theme in many if not most life-extension 

interventions. This can help make sense of the 

seemingly disparate mechanisms of extending life by 

slowing aging. 

 

As noted, autophagy is essential for lifespan extension, 

and autophagy activation declines with age. Ultimately, 

this can lead to “the garbage catastrophe of aging”, in 

which imperfect removal of damaged molecules leads to 

the accumulation of cellular “garbage”. Much of this 

decline in autophagy may be due to lipofuscin, a 

substance that is relatively difficult to remove and which 

“gums up” the machinery of autophagy. Importantly, 

iron plays a key role in the formation of lipofuscin; iron 

can react with polyunsaturated fatty acids and other 

molecules to form this material, and iron accelerates 

lipofuscin formation in cultured human glial cells and rat 

cardiomyocytes [75]. Lower levels of iron could be 

expected to slow the rate of lipofuscin formation. 

 
Inhibiting the cellular integrator of nutrients and 

growth, mTOR, leads to longer lifespan in virtually all 

experimental animals tested so far. We have seen that 
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mTOR in turn plays a crucial role in the level of body 

iron stores; mTOR activation increases body iron, and 

iron in turn activates mTOR. That mTOR inhibition 

increases lifespan illustrates the fundamental trade-off 

between growth and longevity, and iron is a growth 

factor [76]. 

 

Many drugs and natural products extend lifespan by 

seemingly disparate mechanisms, but inhibiting iron 

absorption, or chelating (binding and removing) iron is 

a characteristic of many if not most of these substances. 

 

Reduced iron stores can explain how calorie restriction 

extends lifespan. 

 

Finally, iron can explain the free radical theory of 

aging. Iron catalyzes the formation of the most 

damaging free radical, the hydroxyl radical. 

 

In sum, iron satisfies many of the conditions we might 

look for in a universally pro-aging substance. It 

accumulates with age; it is associated with many age-

related diseases such as cardiovascular disease, cancer, 

and Alzheimer’s disease; it catalyzes the formation of 

cellular junk molecules and helps to prevent their 

turnover; removal of iron from plasma may be 

rejuvenating; and people with lower levels of body iron 

– blood donors – have a lower mortality rate. 

 

Iron is intimately associated with aging, and control of 

body iron stores may be an important way to extend 

human lifespan. 
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