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INTRODUCTION 
 

With 13,770 estimated deaths in the United States in 

2021, ovarian cancer (OC) has emerged as a highly 

lethal gynecologic malignancy [1]. Almost 80% of OC 

cases are diagnosed in advanced stages, and its 5-year 

survival rate is about 48% [2]. Although the standard 

platinum-based chemotherapy and cytoreductive 

surgery result in complete remission, cancer tends to 

relapse and disseminate to distant organs in most 

patients [3]. 

 

Recent studies have shown the contribution of the 
tumor microenvironment (TME) to OC metastasis 

[4]. Compared to other solid tumors, the TME of 

epithelial OC is unusual because the cancer cells 

frequently escape the primary tumor site to create a 

microenvironment in the peritoneal cavity, known  

as malignant ascites [5]. Several therapeutic 

approaches based on angiogenesis, tumor-associated 

macrophages, cancer-associated fibroblasts, and 

immune checkpoint blockade are being devised to 

target the TME [6, 7]. 

 

The diversified TME in OC is a manifestation of its 

high heterogeneity. Jiménez-Sánchez et al. reported 

both regressing and progressing metastases, with 

different immune molecular patterns, in the same 

patient with high-grade serous ovarian cancer (HGSOC) 

who had undergone multiple chemotherapies [8]. They 

further reported the co-existence of inflammatory and 
immune cell-excluded microenvironments in patients 

with untreated HGSOC, suggesting widespread 

variation in infiltrating immune cells [9]. Therefore, 
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ABSTRACT 
 

Ovarian cancer (OC) is a frequently lethal gynecologic malignancy, characterized by a poor prognosis and 
high recurrence rate. The immune microenvironment has been implicated in the progression of OC. We 
characterized the immune landscape in primary and malignant OC ascites using single-cell and bulk 
transcriptome raw OC data acquired from the Gene Expression Omnibus and The Cancer Genome Atlas 
databases. We then used the CIBERSORT deconvolution algorithm, weighted gene co-expression network 
analysis, univariate and multivariate Cox analyses, and the LASSO algorithm to develop a tumor-associated 
macrophage-related gene (TAMRG) prognostic signature, which enabled us to stratify and predict overall 
survival (OS) of OC patients. In addition, inter- and intra-patient heterogeneity of infiltrating immune cells was 
characterized at single-cell resolution. Tumor-infiltrating macrophages with an M2 phenotype exhibited 
immunosuppressive activity. M1 macrophages positively correlated with OS, whereas activated mast cells, 
neutrophils, M2 macrophages, and activated memory CD4+ T cells were all negatively correlated with OS. A 
total of 219 TAMRGs were identified, and a novel 6-gene signature (TAP1, CD163, VSIG4, IGKV4-1, CD3E, and 
MS4A7) with independent prognostic value was established. These results show that a TAMRG-based signature 
may be a promising prognostic and therapeutic target in OC. 
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identifying the subset of highly metastatic cancer cells 

and OC cell type diversity at the single-cell level is 

necessary for developing effective clinical biomarkers 

and treatment strategies for OC. 

 

A TME comprises myeloid-derived suppressor cells 

(MDSCs), lymphocytes, macrophages, mast cells, 

neutrophils, and dendritic cells (DCs) and contributes to 

tumor growth, invasion, and metastasis [10, 11]. 

Moreover, abundant tumor-associated macrophage 

(TAM) infiltrates are associated with poor prognoses 

[12]. The ovarian cancer TME is mostly populated with 

TAM that exhibits functional plasticity and polarizes 

into M2-like cells [5, 13]. The immunosuppressive 

M2-like phenotype induces inflammation, tissue 

remodeling, and tumor angiogenesis [13]. 

 

Identifying prognostic markers of OC using large-scale 

public gene expression data may provide novel 

therapeutic targets for OC. We integrated single-cell 

RNA sequencing (scRNA-seq) and bulk RNA-seq to 

develop and validate a TAM-based prognostic signature 

for OC. The TME of HGSOC ascites samples, 

identified using scRNA-seq data, was highly enriched in 

M2-like macrophages. TAP1, CD163, VSIG4, IGKV4-1, 

CD3E, and MS4A7 were identified as the major OS-

predicting gene signatures using the bulk RNA-seq data. 

Finally, a prognostic model was validated using a GEO 

validation dataset.  

RESULTS 
 

Tumor cell heterogeneity in ovarian cancer 

 

Figure 1 shows the schematic illustration of the study 

design. A total of 9,609 cells from ascites samples of 

patients with OC were obtained for the analysis after 

quality control (Figure 2A and 2B). Variance analysis 

showed 1,500 highly variable genes among 10,048 

genes. The top 10 genes were identified as IGLL5, IGJ, 

WT1-AS, CCL17, GNLY, CCL5, MZB1, HBB, and 

NKG7 (Figure 2C). The principal component analysis 

(PCA) showed a mixed representation of intra-and 

inter-patient cells (Figure 2D). The p-value of the first 

20 principal components (PCs) was less than 0.05 

(Figure 2E). The highly related genes in the top four 

PCs are shown in Supplementary Figure 1. Afterward, 

t-distributed stochastic neighbor embedding (tSNE) was 

performed with PC 1–20 at a resolution of 0.3 to group 

the OC cells into 13 separate clusters (Figure 2F). A 

total of 6,453 marker genes were identified and the top 

10 differentially expressed genes from the 13 clusters 

were displayed in the heatmap (Figure 2G).  

 

Identification of immune cells and GSVA 

 

We next annotated the cell clusters as epithelial, 

immune, or stromal (fibroblasts) cells (Figure 3A) 

(Supplementary Table 1) using previously established 

 

 
 

Figure 1. Schematic illustration of the study design. 
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cell surface markers. Clusters 9 and 10, containing 419 

cells, were classified as epithelial cells; clusters 2 and 7, 

containing 1,895 cells, were classified as stromal cells; 

and clusters 0, 1, 3–8, 11, and 12, containing 6,706 

cells, were classified as immune cells. We next 

extracted immune cells (n = 6,706) separately and 

annotated them as B cells, macrophages, dendritic cells 

(DCs), and T cells (Figure 3B). Clusters 0, 1, 3, and 4, 

 

 
 

Figure 2. Heterogeneity in patients with ovarian cancer (OC) was identified using single-cell RNA-seq data. (A and B) A total of 

9,609 cells from six OC patients were included in the analysis. (C) Scatter plots displayed 10,048 corresponding genes in all cells from OC 
samples. (D) The principal component analysis (PCA) revealed unclear separations of OC cells. (E) The first 20 principal components with a 
p-value < 0.05 were generated by PCA. (F) OC cells were categorized into 13 clusters using the tSNE algorithm with the first 20 principal 
components. (G) The heatmap shows the top 10 differential marker genes of each cluster. A total of 124 unique genes were identified after 
removing the same marker genes among the clusters.  
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containing 5,930 cells, were classified as macrophages; 

cluster 6, containing 384 cells, was classified as B cells; 

cluster 8, containing 320 cells, was annotated as T cells; 

and cluster 12, containing 72 cells, was classified as 

DCs.  

 

Gene set variation analysis (GSVA) was performed to 

analyze the B cell functional status, including cytokine 

production, naïveness, anti-apoptotic, proliferation, pro-

apoptotic functions, and germinal center characteristics. 

The functional status related to pro-apoptosis showed 

heterogeneity in the same patient (Supplementary 

Figure 2). For T cells, we estimated the cytotoxic, 

native, regulatory, exhausted, co-stimulatory, and G1/S- 

and G2/M-related gene signatures. The functional status 

of cytotoxicity in patient 2 was highly enriched 

(Supplementary Figure 3). Figure 3C shows a 

comprehensive analysis of the four kinds of immune 

cells. Macrophages constituted the largest proportion 

(88.4%) of immune cells. The M2 up signature was 

 

 
 

Figure 3. Clustering of immune cell populations and GSVA enrichment scores. (A) Cell-types visualized using tSNE dimensionality 

reduction revealed the clustering of tumor-stroma immune cells. (B) Immune cells in the tumor microenvironment were annotated into 
four subpopulations. (C) Hierarchical clustering was used using GSVA enrichment scores for gene set for B cell signature, DC signature, 
macrophage signature, M1 up signature, M2 up signature, and T cell signature. (D) Violin plot indicates the genes corresponding to immune 
cell subpopulations.  
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highly enriched in macrophages (Figure 3C). 

Macrophages were marked by CD163, CSF1R, MS4A7, 

and VSIG4; B cells were marked by CD79B and 

MZB1; T cells were marked by CD2 and CD3D; and 

DCs were marked by CD1E and CD83 (Figure 3D). In 

summary, B cells, T cells, and macrophages showed 

heterogeneity in the same patient and among different 

patients. 

High M2 and low M1 phenotypes were correlated 

with poor survival in ovarian cancer patients 

 

The CIBERSORT-based Nu support vector regression 

algorithm was used to evaluate the immune score of the 

transcribed dataset of bulk RNA-seq obtained from a 

TCGA-OC cohort. The estimated proportion of 22 

immune cell types is shown in Figure 4A and 4B. 

 

 
 

Figure 4. Tumor-infiltrating immune cell profile of OC samples and survival analysis. (A) Boxplot and barplot (B) display the 

proportion of 22 infiltrating immune cell types in OC samples. (C) Kaplan–Meier analysis of overall survival with respect to M2 
macrophages, M1 macrophages, activated mast cells, and neutrophils in TCGA-OC. 
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Among them, four kinds of tumor-infiltrating immune 

cells were negatively correlated with the OS of OC 

patients, including M2 macrophages (p = 0.031), 

activated mast cells (p = 0.0033), activated memory 

CD4+ T cells (p = 0.04), and neutrophils (p = 0.027), 

whereas M1 macrophages (p = 0.00042) were positively 

associated with the OS of OC patients (Figure 4C). 

 

Identification of TAM-related genes 

 

The expression values of 4,043 genes were used to build 

a gene co-expression network using the WGCNA R 

package. Pearson’s correlation values and average 

linkage values were used to cluster the OC samples. A 

hierarchical clustering tree was constructed using the 

dynamic hybrid cutting model. Each leaf on the tree 

represented a single gene. Genes with similar 

expression patterns were clustered into branches to form 

a gene module. Furthermore, 10 modules were 

constructed (Figure 5A), among which the turquoise 

module exhibited a strong relationship with the black 

and pink modules (Figure 5B). 

 

We correlated the gene module and CIBERSORT 

fraction and found that the black module exhibited a 

high correlation with M1 macrophages (R2 = 0.52, p = 

2e-27) and naïve B cells (R2 = 0.5, p = 5e-25). The pink 

module was highly correlated with M1 macrophages 

(R2 = 0.54, p = 2e-30) and CD8+ T cells (R2 = 0.36, p = 

1e-12), whereas the turquoise module was highly 

correlated with M1 (R2 = 0.47, p = 1e-22) and M2 

macrophages (R2 = 0.31, p = 1e-09; Figure 5C). The 

scatter plots illustrated a strong positive correlation 

between module membership and gene significance in 

the black module (cor = 0.9, p = 4.9e-32), turquoise 

module (cor = 0.73, p = 8.9e-124), and pink module 

(cor = 0.79, p = 3.6e-17; Figure 5D), indicating that 

these modules were highly correlated with TAMs. 

Because we were specifically interested in 

macrophages, we focused on the black, pink, and 

turquoise modules that showed a correlation with 

macrophages; these were identified as TAM-related 

modules. According to the cut-off criteria, 219 genes in 

three modules were defined as tumor-associated 

macrophage-related gene (TAMRG) signatures 

(Supplementary Table 2). 

 

Molecular subtypes based on TAMRG signature 

 

The RNA-seq data of 375 patients with OC in the 

TCGA database were clustered using the unsupervised 

k-means-based clustering method and the expression 

patterns of 219 TAMRG signatures. The cumulative 
distribution function (CDF) plot showed k = 2 (2–6) as 

the optimal number of clusters (Figure 6A). The 

consensus heatmap divided all OC patients into two 

clusters: 151 (40.0%) in cluster 1 and 224 (60.0%) in 

cluster 2 (Figure 6B). The heatmap revealed 

differentially expressed genes between the two 

molecular subtypes (Figure 6C). The Kaplan–Meier 

survival analysis indicated that patients in cluster 2 had 

worse survival than those in cluster 1 (p = 0.0071) 

(Figure 6D). The violin plot showed that cluster 1 had 

higher M1 macrophage scores than cluster 2 (p = 6.8e-

13; Figure 6E). The GSEA revealed the enriched 

pathways between the two groups. Some of the 

upregulated pathways included apoptosis, antigen 

processing and presentation, angiogenesis, epithelial–

mesenchymal transition (EMT), and M1 macrophage 

upregulation in cluster 1 (Figure 6F). We compared six 

main immune checkpoints between the two molecule 

subtypes of OC patients. PDCD1 (PD1; p = 6.2e-10), 

CTLA4 (p = 6.6e-16), CD274 (PDL1; p = 5.4e-06), 

CD80 (p = 7.7e-07), PDCD1LG2 (PDL2; p = 1.9e-0), 

and CD86 (p = 1.6e-05) were highly expressed in 

cluster 1 (Figure 6G).  

 

Identification of the best TAMRG-based gene 

signature for predicting survival in OC patients 

 

We identified 25 prognosis-associated TAM-based 

signatures using univariate Cox analysis in the 

TCGA training cohort (Supplementary Figure 4A). 

We identified a 6-gene signature using least 

absolute shrinkage and selection operator (LASSO) 

algorithm followed by multivariate Cox analysis 

(Supplementary Figure 4B and 4C): CD163 (hazard 

ratio [HR] = 1.19, 95% confidence interval [CI] = 

1.05–1.34, p < 0.01), transporter 1 (TAP1, HR = 

0.74, 95% CI = 0.63–0.87, p < 0.001), V-set and 

immunoglobulin-domain containing 4 (VSIG4, HR 

= 1.15, 95% CI = 1.04–1.28, p < 0.01), 

immunoglobulin kappa chain variable 4–1 (IGKV4-

1, HR = 0.64, 95% CI = 0.47–0.86, p < 0.01), CD3E 

(HR = 0.82, 95% CI = 0.70–0.96, p = 0.016), and 

membrane spanning 4-domains A7 (MS4A7, HR = 

1.16, 95% CI = 1.02–1.32, p = 0.023). We explored 

the expression of the 6-gene signature in the 

scRNA-seq set (Supplementary Figure 5A; MS4A7, 

VSIG4, and IGKV4-1 were not provided). CD163, 

MS4A7, and VSIG4 were upregulated in 

macrophages, whereas CD3E was significantly 

upregulated in T cells. TAP1 was upregulated in 

macrophages and B cells. The expression of IGKV4-

1 was not detected. Furthermore, Gene Expression 

Profiling Interactive Analysis (GEPIA) was 

performed to study the expression of the 6-gene 

signature in 88 normal (GTEx) samples and 426 OC 

(TCGA) samples. We noticed that compared with 
normal samples, CD163 was upregulated, whereas 

TAP1, CD3E, and IGKV4-1 were downregulated in 

OC (Supplementary Figure 5B). 
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Generation and validation of the 6-gene signature-

based prognostic risk score model  

 

The risk score was calculated using the following 

formula: risk score = 0.0284 × ExpCD163 + (–0.0297) 

× ExpCD3E + (–0.0007) × ExpIGKV4 + (–0.0130) × 

ExpTAP1 + 0.0009 × ExpVSIG4 + 0.0487 × 

ExpMS4A7. Patients were dichotomized into low-risk 

or high-risk groups according to the median risk score 

(Figure 7B). The Kaplan–Meier survival curve 

 

 
 

Figure 5. WGCNA analysis of co-expression modules. (A) Dendrogram of gene modules based on the dynamic hybrid cutting model. 

Ten modules were constructed. (B) Heatmap and hierarchical clustering of adjacencies in module eigengenes. (C) Heatmap of the 
correlation between module eigengenes and the proportion of tumor-infiltrating immune cells. (D) Scatter plot of M1 macrophage and M2 
macrophage module eigengenes in three modules. 
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revealed that the OS of the low-risk group was higher 

than that of the high-risk group (log-rank, p = 0.00016; 

Figure 7A and 7B). The concordance index (C-index) 

for OS prediction was 0.614 (95% CI = 0.593–0.636). 

The receiver operating characteristic (ROC) curve 

demonstrated that areas under the curve (AUC) of 

0.624, 0.68, and 0.718 revealed a predictive ability of 

3-, 5- and 10-year OS, respectively (Figure 7C). The 

relationship between the proportion of six infiltrating 

immune cell types and the risk score was analyzed to 

validate the effect of the 6-gene signature on TAMRG. 

The scatter plot showed a highly negative correlation 

 

 
 

Figure 6. Identification of the molecular subtypes based on 219 TAMRG signatures. (A) CDF plot of the consensus score (k = 2–6). 

(B) Consensus clustering matrix for k = 2. (C) Heatmap showing differentially expressed genes between the two groups. (D) Kaplan–Meier 
analysis of overall survival for clusters 1 and 2. (E) The TAM abundance of two groups is shown in violin plots. (F) Upregulated pathways in 
GSEA. (G) The expression of six immune checkpoints between the two molecular subtypes. 
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between the risk score and the proportion of infiltrating 

M1 macrophages (R = 0.38, p = 1.4e-14). The 

proportion of infiltrating M2 macrophages was 

positively correlated with the risk score (R = 0.29, p = 

1.3e-08; Supplementary Figure 5C). 

Next, the GEO cohort was used to validate the 

prognostic predictive performance. As shown in Figure 

7D and 7E, 185 OC patients were divided into low-risk 

and high-risk groups. Consistent with the TCGA training 

cohort, the Kaplan–Meier survival curve suggested that 

 

 
 

Figure 7. Prognostic analysis of the 6-gene signature in OC patients. Kaplan–Meier OS curve of low-risk and high-risk groups in the 

TCGA training dataset (A) and GEO validation dataset (D). Risk score distribution in TCGA (B) and GEO (E) datasets. Upper panel: The curve 
of risk score. Middle panel: patients’ overall survival status and time. Bottom panel: Heatmaps of gene expression profiles. ROC curve for 
OS prediction in the TCGA (C) and GEO (F) datasets. 
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the OS of the high-risk group was considerably lower 

than that of the low-risk group (log-rank, p = 0.0026;). 

The C-index was 0.611 (95% CI = 0.584–0.638). 

Moreover, the ROC suggested AUC values of 0.674 and 

0.704, indicating that the model could predict 3- and 5-

year OS, respectively (Figure 7F). 

 

Comparison with clinical characteristics and other 

signatures  

 

We next compared the predictive accuracy of the 6-gene 

signature with clinical characteristics and published 

prognostic signatures of OC. Among the 13 survival 

predictors, TAMRG-based signature exhibited the best 

mean C-index (0.613) for age (0.593), grade (0.532), 

stage (0.519), residual (0.556) (Supplementary Table 3), 

and other signatures (0.516–0.584; Supplementary 

Table 4). These results revealed that the TAMRG-based 

signature was an independent prognostic indicator that 

effectively predicted the prognosis of patients with OC. 

 

DISCUSSION 
 

Solid tumors are characterized by a unique 

microenvironment formed by malignant and several 

non-malignant cells that can modify tumor 

characteristics [12]. We analyzed the heterogeneity of 

tumor-infiltrating immune cells in OC using scRNA-seq 

and bulk RNA-seq data. At the single-cell level, the 

majority of non-malignant cells were immune cells, 

identified as four distinct clusters of B cells, T cells, 

DCs, and macrophages. Both inter-and intra-patient 

heterogeneity was observed for tumor-infiltrating 

immune cells in HGSOC. Macrophages and T cells 

exhibited immunosuppressive characteristics: 

macrophages with an M2 phenotype and T cells with an 

exhausted phenotype. M2 macrophages express the 

ligand receptors for PD-1 and CTLA-4, whose 

activation inhibits T cell proliferation and cytotoxic 

function, thus contributing to the formation of an 

immunosuppressive TME [14, 15]. These findings 

suggested that a distinct immune system status and 

dynamic immune cell interactions in the surrounding 

microenvironment contributed to the wide tumor 

heterogeneity of ovarian cancer transcriptome. 

 

The bulk RNA-seq data were analyzed using 

CIBERSORT to estimate tumor-infiltrating immune cell 

subsets and their correlation with prognosis. Activated 

mast cells, neutrophils, M2 macrophages, and activated 

memory CD4+ T cells were negatively correlated with 

OS of OC patients, whereas M1 macrophage infiltration 

indicated better clinical outcomes. Similarly, 

CD4+CD25+FOXP3+ Treg cell infiltration was 

associated with high mortality and decreased survival in 

104 individuals affected with OC [16]. Although the 

increased density of M2-like TAM is known to be 

associated with poor OS [17–19], the relationship 

between M2 density and OS in OC remains 

controversial. For instance, Zhang et al. [20] reported 

no correlation between these two factors, whereas Lan 

et al. [21] found a negative correlation, consistent with 

our results. These differences in the findings could be 

ascribed to varying types of tumor tissues. 

 

A total of 219 TAMRG signatures were established by 

WGCNA. OC patients with M1-like TAM reported a 

better prognosis, suggesting that TAMRG-based patient 

classification could effectively predict patient survival. 

Although GSEA revealed that M1-like TAM was 

enriched in immune-related, angiogenesis, EMT, and 

JAK-STAT3 pathways, M2 macrophages constituted 

the dominant population in the TAM of OC and were 

implicated in tumor angiogenesis, invasion, metastasis, 

and early recurrence [12, 22, 23]. The simple dichotomy 

of M1/M2 macrophages is insufficient to explain the 

complexity of TAM heterogeneity [24]. Classically, 

M1/M2 phenotypes are extremes of a continuum of 

activation states [24, 25], whereas the TAM subset 

shares characteristics of both M1 and M2 phenotypes 

[26]. For example, a recent study revealed that TAMs 

simultaneously express M1/M2 markers, with early-

stage TAMs co-expressing T cell co-stimulatory and co-

inhibitory receptors [27]. Similarly, Müller identified 

phenotypic differences in TAMs from distinct lineages 

at single-cell resolution in human gliomas. These results 

indicate that TAMs frequently co-express M1/M2 

markers in single cells, making it difficult to isolate M1 

and M2 phenotypes [28]. Thus, TAMs exhibit 

functional plasticity and intermediate states, resulting in 

reversible changes in their distribution and functional 

states under different microenvironment stimuli [24, 

29–31].  

 

Immunotherapy has emerged as a promising treatment 

strategy for cancer that alleviates the 

immunosuppression status of the tumor. For instance, 

an anti-PD-1 antibody is known to prolong the 

progression-free survival and OS of patients with 

melanoma [32] and non-small cell lung cancer [33]. 

Unfortunately, clinical trials involving immune 

checkpoint inhibitors either as a single agent or in 

combination with other therapeutic modalities have 

been unsuccessful in OC. Our results revealed that 

cluster 1 with an increased macrophage M1 density 

expressed high levels of PD1/PDL1/PDL2 and 

CTLA4/CD80/CD86 molecules, indicating that patients 

in cluster 1 may benefit more from anti-PD1 and anti-

CTLA4 therapies than those in cluster 1. 
 

A novel 6-gene signature risk score module was 

successfully established and validated using a GEO 
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dataset. Of the six genes, a high expression of CD163, 

VSIG4, and MS4A7 was related to poor prognosis, 

whereas that of CD3E, IGKV4, and TAP1 was 

associated with a favorable prognosis. Some of these 

genes have been implicated in cancers. For example, 

CD163(+) TAMs correlate with poor prognosis, OS, 

and metastasis of various malignancies. Chen et al. 

reported that CD163 contributes to gliomagenesis via 

CK2, and its high expression is associated with an 

unfavorable patient prognosis [34]. Similarly, 

CD163(+) TAMs were associated with poor OS and 

increased microvessel density in gastric cancer [35]. 

VSIG4 is overexpressed in OC [36]. Agnes et al. 

demonstrated that underexpressed TAP1 resulted in low 

infiltration of macrophages and poor prognosis in 

patients with colorectal cancer [37]. Univariate and 

multivariate Cox regression analyses revealed that the 

6-gene signature could be applied as an independent 

prognostic factor. We believe this prognostic module is 

the first to incorporate a TAM-related signature to 

predict survival in patients with OC. Although the 

absolute value of the prognostic module C-index was 

low, it was superior to the traditional clinical 

characteristics. Therefore, it can be used to estimate the 

prognosis of patients and classify them into distinct 

subgroups for effective treatment. 

 

Our study had certain limitations. The data of a few 

patients acquired from TCGA and GEO databases were 

incomplete in terms of grade and medical history (e.g., 

unavailable for multivariate Cox analysis). In addition, 

this was a retrospective study; further prospective, 

large-scale trials are warranted to verify its clinical 

application. 

 

CONCLUSIONS 
 

We constructed a novel TAMRG-based, the 6-gene 

prognostic signature for patients with OC. The 

TAMRG-based signature could serve as a potential 

target for the prognosis and predicting the therapeutic 

response in patients with OC. 

 

MATERIALS AND METHODS 
 

Dataset collection and preprocessing  

 

We used both the bulk RNA-seq data and scRNA-seq 

data of human OC samples. The scRNA-seq data 

(GSE146026) consisted of 9,609 cells from six ascites 

samples of HGSOC and were acquired from the GEO 

database. The single-cell library was constructed on a 

10× genomics platform and read on an Illumina 
NextSeq 500 sequencing system. The bulk RNA-seq 

data of patients with OC were downloaded from the 

GEO and TCGA databases. We included 375 OC 

samples with available clinical characteristics from the 

TCGA database as the training dataset and 185 OC 

samples from the GEO database (GSE26712) as the 

validation dataset. 

 

Single-cell RNA-seq analysis 

 

The R4.0.5 software was used to perform all analyses. 

The Seurat 3.0 package was used for scRNA-seq data 

quality control, filtering, statistical analysis, and 

subsequent analysis [38]. First, cells with < 200 

detected genes, genes detected in < 3 cells, and 

mitochondrial genes ≥ 5% were used as the filtering 

criteria. In total, 9,609 cells were included in the study. 

Next, a linear regression model was used to normalize 

the gene expression. Data were analyzed using PCA to 

visualize the available dimensions (p-value < 0.05). The 

first 20 PCs were used for tSNE with a resolution of 0.3 

for dimension reduction and clustering. The 

differentially expressed genes were identified using the 

Wilcoxon test and FindAllMarkers function of Seurat. 

Marker genes were identified using the following cut-

off criteria: |log2[fold change (FC)]| > 0.5 and p-value 

< 0.05. Afterward, three cell types were annotated using 

the established cell surface marker genes [39]. To 

further characterize the immune cells, we annotated the 

cells using the singleR package and corrected with the 

CellMarker database. The list of cell surface markers is 

shown in Supplementary Table 1. 

 

Gene set variation analysis of immune cells  

 

GSVA is an unsupervised gene set enrichment method to 

estimate the variations in pathway activity within a 

sample population [40]. The enrichment scores of the 

gene sets were evaluated using the GSVA package in R. 

Immune cell-related gene sets were derived from 

supplementary documents provided by Chung et al. [41]. 

 

Estimate of the abundance of tumor immune 

infiltration and survival analysis 

 

The CIBERSORT R script was used to calculate the 

abundance of 22 tumor-infiltrating immune cell types in 

the TCGA OC cohort based on the bulk RNA-seq 

dataset [42]. The median of each immune cell 

enrichment score was used to separate the samples into 

two groups to compare the OS. The R package 

“survival” and “survminer” were used for computing 

the survival. 

 

Construction of weighted correlation network 

analysis 

 

WGCNA analysis was implemented using the R 

package “WGCNA” [43]. To construct a signed, 
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scale-free co-expression gene network, the scale-free 

topology fitting index R2 > 0.85 and power of β = 3 

were selected as soft-threshold parameters. We used the 

dynamic hybrid cutting method to classify genes with 

similar expression patterns; the minimum size cut-off of 

the module was 30. Module eigengenes were used to 

perform the component analysis of each module. We 

estimated the correlation between tumor-infiltrating 

immune cell enrichment score and module eigengenes 

to determine the significance of modules using 

Pearson’s test. The selected macrophage subtypes and 

modules were used for follow-up analysis. The major 

genes were determined by calculating the gene 

significance (GS) and module membership (MM). The 

genes in the module with |GS| > 0.2 and MM > 0.8 were 

considered significant. 

 

Identification of molecular subtypes  

 

The R package “ConsensusClusterPlus” was used to 

perform k-means-based unsupervised consensus 

clustering based on the expression patterns of TAM-

related gene signature [44]. We obtained consensus 

matrices and cumulative distribution function (CDF) 

plots with a set of parameters, including 1,000 iterations 

and an 80% resampling rate in Pearson’s correlation. 

Next, we compared OS between different clusters using 

the Kaplan–Meier survival analysis. GSEA was used to 

explore the potential molecular mechanisms. In 

addition, we compared six immune checkpoints 

(PDCD1, CTLA4, CD274, CD80, PDCD1LG2, and 

CD86) between different clusters. 

 

Establishment and estimation of the prognostic risk 

score model 

 

First, the univariate Cox regression analysis was used to 

assess the associations between TAM-related genes and 

survival in the TCGA training set. Second, the LASSO 

algorithm and multivariate Cox regression analysis were 

applied to identify prognosis-related genes with 

p < 0.05. Subsequently, a prognostic risk model was 

established based on the major prognosis-related 

TAMRG-based genes. The risk score was calculated by 

a linear method to assemble the Cox coefficient and 

prognostic gene expression using the following formula: 

Risk score = β1 × Expgene1 + β2 × Expgene2 + … + βn 

× Expgenen, where “β” and “Exp” represent the 

regression coefficient and the expression of prognostic 

genes, respectively.  

 

The patients in the TCGA training set were divided into 

high-risk and low-risk groups according to the median 
risk score. Kaplan–Meier survival analysis was used to 

compare the OS of these two groups. Time-dependent 

ROC curve analysis and Harrell’s C-index were applied 

using the “survivalROC” and “survminer” packages in 

R to evaluate the prediction accuracy of the prognostic 

risk model. Finally, a validation cohort was obtained 

from the GEO database to validate the prognostic value 

of the risk model. In addition, we performed a 

comparison of the C-index between the prognostic 

model and age, stage, grade, residual, and eight 

published signatures. 

 

Statistical analyses 

 

Student’s t-test was used to compare the mean values 

between the two groups. Cox proportional hazard 

models were applied to assess the associations between 

factors and OS. Survival curves were drawn using the 

Kaplan–Meier method and compared using log-rank 

tests. The C-index and the ROC curve were estimated 

using survival, survminer, and survivalROC packages in 

the R software. 

 

Statistical analyses were performed using the R version 

4.0.5 (The R Foundation). The p-values were two-

tailed, and p < 0.05 was considered significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Dot plots (A) and heatmaps (B) display the top 20 highly correlated genes in PC1 to PC4. 
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Supplementary Figure 2. B-cell signatures in OC samples. Upper panel: GSVA enrichment scores of B cells in functional status. 

Bottom panel: heatmap of genes in the above gene sets. 



 

www.aging-us.com 23227 AGING 

 
 

Supplementary Figure 3. T-cell signatures in OC samples. Upper panel: GSVA enrichment scores of T cells in functional status. 

Bottom panel: heatmap of genes in the above gene sets. 
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Supplementary Figure 4. (A) Univariate Cox regression analysis of 25 prognostic genes from 219 TAMRG. (B) LASSO coefficient profiles of 

25 genes. (C) LASSO regression with 10-fold cross-validation resulted in six prognostic genes using an optimal lambda value. 
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Supplementary Figure 5. (A) The expression of TAP1, CD163, and CD3E in scRNA-seq set. (B) The expression of TAP1, CD163, and CD3E in 

426 OV (TCGA) samples and 88 normal (GTEx) samples. (C) The relationship between the proportion of six infiltrating immune cell types and 
the risk score. 
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Supplementary Tables 
 

Supplementary Table 1. The list of cell surface markers used to identify cell cluster. 

Cells Markers 

Epithelial PECAM1, CD34, VWF, EPCAM, SFN, KRT19 

Fibroblasts ACTA2, MCAM, MYLK, MYL9, FAP, THY1 

Immune cells PTPRC, CD3G, CD3E, CD79A, BLNK, CD68, CSF1R, MARCO, CD207 

B cell CD79A, CD79B, CD19, MS4A1, MZB1 

T cell CD3D, CD3E, CD3G, CD2 

Macrophages HLA-DMB, HLA-DQA1, HLA-DRB5, CD68, AIF1, CD74, CYBB, DOK3, KYNU, METRNL, 

MS4A6A, MS4A7, PIM1, PLAC8, PLBD1, PLTP, S100A11, SH3BGRL, SPINT2, SYNGR2, 

TREM1, CCL2, CD93, CIB1, CREM, SAMHD1, TMEM123, DSE, FGR, FOSL2 

FPR3, GPR65, ITGA4, PTPN7, SAMHD1, TGFBI, THBD 

VOPP1 

Dendritic cell (DC) HLA-DPB1, HLA-DQB1, HLA-DRA, HLA-DPA1, CD1E, CD83 

 

 

Supplementary Table 2. 219 TAMRG signature. 

Gene symbol 

ABI3, ADAP2, AIF1, ALOX5AP, AOAH, APBB1IP, APOBR, APOL6, ARHGAP30, ARHGAP9, ARHGDIB, BIN2, BTK, 

C1orf162, C1QA, C1QB, C1QC, C3AR1, CCR1, CCR5, CD14, CD163, CD180, CD2, CD300A, CD37, CD3E, CD4, 

CD48, CD53, CD79A, CD84, CD86, CLEC7A, CMPK2, CSF1R, CSF2RA, CSF2RB, CTSS, CXCL10, CYBB, CYTH4, 

CYTIP, DDX60, DOCK2, DOK2, DOK3, ETV7, EVI2A, EVI2B, FAM78A, FCER1G, FCGR1A, FCGR2A, FCGR2B, 

FCGR3A, FERMT3, FGL2, FPR3, FYB1, GBP4, GIMAP4, GIMAP6, GNA15, GPR65, GPR84, HAVCR2, HCK, IFI35, 

IFI44, IFI44L, IFIH1, IFIT2, IFIT3, IGHA1, IGHG1, IGHG2, IGHG3, IGHGP, IGHM, IGHV1-18, IGHV1-2, IGHV1-46, 

IGHV1-69, IGHV1-69D, IGHV3-11, IGHV3-15, IGHV3-21, IGHV3-23, IGHV3-30, IGHV3-33, IGHV3-48, IGHV3-49, 

IGHV3-53, IGHV3-66, IGHV3-7, IGHV3-74, IGHV4-28, IGHV4-31, IGHV4-34, IGHV4-39, IGHV4-59, IGHV4-61, 

IGHV5-51, IGKC, IGKV1-12, IGKV1-16, IGKV1-17, IGKV1-27, IGKV1-39, IGKV1-5, IGKV1-6, IGKV1-8, IGKV1-9, 

IGKV3-11, IGKV3-15, IGKV3-20, IGKV3D-20, IGKV4-1, IGLC2, IGLC3, IGLL5, IGLV1-40, IGLV1-44, IGLV1-47, 

IGLV1-51, IGLV2-11, IGLV2-14, IGLV2-23, IGLV2-8, IGLV3-1, IGLV3-19, IGLV3-21, IGLV3-25, IGLV4-69, IGLV6-57, 

IGSF6, IKZF1, IL10RA, IL2RB, IL2RG, ITGAL, ITGAM, ITGAX, ITGB2, JCHAIN, LAIR1, LAPTM5, LAT2, LCP2, 

LILRB1, LILRB2, LILRB4, LPXN, LRRC25, LSP1, LY86, MNDA, MPEG1, MPP1, MS4A4A, MS4A6A, MS4A7, 

MSR1, MX1, MYO1F, MZB1, NCF1, NCF2, NCF4, NCKAP1L, NFAM1, NPL, OAS1, OAS2, OAS3, OASL, OSCAR, 

PARP12, PARP14, PARP9, PCED1B-AS1, PDCD1LG2, PLEK, PLSCR1, PTPRC, RAC2, RASAL3, RCSD1, RNASE6, 

RSAD2, SAMD9, SAMD9L, SAMSN1, SASH3, SELPLG, SLA, SLAMF7, SLAMF8, SLC37A2, SLCO2B1, SP100, SPI1, 

SRGN, STX11, TAGAP, TAP1, TBXAS1, TLR2, TLR7, TNFAIP8L2, TNFSF13B, TRIM22, TRPV2, TYMP, TYROBP, 

UBE2L6, VSIG4,WAS 
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Supplementary Table 3. Univariate and multivariate Cox proportional hazards analyses of risk score and 
clinicopathological variables in the TCGA training set. 

Variable 

TCGA training set (n = 375) 

Univariate analysis Multivariate analysis 

HR (95% CI) P value HR (95% CI) P value 

Age 1.02 (1.008–1.032) 0.001 1.017 (1.005–1.030) 0.0059 

Stage 2.115 (0.938–4.766) 0.04 1.71 (0.755–3.874) 0.198 

Grade 1.183 (0.820–1.706) 0.4 – – 

M(M1/M0/Mx) 1.262 (0.90–1.77) 0.18 – – 

N(N1/N0/Nx) 1.428 (0.836–2.439) 0.19 – – 

Residual 1.609 (1.210–2.139) 0.002 1.464 (1.095–1.958) 0.01 

Risk score 1.604 (1.38–1.865) 3e-07 1.596 (1.366–1.865) 4.07e-09 

Abbreviations: HR: hazard ratio; CI: confidence interval; M: metastasis; N: lymph node. 

 

 

Supplementary Table 4. C-index (standard error) of the prognostic signatures and clinical characteristics in the 
nine datasets. 

Study Training set Validation set (average) Overall 

Our study 0.614 (0.022) 0.611 (0.028) 0.613 

Crijns 2009 [45] 0.54 (0.021) 0.560 (0.023) 0.55 

Denkert 2009 [46] 0.566 (0.021) 0.541 (0.023) 0.554 

Hernandez 2010 [47] 0.526 (0.021) 0.510 (0.023) 0.518 

Kang 2012 [48] 0.542 (0.021) 0.514 (0.023) 0.528 

Kernagis 2012 [49] 0.54 (0.021) 0.561 (0.023) 0.55 

Konstantinopoulos 2010 [50] 0.495 (0.021) 0.529 (0.023) 0.512 

Sabatier 2011 [51] 0.555 (0.021) 0.543 (0.023) 0.549 

Yoshihara 2012 [52] 0.592 (0.021) 0.576 (0.023) 0.584 
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