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ABSTRACT

Metabolic syndrome (MetS) is a significant factor for cardiometabolic comorbidities in people living with HIV
(PLWH) and a barrier to healthy aging. The long-term consequences of HIV-infection and combination
antiretroviral therapy (cART) in metabolic reprogramming are unknown. In this study, we investigated metabolic
alterations in well-treated PLWH with MetS to identify potential mechanisms behind the MetS phenotype using
advanced statistical and machine learning algorithms.

We included 200 PLWH from the Copenhagen Comorbidity in HIV-infection (COCOMO) study. PLWH were
grouped into PLWH with MetS (n = 100) defined according to the International Diabetes Federation (IDF)
consensus worldwide definition of the MetS or without MetS (n = 100). The untargeted plasma metabolomics
was performed using ultra-high-performance liquid chromatography/mass spectrometry (UHPLC/MS/MS) and
immune-phenotyping of Glutl (glucose transporter), xCT (glutamate/cysteine transporter) and MCT1
(pyruvate/lactate transporter) by flow cytometry. We applied several conventional approaches, machine
learning algorithms, and linear classification models to identify the biologically relevant metabolites associated
with MetS in PLWH.

Of the 877 identified biochemicals, 9% (76/877) differed significantly between PLWH with and without MetS
(false discovery rate < 0.05). The majority belonged to amino acid metabolism (43%). A consensus identification
by combining supervised and unsupervised methods indicated 11 biomarkers of MetS phenotype in PLWH. A
weighted co-expression network identified seven communities of positively intercorrelated metabolites. A
single community contained six of the potential biomarkers mainly related to glutamate metabolism.
Transporter expression identified altered xCT and MCT in both lymphocytic and monocytic cells. Combining
metabolomics and immune-phenotyping indicated altered glutamate metabolism associated with MetS in
PLWH, which has clinical significance.
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INTRODUCTION

With the introduction of combination antiretroviral
treatment (cART), people living with HIV (PLWH) have
experienced a dramatic increase in life expectancy, with
a concomitant decline in AIDS-defining morbidity and
mortality [1]. A simultaneous rise in non-AIDS-
associated comorbidities has been described, with a
particular increment in cardiometabolic diseases, which
is now one of the barriers to healthy aging and leading
causes of death in well-treated PLWH [2, 3]. The
increased risk of metabolic syndrome (MetS) associated
with HIV infection [4] is well documented and adversely
affects the cardiovascular risk profile. However, there
are still numerous gaps in understanding the
pathogenesis of MetS in PLWH. Both HIV-specific
(cART, ongoing HIV replication, altered gut microbiota,
and immunodeficiency) and non-HIV-specific factors
(e.g., lifestyle) [4, 5] have been suggested to be involved
in the development of MetS in the context of HIV
infection, but its exact pathogenesis remains elusive.

With the advancement of technology, high-throughput
untargeted metabolomics became attractive as a novel
tool to identify large numbers of metabolites and
investigate  molecular ~mechanisms of  disease
phenotypes that are not usually included in routine
biochemical analyses [6]. The use of global untargeted
metabolomics investigation has a central role in
identifying novel biomarkers and potential therapeutic
targets in different conditions, including type 2 diabetes
and obesity [7-9]. However, no studies are available
investigating alterations in the metabolome associated
with MetS in the context of HIV infection.

Here, we aimed to identify a metabolomic signature of
MetS in HIV-infected individuals to reveal key aspects
of the underlying pathophysiology. This may help to
improve the understanding of the pathogenesis of this
disease and potentially identity new targets for the
treatment of this condition and provide better quality of
life including healthy aging. To our knowledge, this is
the first study to apply several conventional and
advanced bioinformatics algorithms to analyze the
metabolic alterations associated with MetS in PLWH
using untargeted metabolomics.

RESULTS
Clinical characteristics

PLWH was stratified according to the presence of MetS
syndrome (100 individuals with and 100 individuals
without MetS). Clinical characteristics of PLWH are
summarized in Table 1. All individuals were currently
on cART with similar duration of HIV-infection (p-

value = 0.329) and cART exposure (p-value = 0.455).
Larger prevalence of CD4 nadir < 200 cells was found
among PLWH with MetS [53 (53%) vs. 38 (38%),
p-value = 0.039].

Impaired amino acid metabolism in PLWH with
MetS

The untargeted metabolomics identified 877
characterized biochemicals linked mainly with lipid
metabolism (rn = 285, 32%), xenobiotics including food
components (n = 223, 25%) and amino acid metabolism
(n = 220, 25%) (Figure 1A). The relative standard
deviation (RSD) for the internal standards for the
process variability was 5%. We observed that a total of
76 biochemicals differed significantly between PLWH
with and without MetS (Mann-Whitney U, FDR <0.05)
of which the majority were amino acids (n = 33, 43%)
(Figure 1A). We next used metabolite set enrichment
analysis (MSEA) and network analysis to identify MetS
related mechanisms in PLWH and key biochemicals.
The MSEA (FDR < 0.1 KEGG and HMDB) identified
several affected amino acid metabolic pathways
including methionine degradation, valine degradation,
tyrosine degradation along the sirtuin signaling pathway
that are linked to age-related diseases (Figure 1B). The
network analysis identified two key molecules that
interact with other metabolites, glutamate, and o-
ketoglutarate, that were linked with most of the altered
pathways (Figure 1C).

A combination of methodologies emphasizes the role
of glutamate metabolism in MetS among PLWH

By combining supervised and unsupervised statistical
and machine learning approaches, we sought to identify
the most conservative and consensus set of metabolites
associated with MetS in PLWH. Then, random forest
(RF) was run on data with two classes: PLWH with and
without MetS. The top-ranking metabolites (n = 21,
using the feature selection by Boruta) (Figure 2A)
showed several metabolites such as 4-hydroxyglutamate,
v-glutamylglutarate, glutamate, a-ketoglutarate, -
glutamylglycine and N-acetylglutamate that highlights
the central role of glutamate metabolism in MetS. This
model achieved 80% predictive accuracy, sensitivity
and specificity of 0.8 (Supplementary Figure 1), and an
AUROC of 0.88 (Figure 2B). PLS-DA was also used to
classify the whole data set (n = 877) that was submitted
after scaling. A model using the two first components
showed a significant coefficient of determination (R2 =
0.58) and coefficient of prediction (Q2 = 0.2). Using the
predictive Variable Importance in Projection (VIP)
vector, the top 30 crucial metabolites for this model
were extracted (Supplementary Figure 2). LIMMA
identified 69 metabolites that were significantly
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Table 1. Clinical and demographic characteristics.

PLWH with MetS PLWH without MetS P-values

N 100 100
Age 52 (48-61) 52 (47-62) 0.805"
Gender, Male, n (%) 90 (90) 90 (90) 1™
Mode of transmission, n (%)

Homosexual/bisexual 73 (73) 71 (71) 0.745™

Blood transfusion 1(1) 0

PWID 0 1(1)

Heterosexual 20 (20) 23 (23)

Other/unknown 4(4) 505
CD4 at cART Initiation, cells/ul, median (IQR) 200 (82-340) 280 (168-354) 0.182"
CD4 at sampling, cells/pl, median (IQR) 691 (538-865) 700 (547-892) 0.865"
CD8 at sampling, cells/pl, median (IQR) 830 (620-1215) 755 (580-970) 0.152"
Viral load (<50 copies/mL), n (%) 94 (94) 98 (98) 0.127*
Duration of treatment in years, mean (sd) 13.4(7) 12.7 (6-1) 0.455"
CD4 nadir (<200 cells), n (%) 53 (53) 38 (38.0) 0.039™
Time since HIV diagnosis, years, mean (sd) 17.2 (9.5) 16 (8.1) 0.329""
Current cART, yes, 1 (%) 100 (100) 100 (100) [
BMI, mean (sd) 26 (3) 23 (4) <0.001"*
Hdl, mmol/l, median (IQR) 0.9 (0.8-1.1) 1.3 (1.1-1.6) <0.001"
Tgl, mmol/l, median (IQR) 2.7 (2.1-3.7) 1.3 (1.1-1.7) <0.001"
Waist, cm, median (IQR) 102.0 (95.0-105.2) 89.5 (85.0-97.0) <0.001"
Systolic BP, mmHg, median (IQR) 138.5 (131.0-145.2) 124.5 (117.8-142.0) <0.001"
Diastolic BP, mmHg, median (IQR) 86.0 (79.0-91.2) 79.0 (73.0-85.2) <0.001"

EETY

*Mann-Whitney U test, *“Chi-square test,

T-test. Abbreviations: PLWH: people living with HIV; MetS: metabolic syndrome;

PWID: people who inject drugs; IQR: interquartile range; BMI: body mass index; Tgl: triglycerides; BP: blood pressure; cART:

combination antiretroviral therapy; sd: Standard deviations.

different between the groups (FDR < 0.05). A
consensus identification among the four methods
identified 11 biomarkers that were robustly identified
by all approaches (Figure 2C and Supplementary
Figure 3). A UMAP projection of samples based on
these 11 biomarkers showed a clear separation of the
uninfected controls and PLWH with MetS (Figure 2D).
Seven of our potential biomarkers were upregulated in
PLWH with MetS: 1-carboxyethylleucine, 4-cholesten-
3-one, 4-hydroxyglutamate,  o-ketoglutamate,  y-
glutamylglutamate, glutamate, and isoleucine, while four
were downregulated: carotene diol(2), glycerate, PSP and
PC/3-MAPC (Figure 2E). y-glutamylglycine and orotate
were found only in RF while N2,N5-diacetylornithine,
y-glutamyl-alpha-lysine and y-glutamyltyrosine were
identified only by PLS-DA. Though our study
population was highly matched, majority of the PLWH
were male and MetS categorizations varied between
male and female. We also perform sensitivity analysis
restricted only to the males. Among the metabolites, 13
were identified as consensus among all the analysis
(Supplementary Figure 4A). The RF model showed
slightly lower performance than the full model (AUROC
= 0-85, Supplementary Figure 4B). Interestingly, among

the 13 potential biomarkers identified by the same
process in males, eight were shared with biomarkers
identified in the entire sample population and are mainly
linked with glutamate metabolism (Supplementary Figure
4C). The five other biomarkers of MetS in males were
y-glutamylvaline, N-acetylglutamate, N-acetylvaline, y-
glutamylisoleucine and valine (Supplementary Figure
4D) with an increase in PLWH with MetS indicating the
altered glutamate metabolism as a common feature in
PLWH with MetS. Despite metabolic changes associated
with MetS, confirmation that our potential biomarkers
were specific for PLWH with MetS and not biomarkers
of obesity or treatment was necessary.

We thus tested whether there was an association between
the biomarkers and MetS status corrected for BMI. All
biomarkers were significant (FDR < 0.05) after BMI and
treatment correction (Supplementary Tables 1 and 2).
Pharmaceuticals can also affect metabolic profiles. Five
xenobiotics were found to be significantly different
between PLWH with and without MetS: hydrocinnamate,
abacavir, losartan, tartronate, and thioproline. Correction
for xenobiotics level was performed for each metabolite
using linear regression (Supplementary Table 3). All
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metabolites passed the correction except glycerate. After
correlation analysis, glycerate was shown to have a
significant correlation with tartronate (R = 0.8, FDR <
0-00001) (Supplementary Figure 5).

Impaired central carbon metabolism with higher
efflux of key carbohydrates

Higher levels of plasma glutamate and altered glutamate
metabolism may indicate dysregulation of central
carbon metabolism (CCM). Therefore, we investigated
key metabolites from other pathways of central carbon
metabolism: glycolysis, pyruvate metabolism, and the
TCA cycle (Figure 3A). No changes were observed in
plasma glucose levels, but we found a significant
increase in pyruvate, lactate, and a-ketoglutarate levels
in PLWH with MetS compared to PLWH without MetS
(Figure 3A). This indicates an increased efflux of
glycolytic and TCA cycle metabolites from cells into
the bloodstream in PLWH with MetS. Furthermore, to
characterize the uptake and secretion profile of key
metabolic transporters within CCM, we measured the
expression of Glutl (glucose transporter), MCT-1
(pyruvate and lactate transporter), and XxCT (transporter
exchanging glutamate for cystine) in a subset of
samples using flow cytometry (Figure 3B). We
observed a significant decrease in classical monocytes

3-hydroxyisobutyrate|
3-methyl-2-oxobutyrate |

3-phosphoglycerate:
4-hydroxyphenylpyruvate

in PLWH with MetS compared to PLWH without MetS
while no difference was observed in other PBMC
subpopulations (Supplementary Figure 6A). Most
differences seen between the groups were on xCT and
MCT-1 expression (Figure 3C). Percentage of cells
expressing the different metabolite transporters were
altered in PLWH with MetS compared to PLWH
without MetS (Figure 3D). For Glutl, the median
fluorescence intensity (MFI) was significantly higher in
CD8" T-cells and non-classical monocytes in PLWH
with MetS compared to without MetS (Supplementary
Figure 6B). PLWH with MetS had significantly
increased expression of MCT-1 on all sub-populations
of PBMCs compared to without MetS (Figure 3E). For
xCT, expression levels were significantly increased in
all monocytic cells (classical, intermediate, and non-
classical) and decreased in CD4" T-cells in PLWH with
MetS compared to without MetS. These results indicate
that PLWH with MetS had higher metabolic uptake and
secretion in monocytic cell subsets compared to PLWH
without MetS, specifically for glutamate transport
across the cell membrane. The correlation between the
transporter expression (represented as MFI) and
significantly different metabolites in PLWH with MetS
indicates  negative  co-relation of  monocytes
subpopulations of Glutl with pyruvate level and CD8"
T-cells and classical monocytes with lactate level
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Figure 1. Differing metabolites and pathways found between PLWH and PLWH with MetS. (A) Doughnut charts of metabolite
proportions for each super pathway for all detected metabolites (left) and metabolites with differential abundance between PLWH and
PLWH with MetS (LIMMA, FDR < 0.1, n = 69). (B) Metabolites contribution to the flow of top 13 pathways represented as Sankey Plot. (C)
Cytoscape network of top 13 pathways and associated enriched metabolites.
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(Figure 3F). These further support altered metabolic
state of the cells in the PLWH with MetS.

Community analyses confirm identified biomarkers
and display possible mechanisms of metabolic
syndrome in PLWH

To establish the metabolic shifts (i.e., the metabolic
alterations due to disease conditions) associated with
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MetS in PLWH, a weighted co-expression network
analysis was performed using all detected metabolites
and all patients. In this network, the nodes were
individual metabolites, and edges were modeled by the
positive coefficients of correlation between two
metabolites (Spearman, FDR < 0-05). The resulting
network consisted of 867 nodes and 45379 edges.
Leiden partitioning highlights seven communities of
positively intercorrelated metabolites (Figure 4 top).
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Figure 2. Biomarkers (n = 11) with differential abundance between PLWH and PLWH with MetS identified by four
methodologies. (A) Bubble plot representing Random forest variable importance based on mean decrease accuracy (a measure of the
model’s performance without each metabolite). Values are scaled by the standard error of the measure. Metabolites represented at the
top of the figure are the most important for prediction. (B) Receiver Operating Characteristic (ROC) curve of random forest classifier. (C)
Venn diagram summarizing biomarkers identified by Mann-Whitney U test, LIMMA, Random Forest (RF), and PLS-DA. (D) UMAP
visualization of the 11 biomarkers. Controls (green) and PLWH (yellow) are segregating from PLWH with MetS (red). (E) Heatmap showing
log2 intensities of the 11 biomarkers in HC, PLWH without MetS and PLWH with MetS.
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Analysis at the pathway level revealed that the most
central community, represented as the center of the
network, was enriched for the KEGG terms 2-
oxocarboxylic acid metabolism, organic acids, and
lipids (Metabolon™ category). This community
displayed a very heterogeneous pattern, where only six
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Figure 3. Central carbon metabolism with higher efflux of key metabolites. (A) Heatmap showing the level of metabolites of
glutamate metabolism, glycolysis/gluconeogenesis/pyruvate metabolism, and TCA cycle. The statistically significant differentially abundant
metabolites are marked with single asterisk at the level of p < 0.001 and FDR < 0.1 and double asterisk p < 0.001 and FDR < 0.05 using
LIMMA. Single asterisks indicate statistically significant differences p < 0.001 and FDR < 0.1 and double asterisk p < 0.001 and FDR < 0.05.
(B) Gating strategy for Glutl, MCT-1, and xCT in T cells (CD4 and CD8) and monocytes (CM, IM, and NCM). (C) Bubble plot of Glutl, MCT-1,
and xCT in subpopulations. Size of the bubble represents proportion of positive cells (%). Color of the bubbles represent MFI. (D) Contour
plots showing sample with median percentage of cells for each population. (E) MFI for MCT-1 and xCT in lymphocytes (CD4 and CD8) and
monocytes (CM, IM, and NCM). (F) Co-relation analysis between the transporter expression and the differentially altered metabolites
between PLWH with MetS and without MetS as shown in Figure 3A. Asterisk indicates p < 0.05.
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metabolites, of which only one was lower abundant in
PLWH with MetS and contained six of the 11 potential
biomarkers identified above. These biomarkers showed
many interconnections between each other, though
other biomarkers including 4-cholesten-3-one were
segregated in other communities. This community was
enriched in common amino acids (KEGG and
Metabolon) and peptides (Metabolon).

DISCUSSION

In this study, using a consensus approach of traditional
biostatistics and advanced machine learning algorithms,
we first identified altered amino acid metabolism as a
central characteristic of PLWH with MetS with
glutamate metabolism as a key metabolic pathway in
this phenotype. Second, a weighted co-expression
network analysis indicated the interaction between lipid
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metabolism and amino acid metabolism that could
modulate glutamate metabolism as a coordinated
metabolic alteration in PLWH with MetS. Finally,
immune phenotyping of the transporter expression
identified that both lymphocytic and monocytic cells
exhibited increased levels of glutamate to cysteine
transport, indicating elevated glutaminolysis in PLWH
with MetS compared to PLWH without MetS.

The role of amino acid metabolism in the development
of metabolic dysfunction has been extensively studied
in the general population, but it is still unclear in the
context of HIV infection. The most consistent findings
describe an essential role for the three branched-chain
amino acids (BCAA) (leucine, isoleucine, and valine)
in the development of cardiometabolic diseases, in
particular, obesity and diabetes [10]. In our study, we
observed higher levels of isoleucine associated with
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Figure 4. The metabolome-wide weighted co-expression network. A weighted metabolite co-expression network was generated
(positive Spearman rank correlations, FDR < 0-05). Significant metabolites based on LIMMA have represented opaques and non-significant
transparent. Biomarkers found in the first community are represented (bottom-left).
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MetS among PLWH. This finding aligns with previous
studies describing increased isoleucine levels in nascent
metabolic syndrome in the general population [11]. All
three BCAA are catabolized into glutamate and a
branched-chain-ketoacid (BCKA) via the transamination
of a-ketoglutamate by branched-chain aminotransferase
(BCAT). BCKA is further metabolized by the activity of
the enzyme branched-chain-ketoacid dehydrogenase
(BCKD). Alterations of BCAT and BCKD activity have
been described in individuals with MetS syndrome [12].
In particular, lower expression of BCKD was described
in visceral, but not subcutaneous, adipose tissue of
metabolically impaired subjects, leading to reduced
activity of this metabolic pathway and consequent
accumulation of BCAA and glutamate. Accordingly,
glutamate concentrations have been efficiently used to
differentiate individuals with an excess of adipose tissue
at abdominal level and metabolic risk [13]. Taken
together these findings suggest a potential role for
alterations of BCAA catabolism in abdominal adipocytes
in the pathogenesis of MetS in the background
population. Previous results from our group proposed
excess abdominal adipose tissue as a critical factor in the
excess risk of MetS in the context of HIV compared to
uninfected individuals [4]. The identification of
metabolome alterations in PLWH with MetS may help to
explain this not yet wholly understood association. In the
present study, increased levels of several metabolites
involved in glutamate metabolism characterized PLWH
with MetS. This finding may point towards a significant
association between glutamate and MetS among PLWH,
thus supporting previous studies in uninfected individuals
[11]. Given the previously described association of HIV
infection with alterations of both abdominal obesity [4]
and glutamate metabolism [14, 15], one may speculate
that the role of glutamate metabolism in the pathogenesis
of MetS might be even more central in the context of
HIV.

In the present study, PLWH both with and without MetS
had higher concentrations of several metabolites involved
in glutamate metabolism compared to uninfected
controls. Although the sample size of uninfected controls
is small, these findings support a previous study that
showed higher glutamate in PLWH than uninfected
controls [14]. The association between HIV infection and
glutamate metabolism has also been studied in the
context of neurologic comorbidities [16]. Accordingly,
increased release of glutamate in the extracellular space
by HIV-infected macrophages mediated by the viral
protein Vpr has been suggested to play a central role in
the pathogenesis of HIV-mediated neurotoxicity [17]. It
is to be noted that both lactate and pyruvate were also
increased in the PLWH with cART and PLWH without
MetS. It is known that lactate and pyruvate reduced
glutamate-induced neurotoxicities in animal experiments

[18]. One may speculate that increased lactate and
pyruvate could be due to the increased glutamate thereby
linked with the severity of the MetS due to impaired
aerobic metabolism and elevated metabolic diseases in
PLWH. This is further supported by the altered
expression of XCT and MCT-1 in the blood cell
populations. However, this may have a protective effect
on neurological impairment [19]. However, whether
perturbed glutamate homeostasis is also involved in other
non-AIDS-associated comorbidities like MetS is still
unknown. Abdominal adipose tissue accumulation, a
well-known determinant of MetS in PLWH, has been
previously suggested to be associated with increase
macrophage infiltration and activation [20]. It may be
speculated that alterations in macrophage glutamate
metabolism in the abdominal tissue are also involved in
MetS in PLWH. Thus, novel treatments targeted at
reducing plasma glutamate concentration could
potentially be implemented along with cART to prevent
both neurological and metabolic complications in PLWH
with MetS and increased build-up of lactate and
pyruvate, also known for toxic properties [21].

Moreover, HIV-1 induces oxidative stress by increasing
the reactive oxygen species (ROS) production mediated
by the HIV-1 proteins [22] and in vitro studies showed
that the inhibition of glutaminolysis affects ROS
homeostasis in cancer cells [23]. Further, glutaminolysis
activates mammalian target of rapamycin (mTOR) is a
key component of cellular metabolism which plays an
essential role in the age related processes. [24]. Studies
also have reported that mTOR complex modulates
HIV-1 latency [25], and that inhibition of the mTOR
complex 1 (mTORC1) inhibits HIV-1 replication and
suppresses latency reversal [26]. Therefore, a
glutamatergic drug that directly modulates the
excitatory glutamate in the body or brain can potentially
be used after appropriate clinical studies. It can act as
novel strategies both for healthy-aging in PLWH and
functional cure by elimination of the latent HIV-
reservoir during the successful cART.

The present study has several limitations. First, due to
the cross-sectional design, no conclusions on causality
can be drawn. Second, the relatively low number of
uninfected individuals were included and the lack of
clinical data in this population prevented us from
investigating the impact of HIV infection on the
metabolites and pathways that are observed to be
associated with MetS. Also, the uninfected controls
were used to identify the metabolites’ normal range as
untargeted metabolomics analysis is dependent upon the
run, thus not used for any statistical analysis. Finally,
despite adjusting for multiple testing, the high number
of associations tested may have led to type I errors.
However, the major strength of this study is the use of

WWWw.aging-us.com

22739

AGING



relatively larger, well-characterized, clinically matched
cohorts of PLWH. To the best of our knowledge, this is
the first study investigating metabolome alterations
associated with MetS in the context of HIV-infection.

In conclusion, our data on changes in the plasma
metabolomics profile and altered expression of the
metabolite transporters in blood cells suggesting
alterations in glutamate metabolism to be associated
with MetS in PLWH. Glutamate plays a central role in
multiple metabolic pathways for the interchange of
amino nitrogen by both amino acid synthesis as well as
degradation, and glutamate toxicity is associated with
age-related neurodegenerative disorders. We further
hypothesize that metabolic stress could be the reason for
accelerated aging in PLWH with MetS, which needs
clinical interventions to improve the metabolic profile
to provide a better quality of life. Further studies are
warranted to address a possible direct role of glutamate
in the pathogenesis of MetS and its potential role as a
biomarker for accelerated cognitive and metabolic aging
in the context of HIV-infection.

MATERIALS AND METHODS
Study population
PLWH were recruited from the Copenhagen

Comorbidity in HIV-infection (COCOMO) study, an
ongoing longitudinal, observational study to assess the
burden of non-AIDS comorbidities in HIV infection. Of
the 1099 participants in the COCOMO study, 100
PLWH with MetS were randomly selected and matched
to 100 PLWH without MetS. Individuals were matched
according to age, sex, duration of cART, smoking
status, and current CD4" T-cells count. All plasma
samples were collected at the study baseline
concomitant with clinical assessment. Given that
untargeted metabolomics is a relative measurement of
the metabolites we included HIV-negative controls (n =
20). They were also included in this study to define the
level of metabolites considered as normal range in the
assay run. Procedures for recruitment and data
collection for COCOMO have been described elsewhere
[27]. Ethical approval was obtained by the Regional
Ethics Committee of Copenhagen (COCOMO: H-
15017350). Written informed consent was obtained
from all participants.

Clinical and biochemical assessments

Structured questionnaires were used in COCOMO to
collect information about demographics, physical
activity, smoking, lipid-lowering, and antihypertensive
therapy [27]. Data regarding HIV-infection were
obtained from a review of medical charts [27]. All

physical examinations were performed by trained clinic
staff, as previously described [27]. Height, weight, hip,
and waist measurements and body mass index (BMI)
calculations were performed according to WHO
guidelines. Blood pressure (BP) was measured on the
left arm after 5 minutes rest with the subject in sitting
position, using an automatic Digital Blood Pressure
Monitor. Non-fasting venous blood was collected and
analyzed for LDL-C, total cholesterol, HbAlc, and
glucose. Blood samples were analyzed at Herlev
Hospital, Copenhagen. Metabolic syndrome (MetS) was
defined according to the International Diabetes
Federation (IDF) consensus worldwide definition of
the MetS [28] as >3 of the following: (1) waist
circumference >94 c¢cm in men and >80 c¢cm in women,
(2) systolic blood pressure >130 mm Hg and/or diastolic
blood pressure >85 mm Hg and/or antihypertensive
treatment, (3) non-fasting plasma triglyceride level
>1.693 mmol/L, (4) HDL level <1.036 mmol/L in men
or <0.295 mmol/L in women, and (5) self-reported
diabetes and/or antidiabetic treatment and/or plasma
glucose level >11.1 mmol/L.

Sample preparation and untargeted metabolomics

Untargeted metabolite profiling was carried out by
Metabolon Inc. (Durham, NC, USA) using ultra-
high-performance liquid chromatography/mass
spectrometry/mass spectrometry (UHPLC/MS/MS) as
described earlier [15, 29]. Data was normalized to
sample volume, log-normalized, and minimum-imputed
as given by the proprietary pipeline of the provider. The
metabolomics method is ISO 9001:2015 certified and
the lab is accredited by the College of American
Pathologists (CAP), USA.

Statistics and bioinformatics analysis

For clinical data, Welch’s T-test and Mann-Whitney U
test were used to compare normally distributed and non-
normally distributed continuous variables, respectively.
Chi-Square Test was used to compare discrete variables
if expected values of the contingency table were five or
more. Otherwise, Fisher’s Exact Test was used. For
metabolomics data, the median-centered data was used
for all the analyses. To define metabolic alterations of
the MetS in PLWH, we used a consensus of four
different algorithms as the predictive signatures of MetS
in PLWH. We used two conventional approaches
LIMMA and Mann-Whitney U test., and one machine
learning algorithm [random forest (RF)], and one linear
classification model (PLS-DA) to identify the most
important metabolites associated with MetS in PLWH
using R packages ropls and RF, respectively [30]. Both
the models separate the groups, based on the importance
of metabolites. The top 30 most important variables
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from the PLS-DA were extracted using VipPlot [31].
For RF, feature selection was performed using the R
package Boruta. A RF model using 10-cross fold
validation was built using selected metabolites.
Performance comparison of models was done using
confusion matrix, ROC curves and area under the curve
(AUC). As a sensitivity analysis, a similar analysis was
performed using only male patients. To identify the
consensus biomarkers, overlap of methodologies was
represented as a Venn diagram using the R package
eulerr ing ggplot2. Adjustment for multiple testing was
performed by considering false discovery rate (FDR)
<0.05.

Identification of mechanistic pathways

To highlight the most enriched pathways in PLHW with
MetS group compared to PLHW without MetS, metabolites
with differential abundance (LIMMA, FDR<0.05) were
submitted to Ingenuity Pathway Analysis software (IPA)
(Qiagen, US). The top 13 enriched pathways and associated
metabolites were extracted, represented as a Sankey plot
using R package ggalluvial and network using Cytoscape
version 3.6.1 [32]. Metabolite-metabolite interactions with
high confidence (confidence >0.7) were retrieved from
databases and experiments uploaded to STITCH(v5.0)
(http://stitch.embl.de/). Association analysis was performed
using R and python 3. First, metabolites with low variance
were removed. Then, pairwise Spearman correlations
between all metabolites were performed. Only correlations
with  FDR<0.05 were conserved. The distribution of
correlation coefficients was plotted to evaluate the size and
connection strength of the networks. Accordingly, a
weighted co-expression network for significant positive
associations for all samples was constructed using the
python module igraph (https://igraph.org/python/). Random
networks with the same dimensions were also constructed
and network properties analyzed. Leiden algorithm was
used for partitioning the network using the python module
leidenalg [33]. The average degree and clustering coefficient
were computed for all communities and functional
enrichment was performed for more than 30 metabolites.
Metabolite set enrichment analysis (MSEA) was performed
on these communities using gseapy first with an in-house
script containing Metabolon terms then KEGG terms.
Communities partition and network were exported from
python and imported to Cytoscape. Metabolites with
significant differential abundance between PLWH without
MetS and PLWH with MetS based on LIMMA, as well as
biomarkers identified by the four methodologies were
highlighted in the global network.

Flow cytometry

In a subset of samples PLWH with MetS (n = 31) and
without MetS (n 27)  we  performed

immunophenotyping of peripheral blood mononuclear
cells (PBMCs) for transporter expression of glucose
transporter (Glutl), monocarboxylic acid transporters
(MCT-1), and glutamate/cystine transporter xCT on
T-cells (CD4" and CDS8") and monocytes (classical,
intermediate and non-classical) as described by us
recently [29]. All cells were stained with Live/Dead
fixable near IR dye (Invitrogen), and cell surface
markers were detected by incubating cells with relevant
antibodies for 20 min on ice in flow cytometry buffer
(antibodies listed in Supplementary Table 4). Cells were
acquired a BD FACS Symphony flow cytometer (BD
Bioscience), and data were analyzed and compensated
with FlowJo 10.7 (TreeStar Inc), and Prism 8
(GraphPad Software Inc).
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SUPPLEMENTARY MATERIALS

Supplementary Figures
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Supplementary Figure 1. Confusion matrices for random forest models (A) complete data set (B) males only.

Www.aging-us.com

22745

AGING



glutamate 4

gamma-glutamylglutamate -

palmitoyl-sphingosine—phosphoethanolamine (d18:1/16:0) -

aspartate

4-hydroxyglutamate -

4—cholesten-3-one -

carotene diol (2) 4

tartronate (hydroxymalonate)

valine

gamma-glutamylisoleucine” -

leucine -

gamma-glutamylvaline

2-aminoadipate

8 gamma-glutamylleucine 4
2

© 1—carboxyethylvaline -
Qo

g glycerate -
q’ . .

= isoleucine =

oxalate (ethanedioate) 4
N2,N5-diacetylornithine 4

N-acetylglucosamine/N-acetylgalactosamine -

1-carboxyethylisoleucine -

1—carboxyethylleucine 4

gamma-glutamylphenylalanine -
1-stearoyl-GPG (18:0) 1

gamma-glutamyl-alpha-lysine 4

gamma-glutamyltyrosine <
5-methylthioadenosine (MTA) 1
metabolonic lactone sulfate

pimeloylcarnitine/3—methyladipoylcarnitine (C7-DC) -

alpha-ketoglutarate -

VipVn

Supplementary Figure 2. Variable importance plot representing top feature importance extracted from PLS-DA model in
complete data set.
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Supplementary Figure 4. Biomarkers with differential abundance between males PLWH and PLWH with MetS. (A) Venn
diagram summarizing biomarkers identified by Mann-Whitney U test, LIMMA, Random Forest (RF) and PLS-DA in male patients. (B) ROC
curve of random forest classifier for predicting metabolic syndrome status in PLWH in male patients. (C) Venn diagram representing the
overlap between biomarkers identified in all patients and in males. (D) Violin plots showing log2 intensities of 5 identified biomarkers in
Controls (green), PLWH (yellow) and PLWH with MetS (red) specific to male patients.
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Supplementary Figure 5. Scatter plot representing relationship between scaled intensities of glycerate and tartronate. The
regression line, Pearson correlation coefficient and p-value are indicated.
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Supplementary Figure 6. Immunophenotyping of (A) blood cell population and (B) Transporter expression of Glutl. Orange PLWH

without MetS and blue PLWH with MetS. Single asterisks indicate statistically significant differences p < 0.001 and FDR < 0.1 and double
asterisk p < 0.001 and FDR < 0.05.
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Supplementary Tables

Supplementary Table 1. Linear regression models adjusted for BMI and treatment regimen (Pl, NNRTI and INSTI)
showing the association of 11 biomarkers with metabolic syndrome in PLWH.

Estimate Std Error tStat P value P adjust
X1.CARBOXYETHYLLEUCINE 0.485 0.141 3.456  <0.001 0.001
X4.CHOLESTEN.3.ONE 0.198 0.059 3.307 0.001 0.001
X4.HYDROXYGLUTAMATE 1.412 0.332 4252 <0.001 <0.001
ALPHA.KETOGLUTARATE 0.18 0.053 3368  <0.001 0.001
CAROTENE.DIOL.2. -0.34 0.081 4196  <0.001 <0.001
GAMMA.GLUTAMYLGLUTAMATE 0.379 0.068 5.545 <0.001 <0.001
GLUTAMATE 0.393 0.072 5386  <0.001 <0.001
GLYCERATE -0.169 0.047 -3.544  <0.001 <0.001
ISOLEUCINE 0.093 0.028 3.295 0.002 0.001
PALMITOYL.SPHINGOSINE.PHOSPHOETHANOLAMINE.D18.1.16.0  —0.157 0.036 4415  <0.001 <0.001
PIMELOYLCARNITINE.3.METHYLADIPOYLCARNITINE.C7.DC. -0.396 0.134 -2.962 0.003 0.003

Supplementary Table 2. Linear regression models adjusted for BMI and treatment regimen (AZT, TDF, TAF and ABC)
showing the association of 11 biomarkers with metabolic syndrome in PLWH.

Estimate Std Error  tStat P value P adjust

Xl.carboxyethylleucine 0.426 0.152 2.797 0.006 0.006
X4.cholesten.3.one 0.268 0.063 4.194 <0.001 <0.001
X4.hydroxyglutamate 1.332 0.365 3.65 <0.001 <0.001

alpha.ketoglutarate 0.151 0.058 2.597 0.01 0.0101775
carotene.diol..2. -0.339 0.089 -3.777  <0.001 <0.001
gamma.glutamylglutamate 0.318 0.072 4.427 <0.001 <0.001
glutamate 0.314 0.077 4.06 <0.001 <0.001
glycerate  -0.147 0.047 -3.154 0.002 0.003
isoleucine 0.089 0.03 2.947 0.004 0.004
palmitoyl.sphingosine.phosphoethanolamine..d18.1.16.0. -0.152 0.038 -3.948  <0.001 <0.001
pimeloylcarnitine.3.methyladipoylcarnitine..C7.DC. -0.449 0.145 -3.082 0.002 0.003

Supplementary Table 3. Linear regression models adjusted for xenobiotics levels showing the association of 10

biomarkers with metabolic syndrome in PLWH.

Estimate Std Error tStat P value P adjust

1-carboxyethylleucine 0.274 0.145 1.878 0.062 0.068

4-cholesten-3-one 0.533 0.144 3.687 <0.001 <0.001

4-hydroxyglutamate 0.533 0.143 3.723 <0.001 <0.001

alpha-ketoglutarate 0.447 0.148 3.025 0.003 0.003

carotene diol (2) -0.459 0.144 _3.191 0.002 0.003

gamma-glutamylglutamate 0.719 0.133 5.376 <0.001 <0.001

glutamate 0.743 0.134 5.511 <0.001 <0.001

glycerate -0.036 0.088 -0.412 0.68 0.681

isoleucine 0.413 0.146 2.816 0.005 0.007

palmitoyl-sphingosinephosphoethanolamine (d18:1/16:0) _0.669 0.141 4739  <0.001 <0.001

pimeloylcarnitine/3- methyladipoylcarnitine (C7-DC) -0.469 0.149 -3.147 0.002 0.003
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Supplementary Table 4. List of antibodies for flow cytometry.

CD4-BUV395-SK3
CDS8-APC-RPA-TS
CD14-BV510-M5SE2
CD3-BV711-OKT3
CD16-BV786-3G8 (RUO)
GLUTI-FITC-# 202915
xCT-AF594

MCT1/SLC16A1 AF405-# 882616

BD Biosciences
Biolegend
Biolegend
Biolegend

BD Biosciences
R&D Systems
Novus Biologicals
R&D Systems

563552
301014
301842
317328
563690
FAB1418F

NB300-318AF594
FAB8275V-100UG
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