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INTRODUCTION 
 

The number of people in the US over 55 years of age 

living with HIV is on the rise, increasing from 27% in 

2014 (of all diagnosed HIV infections in the US) to 

35% in 2018 [1]. Anti-retroviral therapy (ART) has 

improved life expectancy for many people living with 

HIV (PWH), but this population exhibits a higher risk 

of age-associated comorbidities compared to young and 

middle-aged HIV negative populations [2]. Older PWH 

may be especially at risk since they are also less likely 

to have experienced the benefits of early initiation of 

ART (during acute infection) as guidelines have 

changed only within the last few years [3, 4]. Increased 

risk for co-morbidities is attributed to chronic activation 

of the immune system that persists despite viral 

suppression with ART [5–7]. On the other hand, higher 

levels of inflammation in advanced age can contribute 

to the pathogenesis of infectious disease, including HIV 

and tuberculosis, but also to cancer, diabetes, cardiac 

disease, and neurological complications [8, 9]. 

 

Age-induced decline in immune function is associated 

with mortality, however not all individuals age equally. 

Immune age is affected by one’s genetic background 

and environmental exposures throughout life [10, 11]. 

Studies performed in the general population (HIV 

uninfected) have identified signatures of aging from 

immunologic data including cellular phenotypes 

comprised of a loss of naïve T cells and CD38+ T cells 

with advanced age and an increase in CD57+ and 
effector memory T cells [12, 13]. Despite the natural 

variation in baseline immunological measurements that 

occurs on an intra- and inter-individual basis [14–16], 
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ABSTRACT 
 

Anti-retroviral therapy (ART) improves life expectancy in people living with HIV (PWH), but it remains unclear 
how chronic HIV infection affects normal aging of the immune system. Plasma cell-free protein expression and 
immune phenotypes were assessed in blood from ART treated PWH (19-77yrs, n = 106) and age-matched, HIV-
negative controls (HC, n = 103). Using univariate spearman correlation, we identified 277 and 491 age-
associated parameters out of a total 1,357 in HC and PWH, respectively. PWH exhibited shared and distinct age-
associated immune profiles compared to HC highlighting the effect of HIV infection on immunological aging. 
Our analysis resulted in an 8-parameter, plasma-detectable inflammatory index that correlated with 
chronological age of all study participants but was higher overall in PWH. Additionally, predictive modeling for 
age in HC participants and age-associated parameters generated a 25-parameter signature, IMAP-25, with 70% 
and 53% accuracy in HC and PWH, respectively. Applying the IMAP-25 signature to immunological data from 
PWH revealed accelerated aging in PWH by 5.6 yrs. Overall, our results demonstrate that immune signatures, 
easily monitored in human blood samples, can be used as an indicator of one’s ‘immunological age’ during ART-
treated HIV infection and can be applied to other disease states that affect the immune system. 
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the signatures were identified using cross-sectional 

analyses and confirmed in longitudinal analyses 

covering a nine-year window [13]. 

 

Based on epigenetic modeling using DNA methylation 

patterns in blood cells, PWH exhibit an increased aging 

rate compared to HIV negative individuals by an 

average of approximately 5 years with a 19% increased 

risk of mortality [17, 18], but how the epigenetic clock 

relates to immunological phenotypes and function is not 

known. Our previous studies have shown that age-

correlated biomarkers in HIV-negative populations 

show weak associations with age in HIV positive 

groups [7, 19, 20]. Thus, additional models need to be 

generated to achieve a more comprehensive 

understanding of how the immune system reacts during 

advanced age in the context of HIV infection. 

Fortunately, many immune cells and immune signaling 

proteins are readily accessible from blood, thus 

providing an experimental framework for developing 

such models to compare immunological biomarkers 

during healthy and compromised states. 

 

Here, we present a statistical strategy that generated 

immunological signatures from biomarkers easily 

monitored in human blood samples, that are predictive 

of biological age in adults. Using this strategy, we 

characterized features of the aging immune system that 

are altered during chronic HIV infection. 

 

RESULTS 
 

Inflammatory plasma protein profiles associate with 

age and HIV infection 

 

Inflammation and immune activation are independently 

associated with chronic HIV infection and an aging 

immune system. Thus, to study the effect of aging in the 

context of ART-treated HIV infection we performed the 

current study in participants from the Flu Responses of 

People in Relation to Age and HIV (FLORAH) study 

[19]. The age ranges of participating HIV-infected, 

ART-treated virally suppressed adults (n = 106) and 

HIV-negative, healthy controls (HC, n = 103) are shown 

in Table 1. Cell-free biomarkers associated with 

inflammation and immune activation (listed in 

Supplementary Table 1) were measured cross-

sectionally from plasma collected at pre-vaccination in 

the related influenza vaccination study [7]. The panel of 

biomarkers selected for analysis were chosen to 

evaluate inflammatory cytokines and soluble receptors 

as well as markers of microbial translocation [21, 22]. 

Data reduction using Lasso was performed to generate 

an ‘Inflammatory Index’ containing only the biomarkers 

that most closely associated with age. This approach 

resulted in a group of 8 cell-free biomarkers with which 

the Inflammatory Index was calculated as the sum of 

the standardized variables of each biomarker multiplied 

with their weights extracted from principal component 

analysis variable PC1 (Figure 1A). Soluble TNF 

receptors 1 and 2 showed high contribution to the index, 

along with Neopterin, D-Dimer, soluble CD25 and 

CD163 receptors, MCP1, and iFABP (intestinal fatty 

acid binding protein) (Figure 1B). The index showed a 

significant but weak correlation (r value <0.4) with age 

in both HIV and HC (Figure 1C) and by comparing the 

groups regardless of age the index was higher in HIV 

compared to HC (Figure 1D). These results show that 

markers of inflammation that increase with age in the 

general population, are also higher in HIV-infected 

individuals supporting the hypothesis that HIV infection 

can enhance the process of inflammaging [23]. 

 

Correlation of immunological parameters with 

chronological age 

 

In pursuit of a predictive signature of age, we expanded 

the dataset to include flow cytometry-based phenotypic 

data acquired from the same individuals that were used 

to calculate the inflammatory index. PBMC samples 

collected prior to influenza vaccine administration were 

analyzed with 6 multiparameter, immunophenotyping 

panels that covered T cell, B cell, Monocyte, and NK 

cell frequencies and multiple phenotypic immune 

markers using 54 unique monoclonal antibodies (panels 

shown in Supplementary Table 2). This strategy 

generated a total of 1,357 parameters to interrogate 

expression patterns associated with age and HIV status. 

First, we wanted to establish an immune signature of 

aging in HIV-negative individuals as a reference 

population to test the hypothesis that HIV-infected 

individuals experience accelerated aging of the immune 

system. 277 parameters from the total 1,357 showed a 

significant correlation with age in HIV negative healthy 

controls (HC) when univariate spearman correlation 

analysis was performed (p < 0.05) (Figure 2A and 

Supplementary Table 3). Of these 277 parameters, 19 

had correlation coefficients > +/− 0.4 and all 17 of the 

inversely correlated parameters were related to CD38 

expression in T cells (Figure 2B). Both the frequency of 

total CD38 expression and mean fluorescence intensity 

(MFI) of CD38 was reduced with age in CD4 and CD8 

T cells, including T Central Memory (TCM) subset and 

peripheral T follicular helper (pTfh) in CD4 T cells. The 

two parameters that demonstrated an increase with age 

were frequencies of pTfh TH17 cells and CD38-

HLADR- CD4 T cells, the latter representing the 

opposite association compared to CD38+ T cells. 

 
The same analysis was performed in the HIV-infected 

group of participants and 491/1,357 parameters showed 

a significant correlation with age (p < 0.05, 
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Table 1. FLORAH study participant demographics. 

  
HIV Negative HIV Positive 

Young Middle Old Young Middle Old 

N  35 49 18 20 61 25 

Age Range (yrs)  19–39 41–59 60–77 19–39 40–59 60–71 

Age Mean (yrs)  30.1 51.3 65.9 28.8 51.8 64.5 

% Female  51% 47% 33% 50% 44% 28% 

Duration of ART 
(years) 

Mean + SD (n) NA NA NA 5+/−2.8 (13) 10.8+/−5.7 (42) 12.9+/−7.6 (22) 

Lymphocyte count Cells/ul Mean (n) 2477 (33) 1904 (30) 1847 (17) 1754 (19) 1748 (37) 1692 (22) 

CD4 count  987 999 871 784 727 596 

CD8 count  395 325 432 458 366 527 

Race Ethnicity       

White Hispanic  26% 31% 22% 25% 18% 24% 

Non-Hispanic 20% 14% 33% 0% 7% 8% 

Black Hispanic  6% 0% 11% 5% 5% 12% 

Non-Hispanic 29% 49% 17% 60% 69% 56% 

Asian  11% 0% 17% 0% 0% 0% 

N.A.  9% 6% 0% 10% 2% 0% 

Substance Use Yes/No (%)       

Tobacco Use  30/70 48/51 27/73 30/70 40/60 45/55 

Alcohol Use  38/62 44/55 49/51 31/69 31/69 37/62 

 

Supplementary Table 4). Despite having ~2-fold higher 

number of correlating parameters compared to HC, only 

15 parameters had correlation coefficients > +/−0.4 in 

the HIV group and most of these were T cell parameters 

(Figure 2C). However, the association patterns were 

strikingly different between the 2 groups. 8 out of 15 

parameters included HLA-DR+ T cell frequencies or 

MFI expressed in Naïve and total CD4 and CD8 T cells 

and showed positive correlations with age. Expression 

levels of other known activation markers CCR5, PD1, 

and CD39 on CD4 T cells also increased with age in 

HIV. CD38 expression on CD8 T cells showed similar 

decreases with age as in HC. The only non-T cell 

parameter present in these results was the frequency of 

CD80+ activated memory (AM) B cells which also 

showed a negative association with age. 

 

Contrast of age-associated immunological 

parameters in PWH 

 
To further understand the effect of HIV infection on 

aging of the immune system we compared all immune 

parameters that significantly correlated (p < 0.05) with 

age in both HC and HIV. 113 parameters overlapped in 

the two independent analyses (Figure 2A) and out of 

these, 78 showed the same direction of correlation in 

HC and HIV (Supplementary Table 5). Of the top 25 

parameters with the strongest age association in both 

groups (Figure 3A), the majority of same-direction 

parameters included those with inverse correlations 

between CD38 expression on T cells and aging (48 out 

of 78 parameters). HLA-DR expression in certain T cell 

populations also showed increases with age in both 

groups. Additionally, frequencies of inflammatory 

monocytes showed a positive correlation with age in 

both groups. 

 

The remaining 35 parameters had opposite 

directionality in association with age in HC and HIV 

(Figure 3B). In B cells, frequencies of CD80+ cells 

increased with age in HC and decreased in HIV, 

meanwhile FcRL4+ B cells decreased in HC and 

increased in HIV. In T cells, the markers that were 
differentially associated with age were CTLA4, PD1, 

and Ki67 expressed in CD4 T cells. These markers 

decreased with age in HC and increased in HIV. 
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Overall, the univariate analysis demonstrated that T cell 

phenotypes, especially CD38 expression, that correlate 

with age in HIV-negative population are maintained in 

HIV+ individuals on ART though at a lower magnitude. 

While certain parameters with opposite associations 

with age in the HIV population reflect an altered aging 

pattern and may be important biologically. 

Prediction modeling for chronological age in HIV-

negative population 

 

The univariate analysis for correlation between 

immunological parameters and age did not reveal a 

strong individual predictive biomarker for aging (the 

strongest correlation coefficient was −0.56 for CD38 

 

 
 

Figure 1. Defining inflammatory index for aging and HIV infection. (A) PCA plot showing distribution of HIV- (green) and HIV+ 

(purple) individuals in relation to protein expression from inflammatory index and Age in years. (B) List of proteins (standardized variables) 
in the inflammatory index and their weights extracted from PC1 in A. (C) Regression of Age with inflammatory index (sum of standardized 
variables from B multiplied by their weights extracted from PC1). (D) Violin plot showing the difference in inflammatory index between HIV- 
and HIV+ participants. 
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MFI TCM CD8 T in HIV-negative). Thus, we 

combined all age-associated parameters to build 

prediction models for age in the participant groups 

with the goal of defining a small set of markers that 

could be used to predict the immunological age in 

PWH independent of chronological age. Significant 

age-associated markers (p < 0.05) were selected for 

the model using regression analyses Lasso or Elastic 

Net that perform regularization to reduce co-

correlating parameters and overfitting of the model. 

The models were tuned to obtain the best prediction 

using 70% train and 30% test strategy first with HIV-

negative participants. We found linear regression 

generated the best prediction among 4 machine 

learning algorithms (Linear regression, Neural 

network, Decision Forest regression, boosted decision 

tree). The modeling resulted in a 14-parameter model 

which had moderate predictive power with an R2 = 

76.88% and root mean square error (RMSE) of 6.1 in 

HIV-negative (Figure 4A). The 14 parameters 

consisted of 9 parameters with a positive association 

with age and 5 with a negative association in HIV-

negative participants. Cell-free markers D-Dimer and 

Neopterin were positively associated with age in the 

model. Total CD4 T cell frequencies and subsets of 

CD4 TCM Th2 and pTfh Th1/17 all showed positive 

associations with age. PD1 expression showed 

opposite effects on age depending on the type of T 

cell with expression on CD4 T cell subsets correlating 

positively with age in the model while PD1 on CD8 T 

cells decreased with age. CD38 expression in CD8 

TCM had a negative association with age, as expected 

from the univariate analysis. Finally, frequencies of 

non-classical monocytes and immune senescent 

(CD57+CD28-) CD8 TEff cells were increased with 

increasing age. Predicted age and actual age showed 

strong correlation (r = 0.88, p = 4.3 × 10−34) as 

demonstrated by the good predictive accuracy in HIV 

negative participants (Figure 4B). When the HIV-

negative (HC)-trained model was applied to the HIV 

group, it failed in predicting chronological age 

exhibiting extremely low predictive power at 18.67% 

(RMSE 11.23) and supporting the hypothesis that HIV 

infection alters the process of immunological aging 

(Figure 4C). Only 6 out of the 14 parameters 

maintained the same relationship with age in both 

HIV-negative and HIV-positive. Of note was the lack 

of association between frequencies of TCM/Th2 and 

Memory Treg/PD1 in CD4 T cells and Neopterin as a 

plasma marker. Although the 14-parameter model was 

not predictive in the HIV group the predicted age still 

showed a significant moderate correlation with actual 

age (r = 0.46, p = 5.9 × 10-7) (Figure 4D). 

Interestingly, this model revealed that many of the 

young HIV+ participants (<40 yrs) were being 

classified at higher ages, while older individuals (>50 

yrs) were more likely to be accurately classified or 

even classified as younger than their actual age. 

 

 
 

Figure 2. Top age-associated immunological parameters in HIV-negative and HIV-positive study participants. (A) Venn 

diagram showing the number of parameters with significant correlations with chronological age in HIV-negative (n = 103) and HIV-positive 
(n = 106) groups. Bar graph showing directionality of correlation coefficient for the top parameters with significant correlations with age in 
HIV-negative (B) and HIV-positive (C) participants. In red font are non-T cell parameters. Bold font indicates CD38 and HLADR containing 
parameters. Spearman test was performed for each parameter and chronological age, p < 0.05 was considered significant. In bar graphs, 
red denotes a positive correlation and blue denotes a negative correlation. 
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The same procedure was performed to determine 

whether a different set of immunological parameters 

could be used to predict age in the PWH group with 

greater accuracy. The modeling generated a 15-

parameter model to predict aging in HIV, however it 

was weakly predictive with an r2 of 55.44% and RMSE 

8.4 (Supplementary Figure 1). 

 

Age prediction modeling to determine aging rate in 

PWH 

 

Combination of all parameters from the HC-trained 

model and HIV-trained model allowed us to generate an 

alternative model to predict age in both participant 

groups (Figure 5A). The results from the combined 

model highlight the difference in markers that associate 

with age in HIV. For example, CD38+ HLADR+ TTM 

CD4 T cell frequencies were positively associated with 

age in HIV but showed minimal association in HC. PD1 

expression on T cell subsets showed stronger 

associations with age in the model for HC, but 

weakened or opposite associations in HIV. 

 

The predicted age from the 25-parameter model called 

IMAP-25 (IMmunological Age Prediction) was strongly 

correlated with age in HC (Spearman r = 0.84, p = 3.8 × 

10–28), and moderately correlated with age in HIV 

(Spearman r = 0.65, p = 3.4 × 10–14) (Figure 5B). 

However, the aging rate (calculated as the predicted 

age/actual age) was not significantly different in HC 

and HIV groups overall. Therefore, we divided the 

participants into age groups to perform additional 

analyses using the following criteria: <40 yrs (Young), 

40–59 yrs (Middle), >60+ yrs (Old). We found that 

young HIV exhibited a faster aging rate than young HC 

by 18.47% (Welch Two Sample t-test p = 0.02), while 

Middle and Old aged participants showed similar aging 

rates in the two groups (Figure 5C). The increase in 

 

 
 

Figure 3. Overlapping age-associated parameters in HIV-negative and HIV-positive groups. Bar graphs showing correlation 

coefficients for the top parameters with same direction (A) and opposite direction (B) significant correlations with age in HIV-negative and 
HIV-positive participants. Only the top 25 out of 78 same direction parameters are displayed in (A), the rest are listed in Supplementary 
Table 3. All opposite direction parameters are shown in (B). In red font are non-T cell parameters. Bold font indicates CD38 and HLADR 
containing parameters. HC = HIV negative, healthy control. Spearman test was performed for each parameter and chronological age, p < 
0.05 was considered significant. In bar graphs, red denotes a positive correlation and blue denotes a negative correlation. 
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aging rate in young HIV corresponded to an age 

advancement of 5.62 years. 

 

DISCUSSION 
 

In this study we applied a statistical analysis pipeline to 

evaluate a complex immunology dataset generated from 

human blood samples collected cross-sectionally to 

evaluate biomarkers of aging. Here, we used R software 

and established machine learning algorithms to compare 

and contrast patterns of expression of immunological 

biomarkers in Young and Old adults to determine a 

signature of aging and to allow us to answer the primary 

question of this research: How does chronic HIV 

infection affect normal aging of the immune system? 

The results show that HIV-infected, ART treated 

participants had many more differences than similarities 

in immune parameter expression patterns from early to 

 

 
 

Figure 4. Age prediction modeling using HIV-negative as reference population and age-associated parameters. (A) Bar graph 

shows each of the 14 parameters included in the HIV-negative, trained model and indicates the coefficient for each parameter when 
applied to HIV negative participants. (B) The correlation between predicted age and actual age using the 14-parameter model is shown for 
HIV-negative participants. (C) Bar graph shows each of the 14 parameters included in the HIV-negative, trained model and indicates the 
coefficient for each parameter when applied to HIV positive participants. (D) The correlation between predicted age and actual age using 
the 14-parameter model is shown for HIV-positive participants. Correlations were determined using Spearman test. Red bars denote a 
positive association with predicted age and blue bars denote a negative association. Dotted lines in (B and D) show theoretical relationship 
for a perfect positive correlation for visualization purposes. 
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elderly adulthood when compared to HIV-negative, 

healthy controls. This observation points to two possible 

explanations; first, that HIV infection changes immune 

parameter expression overall such that the patterns 

observed in aging are different, or second, that HIV 

infection influences immune parameter expression at 

the time of infection (usually in younger individuals) 

which in turn affects the overall pattern of parameter 

expression during aging. Predictive modeling using age-

associated parameters and evaluation of aging rate in 

different age groups of HIV-infected and age-matched 

HC led us to conclude that the latter explanation is more 

accurate. The differences that we observed in age-

associated parameters could be mostly attributed to 

differences observed between Young (<40yrs) 

participants with Young HIV exhibiting an accelerated 

rate of aging while Middle and Old participants had 

similar aging rates as HC groups. 

 

The rate of age acceleration in the HIV-infected group 

in our study is strikingly similar to the age advancement 

rate determined in two independent studies that used 

DNA methylation to assess biological age (as opposed 

to the chronological age). Horvath, et al. developed an 

epigenetic clock using the extent of DNA methylation 

of a particular cell type or tissue to determine biological 

age and in multiple datasets using blood samples 

determined that HIV+ individuals showed a 5.2 yrs age 

advancement in biological age compared to their 

chronological age [17]. A separate study by Gross, et al. 

also using epigenetic models of biological age showed 

that age advancement in HIV-infected cohorts was an 

average of 4.9 yrs compared to HIV uninfected cohorts 

[18]. This study also suggested that HIV-infected 

people experience precocious aging as a consequence of 

acute infection rather than prolonged HIV infection 

since duration of infection had no impact on rate of age 

advancement. We did not have access to clinical data on 

duration of infection or CD4 nadir for the HIV-infected 

ART treated participants so we could not evaluate the 

contribution of these parameters to the immune 

signature that we defined. These parameters have been 

shown to contribute to higher levels of immune 

activation and inflammation during ART in some 

individuals [24, 25]. Overall, the concordance between 

our study and others in the literature is encouraging, 

however the relationship between DNA methylation and 

the immune parameters in the IMAP-25 signature are 

not understood. However, altered methylation patterns of 

the HLA locus has been documented in HIV [18, 26] 

 

 
 

Figure 5. Age-associated immune parameters reveal accelerated aging in young HIV-infected group. (A) 25-parameter model 

to predict age in HC and HIV. Bar graph shows each of the parameters included in the model and indicates the coefficient for each 
parameter when applied to HIV negative (HC) participants and HIV-positive participants. Red bars denote a positive association with 
predicted age and blue bars denote a negative association. (B) The correlation between predicted age and actual age using the 25-
parameter model is shown for HIV-negative (blue dots) and HIV-positive participants (red circles) using Spearman correlation test. (C) 
Density curves comparing the aging rate in HIV-negative (blue line) and HIV-positive (red line) participants in 3 age groups: Young (<40 yrs), 
Middle Age (41–59 yrs), and Old (>60 yrs). Student’s t test was performed to determine difference in aging rate, significance was 
considered when p < 0.05. 
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which may explain the increased HLA-DR expression we 

observed with age in the HIV-infected participants only. 

 

Further, precocious immune aging in ART-treated, HIV 

infection has biological relevance for immune function 

as was demonstrated in the influenza vaccine study 

using the FLORAH cohort [19]. Serum antibody titers 

against H1N1 and B strains that were included in the 

vaccine were much lower in Young (<40 yrs) HIV+ 

compared to Young HC post-vaccination. Old (60+ yrs) 

HC and Old HIV, however, generated similar levels of 

serum Ab titers to the vaccine though both groups had 

less than their Young counterparts. 

 

Plasma biomarkers provide a snapshot of the level of 

systemic inflammation in the host and the literature has 

shown that levels of inflammation, as measured by IL-6, 

TNF, CRP, D-Dimer and others [27–30], are increased 

during HIV infection. Our analysis of only plasma 

biomarkers revealed a group of 8 cell-free proteins that 

formed an inflammatory index that increased with age 

in HIV and HC and was statistically higher in HIV 

compared to HC confirming the original hypothesis that 

HIV infection enhances the inflamm-aging phenotype. 

The markers in the index included soluble TNF 

receptors (sTNFR1 and sTNFR2) which result from 

shedding of the receptor from the membrane following 

TNF signaling and/or alternative splicing of the receptor 

[31] and have been associated with disease progression 

in HIV and aging previously [32–34]. MCP-1 is a 

biomarker related to neurocognitive dysfunction in 

people living with or without HIV [35] and also 

increases with age [7]. Additional markers in the index 

included soluble IL-2Rα (CD25), soluble CD163, 

neopterin, and D-dimer which have all been shown to 

be biomarkers for several inflammatory diseases 

indicating poor prognosis [36, 37]. The intestinal Fatty 

Acid binding protein (iFABP) is a marker of microbial 

translocation and has been shown to remain elevated in 

HIV-infected individuals with ART [38, 39]. A recent 

study has presented REG3α as a novel marker for gut 

damage in PWH that may be more informative than 

iFABP in assessing microbial translocation [40], 

however its relationship to Age is not yet known. Our 

data showed the inflammatory index was significant but 

only weakly correlative with age in the study groups, 

therefore integration with additional measurements was 

necessary to define more robust predictive immune 

signatures of age. 

 

Integration of flow cytometry and plasma biomarker 

data revealed hundreds of immune parameters with 

weak (coefficients = 0.2–0.4), albeit significant 
correlations with age, however CD38 expression on T 

cells had a moderate and inverse correlation with age in 

HC that was not altered in the HIV-infected group. 

CD38 is a multi-functional protein that acts as i) an 

ecto-enzyme (expressed on cell membrane) consuming 

nicotinamide adenine dinucleotide (NAD+) and ii) a 

receptor that regulates intracellular calcium. NAD 

metabolism is a therapeutic target in the aging field, 

including the sirtuin proteins and the poly-ADP-ribose 

polymerase (PARP) which are also NAD+ consumers 

[41, 42]. Much of the work on aging and NAD+ has 

been performed using mouse models in which CD38 

increases on certain cell types with age [43], however 

differences in tissue expression and receptor signaling 

have been noted in mice and humans, therefore while it 

is tempting to connect CD38 expression decline on T 

cells to NAD+ metabolism and aging in our study, we 

will focus on the receptor activity and signal 

transduction downstream of CD38 ligation for which 

there is more evidence in human T cells [44, 45]. 

 

CD38 cooperates with T Cell Receptor/CD3 signaling 

in lipid rafts as it cannot directly signal through its short 

cytoplasmic tail. It is highly enriched in cord blood and 

on Naïve compared to Memory CD4+ T cells [46, 47], 

which is in line with an overall decline with age as the 

frequency of Naïve cells decrease throughout life as 

documented in the FLORAH cohort and by others [7, 

12, 48]. CD38 may help amplify signaling through the 

TCR and the loss of its expression over time could 

represent a move toward senescence of T cells and the 

adaptive immune system. Along these lines, in addition 

to CD38 decline, we observed an increase in immune-

senescent CD8 T cells (defined by CD57+CD28-, [49]) 

with age in HIV-negative and HIV+ participants in this 

study. In viremic, untreated HIV infection CD38 

expression is considered a biomarker for disease 

progression [50], however during treated HIV infection, 

such as in the FLORAH cohort, its expression on T 

cells was not correlated with HIV (i.e., higher 

frequencies compared to uninfected) [7]. 

 

Interestingly, co-expression of CD38 with HLA-DR on 

T cells is a biomarker for immune activation especially 

in HIV infection [5], and this biomarker on CD4 

memory cells (TM) was included in the IMAP-25 

signature but increased with age in PWH only. HLA-

DR expressing (CD38-) T cells, especially in the Naïve 

T cell subset, increased with age in both HIV-negative 

and HIV+ suggesting increased immune activation of 

Naïve cells is common in aging and appears to be 

exacerbated in the context of HIV infection as the PWH 

demonstrated stronger correlations compared to HC. 

Another notable and consistent difference observed 

between the groups was the increase in CD4 Th2 cells 

with age in HC that was absent in PWH. Though it is 
controversial, it has been proposed that the switch from 

Th1-to-Th2 is associated with HIV disease progression 

[51, 52]. The accumulation of Th2 cells has also been 
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observed with aging in the general population [53], as 

our data corroborates. 

 

As technological advancements continue to allow for 

simultaneous collection of many datapoints, strategies 

for data reduction and focusing on biologically relevant 

parameters are needed. The statistical strategy we used 

allowed us to reduce the number of immune features by 

50-100-fold. This will be useful for future studies 

looking to assess immunological age by reducing costs 

associated with acquiring data from multiple flow 

cytometry panels and multiplex plasma biomarker 

detection. The reagent costs for these assays are high as 

well as the statistical disadvantages when you must 

account for multiple comparisons. 

 

Cytomegalovirus (CMV) seropositivity was assessed in 

the FLORAH cohort [19] and plasma IgG titers were 

included as one of the 27 cell-free analytes included in 

the model for age. CMV IgG titers have been shown to 

increase with age in cohorts of HIV-negative 

populations over 70 years of age [54]. In that study, the 

authors showed that prior to age 70 the change in titer 

levels were not found to be significant as age increased. 

Our cohort has individuals ranging in age from 19 to 77 

yrs and we did not find a significant correlation of CMV 

IgG titer with age in the HIV negative population, 

however HIV+ individuals both had higher titers than 

HC and showed a positive correlation with age [19]. 

Despite this fact, CMV titers were not included in any of 

the age-prediction models that were generated. A recent 

study showed that CMV IgG titers correlated with 

markers of microbial translocation and inflammation in 

an HIV-infected cohort (ART-naïve and treated), 

including iFABP [55]. An important limitation of data 

reduction methods such as Lasso and Elastic Net are that 

they may remove some biologically relevant parameters 

from the model if they show strong correlation with 

selected parameters with the best fit for the current 

model. Additionally, the model may have been more 

robust if participants in the octogenarian population and 

older were included, however given the natural history 

of the HIV epidemic these older populations are still rare 

in the HIV-infected community. Despite these 

limitations, our results propose a group of potential 

biomarkers that can be used to assess immunological age 

in diverse clinical settings and provide new therapeutic 

targets in the fields of Aging and HIV. 

 

METHODS 
 

FLORAH study participant characteristics and 

study design 

 

Study participants were recruited from University of 

Miami, Jackson Memorial, and VA Hospitals in Miami, 

FL. HIV-infected, cART-treated participants all 

demonstrated virus suppression (HIV RNA <40 

copies/ml) for at least 1 year prior to enrollment. All 

participants were administered the seasonal influenza 

TIV (trivalent inactivated vaccine) and provided 

peripheral blood samples at pre-vaccination (T0) and 

postvaccination time points: day 7 (T1), day 21 (T2), 

and week 24 (T3). Serum titers for Abs against each 

vaccine strain were determined at every time point by 

hemagglutination inhibition assay (HAI) as described 

previously (56). Individual vaccine strain antigens were 

provided as gifts from Giuseppe del Giudice (Novartis, 

Siena, Italy). For the 2013–2014 and 2014–2015 

seasons the 3 strains in the vaccine were H1N1 

A/California/7/2009, H3N2 A/Texas/50/2012, and 

B/Massachusetts/02/2012-like. For the 2015–2016 

season the 3 strains were H1N1 A/California/7/2009, 

H3N2 A/Switzerland/9715293/2013, and 

B/Phuket/3073/2013. Peripheral blood mononuclear 

cells (PBMCs) and plasma were stored in liquid 

nitrogen and –80°C freezers, respectively, until further 

experiments were performed. 
 

Ethics statement 

 

The study was approved by the University of Miami 

Institutional Review Board. Voluntary signed informed 

consent was obtained from every participant prior to 

participating in the study. 

 

Multiparameter flow cytometry 

 

Previously cryopreserved PBMC were thawed and 

stained for acquisition of flow cytometry data as 

described [7]. 6 panels of commercially available, 

fluorochrome-conjugated monoclonal antibodies 

(Supplementary Table 2) were assessed for expression 

on PBMC samples collected at pre-vaccination (T0) 

using a BD Fortessa instrument. Data were analyzed 

manually using FlowJo V10 (Tree Star, Inc.). 

 

Some cell subsets discussed in text and shown in 

figures were abbreviated and defined as follows, 

divided by cell type. For T cells: TN (Naive, 

CD45RO-CD27-), TCM (Central Memory, 

CD45RO+CD27+CCR7+), TTM (Transitional 

Memory, CD45RO+CD27+CCR7-), TEM (Effector 

Memory, CD45RO+CD27-), TEFF (Effector, 

CD45RO-CD27-), pTFH (peripheral T follicular 

helper, CXCR5+ TCM), TH1 (CXCR3+CCR6-), TH2 

(CXCR3-CCR6-), TH17 (CXCR3-CCR6+), TH1-

TH17 (CXCR3+CCR6+). For B cells: AM (B cell 

Activated Memory, CD19+IgD-CD27+CD21-), RM 
(B cell Resting Memory, CD19+IgD-CD27+CD21+), 

DN (B cell Double Negative, CD19+IgD-CD27-

CD21-). 
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Measurement of cell-free plasma markers 

 

Proteins from plasma were measured from FLORAH 

participants as described previously [7]. 

 

Statistical methods 

 

Inflammatory Index: Backward stepwise regression was 

applied to plasma biomarker data from 26 individual 

markers to identify a group of markers with the strongest 

associations with age. Then, PCA was performed using 

the resulting 8 plasma biomarkers and the Inflammatory 

Index was calculated for each individual as the sum of 

the standardized variables (8 plasma markers) multiplied 

with their weights extracted from PC1. 

 

Age prediction 

 

After data preprocessing, 209 participants with 

complete information on 1357 markers (1330 

immunological markers, 26 cytokines and CMV IgG) 

were subject to building aging prediction model. First, 

spearman correlation and multivariate regression 

analysis were performed using immune markers to 

identify significant markers associated with age, then a 

data reduction approach by Lasso or Elastic Net 

Regression was used to further select the highly 

correlated variables. Using 4 machine learning 

algorithms (Linear regression, Neural network, 

Decision Forest regression, boosted decision tree) we 

found Linear regression generated the best prediction. 

 

Build aging model 

 

Fit generalized linear model via penalized maximum 

likelihood at alpha parameter 0, 0.05, 0.1…1. Repeated-

corrected 10-fold CV (cross-validation) was run for 500 

times and minimum averaged RMSE (Root Mean 

Squared Error) was used to select optimal regularization 

parameter alpha. The resulting model from Lambda1se 

(the value of λ that gives one standard error away from 

the minimum error) was further assessed by 

bootstrapping 500 times. The candidate markers 

included only markers present more than 250 times. 

 

Optimizing aging model 

 

Initial aging model was tuned to get best prediction on 

age using Microsoft Azure Machine Learning Studio. 

Model tuning was performed on 70% train and 30% test 

in HC and HIV separately. Cross-validation was 

performed by 5 or 10 folds. Markers were evaluated by 

their permutation feature importance. Optimal model 
was selected by minimum averaged RMSE and highest 

Coefficient of Determination (R-squared). Optimal 

model was further tuned on 4 machine learning 

algorithms (Linear regression, Neural network, 

Decision Forest regression, boosted decision tree). 

Linear regression generated best prediction. 

 

Aging rate 

 

Correlation of predicted age (Age predicted by 

immunological markers, aka “immunological age”) and 

age was performed by Spearman correlation analysis. 

Difference of aging in HC and HIV (Aging Rate and 

Age Advancement) was identified by Two Sample t-test 

or Welch Two Sample t-test on predicted age by 

combined aging model. 
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TN: Naïve T cell; MFI: Mean Fluorescence Intensity; 

AM: Activated Memory; pTFH: peripheral T follicular 

helper cells; TCM: Central Memory T cell; TEFF: 
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regulatory T cells; Lasso: least absolute shrinkage and 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Prediction modeling for chronological age in HIV-positive population. Bar graph shows each of the 15 

parameters included in the HIV+ trained model and indicates the coefficient for each parameter when applied to HIV+ participants (left) 
and HIV-negative, healthy controls (HC, right). Predictive accuracy in HIV+ participants was 55.48%. Red bars denote a positive association 
with predicted age and blue bars denote a negative association. Red font indicates non-T cell parameters and bold font indicates CD38-
containing parameters. 
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Supplementary Tables 
 

Supplementary Table 1. Cell-free analytes measured in plasma. 

Marker Name 

BNP 

CMV IgG 

CRP 

CXCL13 

D-Dimer 

Intestinal fatty acid binding protein (iFABP) 

Interferon (IFN)-a 

Interferon-g 

Interleukin (IL)-10 

Interleukin-12p70 

Interleukin-17A 

Interleukin-1B 

Interleukin-2 

Interleukin-21 

Interleukin-6 

Interleukin-8 

LPS 

MCP1 

Neopterin 

Soluble CD14 

Soluble CD163 

Soluble CD25 

Soluble ICAM 

Soluble TNFRI 

Soluble TNFRII 

Soluble VCAM 

TNF 

 

 

Supplementary Table 2. Multiparameter flow cytometry panels used to obtain immune-phenotypic data. 

Fluorochrome/ 
Channel 

Immune 
Activation 

Panel 

Immuno-
regulatory 

Panel 

Immune 
Checkpoint Panel 

T helper 
subset Panel 

B cell 
Panel 

Monocyte/ 
NK Panel 

BUV395 CD3 CD3 CD3 CD3 CD3 CD3 

BV421 ICOS BCL6 CD57 CCR4  CD71 PDL1 

BV605 CXCR3 CD127 PD1 CXCR3 CD80 CD56 

BV650 PD1 PD1  CD4 PD1 PDL1 CD11b 

BV711 Ki-67 CD25 TBET CD95 Ki-67 Inv NKT Cell  

AQUA Live/Dead Live/Dead Live/Dead Live/Dead Live/Dead Live/Dead 

APC/AF647 CXCR5 CXCR5 EOMES CXCR5 FCRL4 CD16  
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APC-Cy7/APCH7 CD45RO CD45RO CD45RO CD45RO CD38 HLA-DR 

AF700 CD8 CD8 CD8 CD8 CD20 CD8 

PE CD38 FOXP3 TIM3 CCR5 IL-21R CX3CR1 

ECD/PE-CF594 CCR7 CCR7 CCR7 CCR7 CD138 CCR7 

PE-Cy5 CD27 CD4 CD28 CD27 CD21 CD45 

PE-Cy7 CCR6 CTLA-4 LAG3 CCR6 CD10 CD14 

FITC/AF488 HLA-DR CD39 2B4 CD161 IgD CCR2 

PerCP-Cy5.5 CD4 Ki-67 TIGIT CD4 CD27 CD4 

 

Please browse Full Text version to see the data of Supplementary Tables 3 and 4. 

 

Supplementary Table 3. Spearman correlation results for univariate analysis of parameter with age in HC. 

 

Supplementary Table 4. Spearman correlation results for univariate analysis of parameter with age in HIV. 

 

Supplementary Table 5. Overlapping age-associated parameters in HIV-negative and HIV-positive groups: Same 
direction parameters (full list). Related to Figure 3. 

Immune Parameter Coefficient_HC Coefficient_HIV 

CD8/TCM/CD38- HLADR+ % 0.376 0.381 

CD8/TN/CD28 % 0.357 0.228 

CD8/CD38- HLADR+ % 0.344 0.432 

CD4/TN/2B4 % 0.327 0.264 

CD8/TN/CD38- HLADR+ % 0.307 0.443 

CD8/TCM/PD1 MFI 0.307 0.37 

CD4/TN/CD38- HLADR+ % 0.298 0.424 

CD8/TN/TIGIT % 0.286 0.257 

CD4/TEFF/CCR5 MFI 0.283 0.197 

CD4/TEM 0.263 0.293 

CD8/TN/CD57 % 0.251 0.344 

sCD163 0.231 0.259 

CD4/CD38- HLADR+ % 0.229 0.499 

Inflammatory Mono 0.221 0.338 

pTFH/TH2/CD38- HLADR+ % 0.202 0.372 

CD8/TEFF/CD57 % 0.201 0.256 

Transitional B cells/PDL1 % 0.201 0.221 

CD4/TCM/NONTFH/TH1-TH17/CD38+ HLADR- % –0.201 –0.296 

CD8/TTM/CD38 MFI –0.206 –0.248 

CD4/TCM/NONTFH/TH17/CD38 % –0.207 –0.245 

CD8/TCM/CD38+ HLADR+ % –0.209 –0.212 

B/Double Neg/IL-21R+ % –0.21 –0.207 

CD4/TEFF/CD38 % –0.217 –0.282 

CD4/TCM/NONTFH/TH17/CD38+ HLADR- % –0.229 –0.381 

CD4/TN/ICOS % –0.237 –0.24 
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CD8/TEFF/CD38+ HLADR- % –0.238 –0.313 

pTFH/TH1-TH17/ICOS % –0.242 –0.291 

CD4/TCM/NONTFH/TH17/ICOS % –0.243 –0.243 

CD4/TCM/ICOS % –0.248 –0.217 

CD4/TCM/NONTFH/TH17/CD38 MFI –0.255 –0.257 

CD8/TEM/CD38+ HLADR- % –0.255 –0.339 

CD4/TCM/NONTFH/ICOS % –0.256 –0.204 

pTFH/TH1/CD38+ HLADR- % –0.257 –0.26 

CD4/TEM/ICOS % –0.263 –0.313 

CD4/TEM/CD38+ HLADR- % –0.269 –0.294 

CD4/TEFF/CD38+ HLADR- % –0.273 –0.351 

CD4/TCM/NONTFH/TH1/CD38 MFI –0.292 –0.262 

CD4/TCM/NONTFH/TH1/CD38 % –0.293 –0.221 

CD4/TCM/NONTFH/TH1/CD38+ HLADR- % –0.296 –0.292 

pTFH/TH2/ICOS % –0.298 –0.275 

CD4/TCM/NONTFH/TH2/CD38+ HLADR- % –0.304 –0.347 

CD8/TN/CD38 % –0.308 –0.28 

CD4/TN –0.31 –0.341 

pTFH/ICOS % –0.312 –0.244 

CD8/TEM/CD38 MFI –0.313 –0.225 

CD4/TN/CD38+ HLADR- % –0.317 –0.247 

CD4/TCM/NONTFH/TH2/CD38 % –0.317 –0.29 

CD4/TN/CD38 MFI –0.318 –0.21 

CD8/TCM/KI67 –0.34 –0.253 

pTFH/TH17/ICOS % –0.34 –0.336 

CD4/TCM/NONTFH/TH2/CD38 MFI –0.343 –0.29 

pTFH/TH17/CD38 % –0.347 –0.244 

CD8/TEM/CD38 % –0.35 –0.214 

CD4/TCM/NONTFH/CD38+ HLADR- % –0.351 –0.324 

CD8/TN/CD38+ HLADR- % –0.365 –0.38 

pTFH/TH1-TH17/CD38+ HLADR- % –0.367 –0.216 

pTFH/TH17/CD38+ HLADR- % –0.371 –0.328 

CD4/TCM/NONTFH/CD38 % –0.376 –0.234 

CD8/TN/CD38 MFI –0.38 –0.357 

CD4/CD38+ HLADR- % –0.386 –0.394 

CD4/TCM/NONTFH/CD38 MFI –0.388 –0.229 

CD4/CD38 % –0.396 –0.335 

pTFH/CD38+ HLADR- % –0.398 –0.294 

pTFH/TH2/CD38+ HLADR- % –0.402 –0.287 

CD8/CD38 % –0.402 –0.305 

CD4/TCM/CD38+ HLADR- % –0.419 –0.342 

CD4/CD38 MFI –0.422 –0.354 
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CD4/TCM/CD38 (%) –0.424 –0.216 

pTFH/TH17/CD38 MFI –0.428 –0.273 

pTFH/TH2/CD38 MFI –0.431 –0.235 

CD4/TTM/CD38+ HLADR- % –0.443 –0.337 

pTFH/CD38 MFI –0.453 –0.214 

CD8/CD38 MFI –0.464 –0.361 

CD4/TCM/CD38 MFI –0.465 –0.232 

CD8/CD38+ HLADR- % –0.469 –0.447 

CD8/TCM/CD38 % –0.537 –0.353 

CD8/TCM/CD38+ HLADR- % –0.555 –0.4 

CD8/TCM/CD38 MFI –0.559 –0.383 

 

 


