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INTRODUCTION 
 

Colorectal cancer (CRC) is the third most common 

malignant tumor. Although the morbidity and mortality 

of CRC have shown downward trends among the 

elderly, the morbidity of CRC has remained high among 

young adults [1]. In order to clarify the pathogenesis of 

CRC, the effects of glycosylation on tumorigenesis 
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ABSTRACT 
 

Cosmc mutations may cause abnormal O-glycosylation and result in Tn antigen expression. In the current 
study, it was discovered that proliferation and migration of Tn+ cells (Jurkat T and LS174T-Tn+ cells) with 
mutant Cosmc decreased after transfected Cosmc, and their sensitivity to apoptosis induced by 
Apo2L/TRAIL increased. Core 1-, 2-, and 3-derived O-glycans were absent in Tn+ cells. After Cosmc 
transfection, normal extended core 1-derived O-glycans appeared and were accompanied by increased  
T-synthase activity. Core 2-derived O-glycans appeared in transfected LS174T-Tn+ cells, and their structural 
types and levels were lower than those in LS174T-Tn− cells. Core 3-derived O-glycans were present only in 
LS174T-Tn− cells. The activity of C3GnT in LS174T-Tn+ cells was lower than that in LS174T-Tn− cells, and it 
was absent in Jurkat T cells. Cosmc transfection did not alter C3GnT activity or core 3-derived O-glycans in 
Jurkat T and LS174T-Tn+ cells. The results demonstrated that the composition and structure of O-glycans 
were different among various Tn+ cells, which not only affected cell malignant behavior but also modulated 
sensitivity to apoptotic stimuli. Thus, Cosmc transfection may effectively decrease the malignant behavior 
of Tn+ tumor cells and enhance their sensitivity to apoptosis when induced by Apo2L/TRAIL through 
modification of O-glycans. 
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have received increased attention, especially abnormal 

O-glycosylation resulting in the truncation of immature 

O-glycans Tn antigen (GalNAc-Ser/Thr) expressed on 

cell surfaces. This is thought to be related to the 

malignant transformation of normal human cells into 

CRC cells [2, 3]. Moreover, with the application of the 

cellular O-glycome reporter/amplification (CORA) 

method, exploring the effects of O-glycan modification 

on glycoprotein and cellular glycomics and how this 

correlates with biological function has become easier 

and more precise [4]. This is helpful to further clarify 

the correlation between O-glycosylation and tumor 

occurrence and development. 

 

Normally, T-synthase transfers galactose (gal) from a 

donor (UDP-gal) to GalNAc (Tn antigen) to form the 

core 1 structure (gal[β1-3] GalNAc-Ser/Thr, T 

antigen), which can be further sialylated and form a ST 

antigen via sialyltransferase ST3Gal-I activity in all 

cell types. Core 3 β1-3 N-acetylglucosaminyl-

transferase (C3GnT) also transfers GlcNAc from a 

donor (UDP-glcNAC) to GalNAc to form the core 3 

structure in gastrointestinal epithelia, which is further 

modified to form an extended complex core 3 structure 

that includes sialyl-LeX or sulfo-LeX on core 3 O-

glycans [5]. The Tn antigen is a common tumor-

associated carbohydrate antigen barely expressed in 

normal tissues, but it is expressed on the surfaces of 

many tumor cells (i.e., in gastric, colorectal, lung, 

ovarian, and breast cancers) [6–10]. The molecular 

mechanisms of Tn antigen expression are thought to be 

related to abnormalities in the molecular chaperone 

Core1β3 galactosyltransferase (T-synthase)-specific 

molecular chaperone (Cosmc). Decreased levels or loss 

of T-synthase activity resulting from Cosmc mutations 

eventually leads to abnormal O-glycosylation and 

expression of Tn antigen [11]. Moreover, knockdown 

of Cosmc may promote oncogenesis [12], since the 

high expression of Tn and sialylated Tn antigen (STn) 

is closely related to the clinical stage and prognosis in 

various tumor tissues [13]. 

 

Alterations in glycosylation patterns have been shown 

to be associated with cell apoptosis. O-glycosylation is 

critical for the stability of glucose-regulated protein 78 

(GRP78) that participates in endoplasmic reticulum 

(ER) stress, autophagy, and inhibited tumor cell 

apoptosis [14]. As a potential target drug for effective 

cancer treatment, Apo2L/TNF-related apoptosis-

inducing ligand (Apo2L/TRAIL), a cytokine in the TNF 

superfamily, has the ability to selectively induce tumor 

apoptosis [15]. It can also selectively kill cancer cells 

and cause depolarization, regulate the levels of reactive 
oxygen species (ROS), and interfere with mitochondrial 

and ER function [16]. Its receptors, also called death 

receptors (DR4 and DR5), are membrane glycoproteins 

containing O-glycosylation sites. They combine with 

Apo2L/TRAIL, resulting in the aggregation of Fas-

related death domains and caspase 8, and they also 

initiate cell apoptosis [17]. Related reports have 

confirmed that the O-glycosylation status of DR4 and 

DR5 alters the structure of DR4/5 on the surfaces of 

tumor cells through GalNAc transferase (GALNT14), 

thereby changing Apo2L/TRAIL-induced apoptosis 

[18]. Moreover, DR4 receptor-specific ligands are 

superior to DR5 ligands in triggering cancer apoptosis 

signals, and downregulation of DR4 leads to a decrease 

in the susceptibility of colorectal cancer cells to 

Apo2L/TRAIL [19]. So far, however, it is unclear 

whether changes in O-glycans result from abnormal 

Cosmc with biological behavior of tumor cells and 

whether this is caused by the sensitivity to apoptosis 

induced by Apo2L/TRAIL. 

 

In this study, T-synthase activity was detected using a 

previously described fluorescence method and 

C3GnT activity was detected using an original 

method innovated for this study. Changes in 

O-glycans were detected using cellular O-glycome 

reporter/amplification (CORA). Comparisons were 

made among proliferation, migration, and apoptosis 

induced by Apo2L/TRAIL in Jurkat T cells and 

LS174T-Tn+ cells isolated from CRC cell line LS174T 

that were untransfected and transfected with WtCosmc 

Tn+ cells harboring mutant Cosmc. It was found that 

transfected WtCosmc influenced the activity of 

T-synthase and core 1- and core 2-derived O-glycans, 

proliferation and migration of Tn+ tumor cells, and 

apoptosis induced by Apo2L/TRAIL; however, it did 

not change the activity of C3GnT and core 3-derived 

O-glycans. 

 

RESULTS 
 

Tn+ and Tn− cells coexisted in human CRC cell lines 

LS174T and transfected wild-type Cosmc inhibited 

Tn antigen expression 

 

Previous studies have shown that Cosmc mutation 

decreases the activity of T-synthase and results in Tn 

antigen expression. According to the expression of Tn 

antigen on the cell surface, tumor cells were divided 

into Tn+ and Tn− cells. Using flow cytometry, it was 

found that there were approximately 7.01% Tn+ cells in 

human CRC cell line LS174T (Figure 1A) and almost 

100% Tn+ cells in Jurkat T cells (Figure 1B). The Tn+ 

cells have been confirmed to exist in mutant Cosmc 

cells [20, 21] and in the absence of Cosmc protein. 

 

After stably transfecting a plasmid encoding the 

WtCosmc gene, Cosmc protein levels increased, and the 

percentage of Tn+ cells decreased significantly (Figure 
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1C–1F). There was a small amount of Cosmc protein in 

LS174T-Tn+ cells before and after transfection with 

Mock plasmid. This is potentially due to the separation 

of LS174T-Tn+ cells from LS174T containing residual 

Tn− cells. Although transfection efficiency is not 100%, 

the successfully transfected cells possessed green 

fluorescent labels (EGFP) and no longer expressed Tn 

antigen (Figure 1G and 1H). 

 

Tn+ cells showed a stronger ability to proliferate and 

migrate than corresponding Tn− cells, which was 

downgraded by WtCosmc transfection 

 

The Tn antigen, as an O-glycoprotein with truncated 

O-glycans expressed on its cell surface, can influence 

cell-cell interactions and affect the biological behavior 

of Tn+ cells. The RTCA showed that proliferation and 

migration of LS174T-Tn+cells were higher than those 

of corresponding Tn− cells. After transfection with 

WtCosmc, the proliferation and migration of LS174T-

Tn+ cells declined significantly (Figure 2A–2F). Since 

Jurkat T cells were non-adherent and could not be 

analyzed by RTCA, their proliferation and migration 

were evaluated by CCK8 and transwell assays, 

respectively. The results showed that the ability of 

Jurkat T cell proliferation and migration also decreased 

after transfection with WtCosmc (Figure 2G and 2H). 

 

Sensitivity to TRAIL-induced apoptosis for Jurkat 

T cells and LS174T-Tn+ cells was enhanced after 

transfection with WtCosmc 

 

Loss of T-synthase activity in tumor cells results in the 

expression of Tn antigen. Cosmc promoter methylation 

 

 
 

Figure 1. Transfection WtCosmc in LS174T cells and Jurkat T cells. (A) The percentage of Tn+ cells in LS174T cells and sorted LS174T-

Tn+and Tn− cells by magnetic bead separation. (B) The percentage of Tn+ cells in Jurkat T cells. (C) Western blot analysis of Cosmc expression 
in LS174T-Tn+, LS174T-Tn+-Mock, and LS174T-Tn+-Cosmc cells. (D) Cosmc expression in Jurkat T, Jurkat T-Mock, and Jurkat T−Cosmc cells. (E) 
FCM analysis of the percentage of Tn+ cells in LS174T-Tn+-Mock and LS174T-Tn+-Cosmc cells. (F) The percentage of Tn+ Cells in Jurkat T-Mock 
and Jurkat T-Cosmc cells. (G) WtCosmc and Mock transfection cells with green fluorescence protein in LS174T-Tn+ cells as detected by 
immunofluorescence microscopy. (H) WtCosmc and Mock transfection cells with green fluorescence in Jurkat T cells (scale bars = 100 µm). 
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has been shown to decrease the levels of Cosmc protein 

and increase the expression of Tn and STn antigens in 

breast cancer. Reduced methylation can inhibit cell 

growth, migration, and invasion, promote apoptosis in 

breast cancer cells in vitro, and restrain tumor growth 

in vivo [22]. Our results showed that apoptotic rates of 

LS174T-Tn+ cells were lower in LS174T-Tn− cells 

(Figure 3A and 3B) and increased after transfection 

with WtCosmc. Similarly, Jurkat T cells with lower 

apoptosis rates also increased after WtCosmc 

transfection; however, apoptosis rates in Tn+ cells 

before and after transfection with Mock plasmid 

showed no significant changes (Figure 3C–3F). These 

changes may indicate that normal Cosmc activity 

contributes to cell apoptosis. 

In addition, research has confirmed that the 

O-glycosylation degree of DR4 and DR5 alters 

Apo2L/TRAIL-induced apoptosis [18]. Thereby, the 

increased apoptosis in transfected WtCosmc cells was 

induced by Apo2L/TRAIL, which suggests that Cosmc 

transfection may alter the homo-oligomerization of DR4 

and DR5. Interestingly, Apo2L/TRAIL may induce 

apoptosis of Jurkat T, Jurkat T-Mock, Jurkat T-Cosmc, 

LS174T-Tn+, LS174T-Tn+-Mock, LS174T-Tn+-Cosmc, 

and LS174T-Tn− cells in a dose-dependent manner 

(Figure 3G and 3H). 

 

By contrast, apoptosis rates in Jurkat T-Cosmc cells and 

LS174T-Tn+-Cosmc cells were higher than those in 

Jurkat T-Mock cells and LS174T-Tn+-Mock cells. 

 

 
 

Figure 2. Cosmc transfection downregulated Tn+ cell proliferation and migration. (A–F) Proliferation and migration in LS174T-Tn− 

and LS174T-Tn+ cells before and after transfection with WtCosmc or Mock were detected by RTCA. (A) Proliferation curve, (B) Migration 
curve, (C) Cell index of proliferation at typical timepoints (30 h and 60 h), (D) Slopes for proliferation at 0–60 h, (E) Cell index of migration at 
typical timepoints (12 h and 24 h), and (F) slopes for migration at 0–24 h. (G) The proliferation ability of Jurkat T cells transfected with 
Cosmc or Mock was detected by CCK-8 assay at different timepoints (15 h, 30 h, 45 h, and 60 h). (H) The migration of Jurkat T cells 
transfected with Cosmc or Mock was detected using a transwell assay for 24 h. Data shown are the mean ± SD of three independent 
experiments (*P < 0.05, **P < 0.01, ***P < 0.001). 
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Apoptosis rates in both Tn+ cells before and after 

transfection with Mock plasmid showed no significant 

changes. Meanwhile, apoptosis rates of LS174T-Tn+, 

LS174T-Tn+-Mock, and LS174T-Tn+-Cosmc cells in 

100 ng/mL Apo2L/TRAIL (in addition to Jurkat T, 

Jurkat T-Mock, and Jurkat T-Cosmc cells in 20 ng/mL 

Apo2L/TRAIL) increased with extensions in treatment 

time (6 h, 12 h, and 18 h; Figure 3I and 3J). These 

results suggest that the overexpression of Cosmc may 

alter the homo-oligomerization of DR4/DR5 and 

increase the sensitivity of Tn+ cells to apoptosis when 

induced by Apo2L/TRAIL. 

WtCosmc transfection increases T-synthase activity 

and extends core 1- and core 2-derived O-glycans in 

Tn+ cells 

 

Cosmc is a molecular chaperone of T-synthase and is 

necessary for normal T-synthase activity, which 

participates in the correct extension of core 1-derived 

O-glycans. After transfection with WtCosmc, the 

activity of T-synthase was enhanced obviously (Figure 

4A). Additionally, core 1-derived O-glycans (m/z: 

955.4, 1316.6) appeared in Jurkat-T-Cosmc and 

LS174T-Tn+-Cosmc cells. Core 2-derived O-glycans 

 

 
 

Figure 3. Apoptosis of Tn+ cells analysis with FCM before and after treatment with WtCosmc and Apo2L/TRAIL. (A–B) 
Apoptosis rates in LS174T-Tn+ and LS174T-Tn− cells. (C–D) Apoptosis rates in LS174T-Tn+-Mock and LS174T-Tn+-Cosmc cells. (E–F) Apoptosis 
rates in Jurkat T, Jurkat T-Mock, and Jurkat T-Cosmc cells. (G) Apoptosis of LS174T-Tn− and LS174T-Tn+ cells after exposure to Apo2L/TRAIL 
at different concentrations (10 ng/mL, 50 ng/mL, and 100 ng/mL) before and after transfection with WtCosmc or Mock. (H) Apoptosis of 
Jurkat T cells after exposure to Apo2L/TRAIL at different concentrations (10 ng/mL, 20 ng/mL, and 30 ng/mL) before and after transfection 
with WtCosmc or Mock. (I) The apoptosis of LS174T-Tn− and LS174T-Tn+ cells were exposed to Apo2L/TRAIL at 100 ng/mL and different 
timepoints (6 h, 12 h, and 18 h) before and after transfection with WtCosmc or Mock. (J) Apoptosis of Jurkat T cells after exposure to 
Apo2L/TRAIL at 20 ng/mL and different timepoints (6 h, 12 h, and 18 h) before and after transfection with WtCosmc or Mock. Data shown 
are the mean {plus minus} SD of three independent experiments (***P < 0.001). 
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(m/z: 1217.4, 1392.6, and 1578.1) based on core 1 

structure were presented in LS174T-Tn+-Cosmc cells 

rather than in Jurkat T-Cosmc cells. This indicates that 

Jurkat T cells may have lower or lack of C2GnT 

activity. 

 

Compared to LS174T-Tn− cells, levels of core 2-derived 

O-glycans (m/z: 1217.6, 1391.6, and 1578.7) in 

LS174T-Tn+-Cosmc cells were lower, and two types of 

O-glycans (m/z: 1565.7 and 1940.0) were absent 

(Figure 4B and 4C). These differences may perhaps be 

due to core 1-derived O-glycans resulting from Cosmc 

transfection or glycosyltransferase (C2GnT, 

fucosyltransferase and α-2,3 sialyltransferase) the 

activity was insufficient in LS174T-Tn+-Cosmc cells. It 

should be noted that there were low levels of core 2-

derived O-glycans (m/z: 1217.6) in LS174T-Tn+ and 

LS174T-Tn+-Mock cells, which may be related to a few 

residual Tn− cells. 

 

Importantly, normal O-glycosylation promoted ligand-

stimulated clustering of DR4 and DR5, which affected 

Apo2L/TRAIL-induced apoptosis in tumor cells [18]. 

Therefore, the increased sensitivity to apoptosis induced 

by Apo2L/TRAIL in Cosmc-transfected cells may be 

correlated with proper extension of O-glycans on the 

cell surface. 

 

Cosmc transfection did not change activity of 

C3GnT and core 3-derived O-glycans 

 

Extension of O-glycans is a complex process and 

requires the participation of glycosyl-transferase. The 

formation of core 1 structure requires T-synthase and

 

 
 

Figure 4. Cosmc transfection increased the activity of T-synthase and changed core 1− and core 2-derived O-glycans in Tn+ 
cells. (A) The activity of T-synthase was detected using a fluorescence method in LS174T-Tn−, LS174T-Tn+, and Jurkat T cells before and 
after transfection with WtCosmc or Mock. (B) Core 1- and core 2-derived O-glycans in Jurkat T cells before and after transfection with 
WtCosmc or Mock were analyzed using CORA and MALDI-TOF-MS. (C) Core 1− and core 2-derived O-glycans in LS174T-Tn− and LS174T-Tn+ 
cells before and after transfection with WtCosmc or Mock (**P < 0.01, ***P < 0.001). 
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Tn as substrates, and core 2 structure requires C2GnT 

and core 1-derived O-glycans as substrates. The 

formation of core 3 structure requires C3GnT, which 

mainly exists in gastrointestinal epithelia, and Tn as 

substrates. Using the new method presented here 

(Figure 5A), it was found that the activity of C3GnT in 

Jurkat T cells was slightly lower in LS174T-Tn+ cells 

than in LS174T-Tn− cells, which did not significantly 

change after transfection with WtCosmc (Figure 5B). 

Core 1-derived O-glycans (m/z: 955.4, 1316.6) 

appeared in Jurkat-T-Cosmc, LS174T-Tn+-Cosmc, and 

LS174T-Tn− cells. In contrast, core 3-derived O-glycans 

(m/z: 996.4) were only present in LS174T-Tn− cells 

(Figure 5C and 5D). 

 

 
 

Figure 5. Cosmc transfection did not influence the activity of C3GnT and core 3-derived O-glycans in Tn+ cells. (A) The 
procedure of fluorescence detection of C3GnT activity. (B) The activity of C3GnT was detected using a fluorescence method in LS174T-Tn−, 
LS174T-Tn+, and Jurkat T cells before and after transfection with WtCosmc or Mock. (C) Core 3-derived O-glycans in Jurkat T cells before and 
after transfection with WtCosmc or Mock were analyzed using CORA and MALDI-TOF-MS. (D) Core 3-derived O-glycans in LS174T-Tn− and 
LS174T-Tn+ cells before and after transfection with WtCosmc or Mock (***P < 0.001). 
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DISCUSSION 
 

Protein O-glycans play important physiological 

functions in the formation of blood vessels and 

lymphatic vessels, cell adhesion, and information 

transmission [23–25]. O-glycosylation not only 

influences malignant transformation of endothelial cells 

[26] but also affects tumor cell characteristics that 

correlate with tumor-associated sugar antigens (i.e., Tn 

and STn antigens). In gastrointestinal tumors, the 

expression of STn and Tn antigens is regarded as a 

marker of poorly differentiated adenocarcinoma and 

mucinous carcinoma, and it is related to tumor 

aggressiveness, high proliferation, metastasis, and poor 

clinical prognosis [27, 28]. Tumor cells expressing STn 

antigen can reduce adhesion, enhance migration ability, 

and promote metastasis and malignancy [29]. Mucin 

antigens with Tn and STn epitopes are often expressed 

in advanced tumor stages. The presented results indicate 

that Jurkat T and LS174T-Tn+ cells express Tn antigens 

and have strong proliferation and migration abilities 

(Figure 2). The reason for these conclusions is that their 

O-glycans are very simple and show an absence of 

extension in core 1-derived O-glycans. 

 

The other important role of O-glycosylation is regulation 

of cell growth through apoptosis pathways. Polypeptide 

N-acetylgalactosaminyltransferases 18 (ppGalNAc-T18) 

silencing in cells decrease O-glycosylation levels and 

activate ER stress, leading to apoptosis [30]. Moreover, 

T-synthase is a key enzyme catalyzing the formation  

of T antigen and ensures the normal progress of 

O-glycosylation [31, 32]. The decrease or deletion of 

T-synthase activity resulting from Cosmc mutation caused 

abnormal O-glycosylation, which led to Tn and STn 

antigen expression. Thus, WtCosmc plasmid transfection 

was able to restore T-synthase activity and inhibit the 

expression of Tn antigen (Figure 1E and 1F, Figure 4A). 

 

The results also showed that apoptotic rates of LS174T-

Tn+ cells (with high levels of proliferation and 

migration abilities) were lower than LS174T-Tn− cells 

(Figure 3A and 3B). By contrast, Cosmc transfection 

reduced the proliferation and migration ability of Tn+ 

cells and promoted apoptosis (Figure 2, Figure 3C–3F). 

This demonstrated that high levels of proliferation and 

migration were potentially correlated with low 

apoptosis activity. The truncated O-glycans (especially 

Tn antigens on the cell surface) also contributed to cell 

proliferation, migration, and anti-apoptosis activity. 

Complete glycosylation and normal O-glycans 

extension through transfection with Cosmc may inhibit 

certain malignant behaviors of tumor cells. 

 

Regarding apoptosis, the structure of receptor and its 

ability to combine with corresponding ligands play a 

decisive role. In recent years, Apo2L/TRAIL has 

become a research focus due to its apoptosis-inducing 

effects on tumor cells and lack of toxicity to normal 

cells. After Apo2L/TRAIL binds to the extracellular 

domain of death receptors (DRs), the intrinsic apoptosis 

signal pathway is initiated, which causes the activation 

of caspase 8 through the death-inducing signaling 

complex (DISC) [33]. The activated caspase 8 further 

induces apoptosis in two manners. First, it can activate 

caspases-3, -6, and -7, eventually resulting in apoptosis. 

By contrast, it also can cleave Bcl-2 interacting domain 

(Bid) into truncated Bid (tBid), which then triggers the 

intrinsic apoptotic pathway by activation of caspase-9 

and caspase-3 [34, 35]. 

 

Due to the fact that receptors DR4 and DR5 contain 

O-glycosylation sites, the glycosylation status and level 

of DR4/DR5 have effects on apoptosis. The presented 

results showed that WtCosmc transfection effectively 

enhanced the sensitivity of Tn+ cells to apoptosis when 

induced by Apo2L/TRAIL in time- and dose-dependent 

manners (Figure 3G–3J). It was speculated that 

incomplete glycosylation could cause the extracellular 

domain of DR4 and DR5 to not effectively bind with 

Apo2L/TRAIL. The results of CORA showed that the 

O-glycan expression profiles and structures were 

different in Tn+ cells before and after treatment with 

WtCosmc and Tn− cells. Additionally, Jurkat T-Cosmc, 

LS174T-Tn+-Cosmc, and LS174T-Tn− cells expressed 

the core 1-derived O-glycan (m/z: 955.4 and 1316.6). 

Specifically, the structure of core 1 O-glycan (m/z: 

1316.6) is sialyl gal-galNAc (i.e., ST antigen on the cell 

membrane surface may be helpful to apoptosis). This is 

consistent with the finding that DR4/5 carrying the ST 

antigen is more sensitive to Apo2L/TRAIL than cells 

with Tn/STn antigens [21]. Moreover, the inhibitor of 

glycosylation (benzyl-α-GalNAc) blocked oridonin plus 

TRAIL-induced apoptosis. Additionally, there are some 

core 2-derived O-glycan structures with glcNAc in 

LS174T-Tn+-Cosmc (m/z: 1217.6, 1391.6, and 1578.7) 

and LS174T-Tn− cells (m/z: 1217.6, 1391.2, 1565.7, 

1578.7, and 1940.0). GlcNAc promotes the clustering 

and activation of DR5 by improving O-glycosylation, 

thereby enhancing the apoptosis induced by TRAIL and 

recruiting the protease caspase-8, which plays a role in 

the initiation of apoptosis [36]. 

 

In fact, Apo2L/TRAIL contains different receptors, and 

many receptors are decoy receptors, such as DcR2. The 

expression of Tn and STn antigens can prevent the 

homo-oligomerization of membrane glycoproteins 

DR4/DR5. They can also promote hetero-

oligomerization between DR5 and DcR2 lacking the 
death domain, thereby reducing the death signal of DR5 

[21]. Studies have shown that Cosmc transfection in 

Jurkat T and LS174T-Tn+ cells do not affect the 
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expression levels of DR4 and DR5, but could promote 

homo-oligomerization of DR4/DR5 by the extended 

sialyl core 1 O-glycans. The normal O-glycosylated 

DR5 in Jurkat T-Cosmc cells was more stable than the 

DR5 carrying Tn antigen [21], and the complex 

O-glycosylation of DR4 in LS174T-Tn+-Cosmc cells 

was more stable than DR4 carrying Tn and STn 

antigens [37, 38]. The presented results indicated that 

core 1-derived O-glycans (m/z: 955.4, 1316.6) appeared 

in Jurkat-T-Cosmc and LS174T-Tn+-Cosmc cells, rather 

than in Jurkat T and LS174T-Tn+ cells. Although there 

has been no identification of levels of core 1-derived 

O-glycans in DR4 or DR5, this does not deny that ST 

antigen corrects the structures of DR4 and DR5. 

 

Except for core 1- and core 2-derived O-glycans, core 

3-derived O-glycan (m/z: 996.4) was only present in 

LS174T-Tn− cells. Core 3-derived O-glycans are a 

major type of O-glycans and primarily expressed in the 

colon, which comprises part of the intestinal mucosal 

barrier. C3GnT-deficient mice have been shown to be 

highly susceptible to experimental models of colitis 

and colorectal adenocarcinoma [39]. Interestingly, 

compared with Jurkat T, LS174T-Tn+, Jurkat T-Cosmc, 

and LS174T-Tn+-Cosmc cells, LS174T-Tn− cells 

displayed the lowest ability to proliferate and migrate 

and showed strong apoptosis ability. This suggests that 

the malignant activity of tumor cells may be controlled 

by the complexity of O-glycans, despite the fact that the 

role of core 3-derived O-glycans in malignant behavior 

of tumor cells is still poorly understood. Since the 

activity of C3GnT showed no significant differences 

before and after transfection with WtCosmc in Jurkat T 

and LS174T-Tn− cells, it was concluded that Cosmc 

transfection does not affect C3GnT activity and core 3 

O-glycan extension. The low C3GnT activity in 

LS174T-Tn+ and LS174T-Tn+-Cosmc cells indicated 

that they were unable to form core 3-derived O-glycans. 

To be sure, compared to traditional experiments, the 

novel fluorescence method used for C3GnT activity 

detection is simpler and faster and prevents contact with 

radioactive substances. It may serve as a highly suitable 

method to explore the activity of C3GnT. 

 

In summary, this study clarified that WtCosmc plasmid 

transfection significantly inhibits the malignant behavior 

of tumor cells and enhances Apo2L/TRAIL-induced 

apoptosis by correcting abnormal O-glycosylation. In 

turn, this changed the structure of DRs on the cell 

surface and contributed to DR efficiency binding with 

Apo2L/TRAIL. These preliminary results confirm that 

the extension of O-glycans on the cell membrane surface 

by modification of Cosmc cell surface O-glycosylation 
not only provides new targets for tumor treatment but 

also provides a novel experimental and theoretical basis 

for rational clinical treatment of tumors. 

MATERIALS AND METHODS  
 

Cell lines and cell sorting 

 

Human colon cancer cell line LS174T (Procell CL-

0145) and Jurkat T cells (Clone E6-1, Procell CL-0129) 

were kindly provided by Procell Life Science and 

Technology Co., Ltd. (Wuhan, China). The cells were 

cultured in the high-glucose Dulbecco’s modified 

Eagle’s medium (DMEM), RPMI-1640 medium 

(Hyclone) plus 10% fetal bovine serum (FBS, Gibco, 

Grand Island, NY, USA), and 100 U/mL penicillin-

streptomycin (Solarbio, Beijing, China) at 37°C and 5% 

CO2. LS174T-Tn+ and Tn− cells were separated from 

LS174T cells using immune magnetic beads according 

to the literature [40]. 

 

Primary mouse anti-Tn mAb (IgM, provided by Dr. 

Tongzhong Ju at Emory University School of Medicine 

in Atlanta, GA, USA) was used. Finally, anti-mouse 

IgM MicroBeads (130-047-301) were purchased from 

Miltenyi (Bergisch Gladbach, Germany). Sorted cells 

were continuously cultured and used for subsequent 

experiments. 

 

Cosmc transfection 

 

The vectors of GV367-EGFP-Cosmc (WtCosmc, 

C1GalT1C1 [16164-4]: GAGGATCCCCGG-

GTACCGGTCGCCACCATGCTTTCTGAAAGCAGC

TCC) and Mock were constructed by Genechem Co., 

Ltd. (Shanghai, China). Tn+ cells (1 × 105) were 

transfected with WtCosmc (5 × 108 TU/mL) and Mock 

(5 × 108 TU/mL) according to the manufacturer’s 

instructions. Cells were transfected with green 

fluorescent protein and isolated after purification with 

5 μg/mL puromycin (Sigma-Aldrich) for 7 days. Then, 

Tn antigen was detected using flow cytometry (BD 

Biosciences, NJ, USA). 

 

Flow cytometry and Tn expression 

 

Cells (5 × 105) were resuspended in 100 μL of 

phosphate-buffered saline (PBS) and incubated with 

mouse anti-Tn mAb (IgM) at 4°C for 1 hour (h). Then, 

cells were incubated with APC-labelled goat anti-mouse 

IgM (Santa Cruz, CA, USA) for 0.5 h. Finally, cells 

were analyzed by flow cytometry after washing twice 

with PBS. 

 

Western blotting 

 

Cells were lysed in RIPA lysis buffer containing 1 mM 

phenylmethylsulfonyl fluoride (PMSF, Solarbio Co., 

Ltd. Beijing, China) at 4°C for 30 minutes (min), then 

centrifuged at 16,000 × g for 15 min at 4°C to obtain the 
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whole cell extract. Protein concentration in the extract 

was determined with a bicinchoninic acid (BCA) assay 

kit (Thermo Fisher Scientific, Waltham, MA, USA). 

Equal quantities of denatured protein were loaded and 

separated by 10% sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE, 

Beyotime, Shanghai, China) and transferred onto 

polyvinylidene fluoride (PVDF) membranes (Pall, NY, 

USA), then probed with primary antibodies (Rabbit 

anti-Human Cosmc: Proteintech, Rosemont, IL, USA, 

19254-1-AP, 1:2000) and horseradish peroxidase 

(HRP)-conjugated secondary antibodies. Further 

incubation was performed using an enhanced 

chemiluminescence (ECL) kit (Thermo Fisher 

Scientific) and exposed after rinsing with TBST (T:Tris; 

B:Buffer; S:Solution; T:Tween). The protein bands 

were visualized using a chemiluminescence detection 

system (ChemisCope, UK). Finally, α-Tubulin was used 

as a protein loading control. 

 

Cell proliferation assay 

 

The proliferation of Jurkat T cells was detected using a 

CCK-8 assay. Cells (3 × l04/well) were seeded in 96-

well plates and cultured for 15 h, 30 h, 45 h, and 60 h. 

Cells were then added to wells (10 μL of CCK-8 reagent 

per well [Biosharp, Hefei, China]) and continuously 

cultured for 4 h. The OD450 value was measured using a 

microplate reader (Tecan, M200 Pro, Switzerland). 

 

Proliferation of LS174T cells (LS174T-Tn−, LS174T-

Tn+, LS174T-Tn+-Mock, and LS174T-Tn+-Cosmc) was 

observed at 5 min intervals continuously from 0 h to 

60 h using a real-time cell DP Analyzer (RTCA, 

xCELLigence, ACEA Biosciences, CA, USA). Cells (2 

× l04/well) in 100 μL of DMEM medium supplemented 

with 10% FBS and 1% penicillin-streptomycin were 

seeded in the E-plate and incubated at 37°C and 5% 

CO2. Cell index (CI) was recorded, which reflects 

changes in cell number at each timepoint. The rate of 

cell growth was calculated based on the slope of the line 

between two given timepoints. 

 

Cell migration assay 

 

Migration of Jurkat T cells was detected using a 

transwell assay. Cells (2 × 104/well) were seeded into 

the 8-µm pore transwell chamber (Corning, NY, USA) 

and cultured for 24 h. Cells that migrated outside the 

transwell membrane were collected and washed twice 

with PBS (1200 rpm, 4°C, 10 min). Cell suspensions 

were replaced in 96-well plates, added to 50 uL of 

CellTiter-Gloreagent (Promega, WI, USA), and 

incubated at room temperature for 10 min. The 

luminescence from each well was recorded by a 

microplate reader. The migration of LS174T cells was 

analyzed using a RTCA. The lower chamber of the CIM 

plates received DMEM supplemented with 10% FBS 

and 1% penicillin-streptomycin (165 μL/well), while the 

upper chamber received DMEM without FBS (30 

μL/well). Then, cell suspensions (3 × 104/well in 100 

µL of DMEM without FBS) were added into the upper 

chamber and incubated at 37°C and 5% CO2. The cell 

index (CI) values were recorded at 5 min intervals over 

a 24 h period and used to analyze the dynamic 

migration of cells in real-time. 

 

Apo2L/TRAIL-induced cell apoptosis 

 

For cell apoptosis induced by Apo2L/TRAIL, cells were 

either left untreated or treated with different doses of 

Apo2L/TRAIL (SinoBio Inc., Beijing, China). The 

doses of Jurkat T cells were as follows: 10 ng/mL, 20 

ng/mL, and 30 ng/mL. For LS174T cells, doses were as 

follows: 10 ng/mL, 50 ng/mL, and 100 ng/mL. Cells 

were cultured for 12 h or treated with the same dosage 

of Apo2L/TRAIL (dose for Jurkat T cells = 20 ng/mL, 

dose for LS174T cells = 100 ng/mL) and cultured for 

different durations of time (6 h, 12 h, and 18 h). 

Apoptosis was evaluated by annexin V-APC/PI 

(Thermo Fisher Scientific, Waltham, MA, USA) 

staining according to the manufacturer’s instructions. 

Cells were resuspended in 1× binding buffer at 5 × 

106/mL, then 5 μL of annexin V and 5 μL of propidium 

iodide (PI) were added. Finally, cells were incubated for 

15 min at room temperature. Apoptosis was analyzed 

using a flow cytometer (BD Biosciences, NJ, USA). 

 

Cytoplasmic protein extraction and T-synthase 

activity assay 

 

Cytosolic proteins were extracted from approximately 1 

× 107 cells using nuclear and cytoplasmic extraction 

reagents (Pierce, Dallas, TX, USA) according to the 

instructions. Protein levels were quantified using a BCA 

protein assay kit (Pierce). T-synthase activity was 

measured using a fluorescent assay as described 

previously [41]. 

 

Core 3 β1-3 N-acetylglucosaminyltransferase 

(C3GnT) activity assay 

 

During the synthesis process of core 3-derived O-glycans, 

C3GnT serves as a key enzyme. However, current 

methods using radioactive substrates to assay its activity 

are more complex. Therefore, a novel method was 

developed to detect the activity of C3GnT according to T-

synthase activity. This is due to C3GnT utilizing GalNAc-

α-4-(MU) as its acceptor substrate and UDP-GlcNAc 
(Sigma) as a donor to form GlcNAcβ1-3GalNAc-α-(4-

MU). The reaction product is cleaved by O-glycosidase to 

release free 4-MU with high fluorescence. The 
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fluorescence intensity of 4-MU represents the activity of 

C3GnT product. The experimental procedure is similar to 

that of detecting T-synthase activity [41]. The procedure 

is performed as follows. 

 

A total volume of 50 μL of master mixes containing 1 

mM GalNAc-α-4-methylumbelliferone (GalNAc-α-4-

MU, Santa Cruz), 0.5 mM UDP-Gal (Calbiochem, 

Darmstadt, Germany), 0.1% Triton X-100 (Solarbio), 

20 mM MnCl2 (Beilian, Tianjin, China), 800 units of 

O-glycosidase (New England Biolabs, Ipswich, MA, 

USA), and 50 mM MES-NaOH buffer (pH = 6.8, 

Sigma, Covington, LA, USA) was placed in a 96-well 

black plate. Then, 50 μg of cytoplasmic protein was 

added to each well and incubated at 37°C for 1 h. The 

fluorescence intensity was assayed using a fluorimeter 

(Ex (Excitation Wavelength) = 255 nm/Em (Emission 

Wavelength) = 460 nm) after 100 μL of Glycine-NaOH 

(pH = 10.0, Solarbio) was added to stop the reaction. 

The fluorescence intensity of 4-MU represents the 

activity of C3GnT. A standard curve was prepared with 

4-MU [1 pmol = 50 relative fluorescence units (RFUs)], 

and C3GnT activity was calculated based on 

fluorescence intensity [41]. 

 

Profiles of O-glycan as detected by CORA 

 

As previously described [4], CORA was used to analyze 

the profiles of O-glycans. Approximately 3 × 105 cells 

were incubated for 3 days with the compound Bn-α-

GalNAc (Dr. Tongzhong Ju, Emory University, Atlanta, 

GA, USA) before collection of media. Bn-O-glycans 

were purified and separated from flowthrough using a 

Sep-Pak C18 3 cc cartridge (Waters, Milford, MA, 

USA) after centrifugation. The O-glycans were eluted 

with organic solvents, freeze-dried, and permethylated. 

Extracted polysaccharides were analyzed using matrix-

assisted laser desorption/ionization time-of-flight 

(MALDI-TOF) mass spectrometry (Agilent, Santa 

Clara, CA, USA). 

 

Statistical analyses 

 

All experiments were repeated three times. Data were 

expressed as mean ± standard deviation (mean ± SD). 

Student’s t-tests were used to compare the significant 

differences between experimental groups. The statistical 

analysis was performed using GraphPad Prism 8.0 and 

SPSS 22.0 software. Categorical data were analyzed 

using the chi-square test. Statistical significance was 

defined as P < 0.05. 
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