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INTRODUCTION 
 

Although malignant metastatic melanoma accounts for 

less than 5% of skin tumors, it causes the highest 

number of skin cancer-related deaths [1]. Thus, 

choosing the best treatment options is important. In 

recent years, an in-depth understanding of the 

pathogenesis of metastatic melanoma and the 
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ABSTRACT 
 

Background: Metastatic melanoma has poor therapeutic response and may present resistance to 
chemotherapy or immunotherapy. Significant differences are observed in the survival time of patients with 
metastatic melanoma based on the administration of chemotherapy or immunotherapy; thus, we have 
explored the important role of specific differential genes between the two therapies in their effect on 
treatment response in melanoma. 
Methods: Metastatic melanoma gene expression data (RNAseq, mutation and methylation) and patient clinical 
information were downloaded from The Cancer Genome Atlas database and grouped according to 
chemotherapy or immunotherapy. The differentially expressed genes of the two groups were further screened 
for signature genes through a protein–protein interaction network and Lasso-Cox regression model. Then, 
differences in the treatment response, overall survival, mutation and methylation of characteristic genes were 
compared. Finally, western blot and real-time qPCR technology were used to detect the expression differences 
of the signature genes in metastatic melanoma tumor tissues in patients undergoing chemotherapy and 
immunotherapy. 
Results: The overall survival of the chemotherapy-based treatment group was significantly higher than that of 
the immunotherapy-based group. The immune infiltration level of immature dendritic cells (DCs) in the 
chemotherapy group was significantly higher than that in the immunotherapy group. Finally, seven signature 
genes were selected: CCKBR, KCNJ11, NMU, MMP13, ITGA10, IGFBP1 and CEACAM5. The results of these 
signature genes were significantly differentiated between the chemotherapy and immunotherapy groups in 
terms of overall survival and disease progression in response to treatment. In addition, differences in the 
expression of these genes were verified by western blot and real-time qPCR. 
Conclusion: In this study, significant differences in the expression of signature genes were verified. The findings 
indicate that immature DCs with potential application value should be considered and high mutation sites of 
signature genes should be identified to reduce the occurrence of treatment resistance. 
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importance of the anti-tumor immune response and 

regulatory mechanism have provided melanoma 

patients with new treatment opportunities, which 

include targeted drug therapy and immune checkpoint 

inhibitors [2]. Nonetheless, chemotherapy remains the 

primary treatment for metastatic melanoma, and the 

inherent resistance of melanoma cells and incomplete 

response to chemotherapy drugs are major problems 

associated with melanoma treatment [3]. 

 

Many studies have explained the mechanism of gene 

mutation and methylation modification in the process of 

melanoma chemotherapy resistance [4, 5]. However, 

there are many artificial interference factors in the 

design of these studies, which cannot replicate the 

actual changes in tumors that occur in the natural 

environment and the final outcome of patients. There is 

also a lack of relevant reports on metastatic melanoma 

chemoresistance-related genes. Studies have shown that 

while chemotherapy kills tumor cells, it also stimulates 

the surrounding normal cells to release a chemical 

substance that can stimulate tumor cell growth and 

eventually lead to treatment resistance [6–8]. Therefore, 

exploring differences in gene expression in metastatic 

melanoma between chemotherapy and immunotherapy 

is not only helpful for improving our understanding of 

chemotherapy or immunotherapy resistance genes but 

also has guiding significance for the research and 

development of targeted therapy drugs. 

 

MATERIALS AND METHODS 
 

Gene expression data acquisition and screening 

 

Data were collected according to the rules of public data 

use on official websites, and all normalized data were 

collected from The Cancer Genome Atlas data center 

(TCGA, https://portal.gdc.cancer.gov). Patients were 

screened based on the administration of chemotherapy 

(e.g., dacarbazine, cisplatin, etc.,) and immunotherapy 

(e.g., IL-2, interferon, etc.,). The exclusion criteria 

included samples with BRAF, NRAS, NF1, and KIT 

gene mutations and patients who were lost to follow-up. 

 

Differential gene analysis and screening 

 

After completing the grouping of samples 

(chemotherapy and immunotherapy), the fpackage 

(version 1.24) of R software (version 4.02, R 

Foundation for Statistical Computing, Vienna, Austria) 

was used to analyze the differences in gene expression 

between the two groups. The filter conditions for 

significant differences in gene expression were |log2FC| 

>1.5 and P < 0.05. Then, the STRING protein–protein 

interaction database was used to screen the key 

differential genes [9], and the filtering conditions in the 

R package STRINGdb (version 2.30) were set to score 

>500 and connectivity >2. 

 

Finally, the key screening method, Lasso regression and 

univariate Cox prognostic model were used. Due to the 

collinear relationship between the expression of certain 

genes, the constructed prognostic model exhibited 

overfitting. Lasso’s penalty coefficient (λ) was used to 

filter out the collinearity factors, and only the most 

representative factors were retained for the 

establishment of the prognosis model. The degree of 

Lasso regression complexity adjustment was controlled 

by the parameter λ. A greater value of λ corresponds to 

a greater penalty to obtain a model with fewer variables 

from a complex model. In this study, the parameter λ 

value was set to 1, and the cutoff value was set to 0.6 in 

the R package glmnet (version 4.02). 

 

Analysis of the significance of signature genes 

 

This study focuses on the biological significance of the 

final screening of key genes and the difference in 

responsiveness to chemotherapy and immunotherapy. In 

addition, the mutation status and methylation changes of 

the signature genes were also influencing factors of 

chemotherapy tolerance. According to the clinical 

information, the chemotherapy and immunotherapy 

patients were matched based on the barcodes of patient 

samples in TCGA database. Therefore, this study also 

analyzed data on the mutation status, methylation 

changes and site information of signature genes, and all 

the data were downloaded from the TCGA database. R 

packages maftools [10] (version 2.0) and Gviz [11] 

(version 1.28) were used to compare gene mutation 

differences and map methylation site information, 

respectively. 

 

Verification of signature genes 

 

According to the standards of the Ethics Review 

Committee of Qingdao Municipal Hospital and the 

conditions of informed consent provided by the patients, 

skin tissue samples from twenty patients with metastatic 

MM who underwent chemotherapy and immunotherapy 

and ten normal patients were collected. According 

instructions of the western blotting techniques [12], 

relative protein concentration of signature genes in 

tissues was detected. All antibody reagents were 

purchased from Abcam (Abcam.com). The SYBR 

Green labeling method was used to detect the gene 

expression level of signature genes by real-time qPCR 

[13], and the gene amplification primer sequence was 

obtained from PrimerBank [14]. ABI StepOne Plus was 
used to calculate the relative expression differences of 

signature genes. The primers used in this study are 

listed in Supplementary Table 1. 

https://portal.gdc.cancer.gov/


 

www.aging-us.com 23674 AGING 

Quantification and statistical analysis 

 

The western blot results of the signature genes were 

quantitatively analyzed by Quantity One (version 4.6.2, 

Bio-Rad Laboratories, Inc.,). The function of this tool 

can convert the gray value of the western blot image 

into data for comparative analysis. The real-time qPCR 

results were converted using the 2−ΔΔct method to 

calculate the amplification fold changes, and Student’s 

t-test was used to test whether the differences between 

the two groups were statistically significant (P < 0.05). 

 
RESULTS 
 

Chemotherapy achieved a better overall survival 

expectancy 

 

According to the screening rules, the gene expression 

data of 46 patients with metastatic melanoma treated 

with chemotherapy and 47 patients with immunotherapy 

were ultimately used in this study. Table 1 shows the 

differences in the treatment period and response to 

chemotherapy or immunotherapy. The results showed 

that there was a significant difference in the response 

rate between the chemotherapy and immunotherapy 

patients. In addition, taking the final survival status 

(death or survival) as the outcome indicator, the 

cumulative overall survival and disease-specific 

survival events of patients in the chemotherapy group 

were significantly higher than those in the 

immunotherapy group (Figure 1A and 1B), whereas 

significant differences were not observed in 

progression-free survival (Figure 1C). The results also 

showed that there was no difference in overall survival 

between male and female patients (Figure 1D). 

 

Anti-tumor properties of signature genes 

 

Figure 2A shows the screening flowchart of signature 

genes, and based on |log2FC| > 1.5 and P < 0.05, 309 

DEGs were used to construct the PPI protein interaction 

network. Subsequently, the genes in the marginal region 

were filtered out according to score >500 and degree >2 

of the protein molecule. In this result, 50 genes 

(Supplementary Table 2) were used to construct a 

generalized linear Lasso-Cox regression model to further 

remove genes with collinear characteristics. Finally, 

seven signature genes were obtained: CCKBR, KCNJ11, 
NMU, MMP13, ITGA10, IGFBP1 and CEACAM5. 

 

According to The Cancer Immunome Atlas (TCIA) [15], 

a tumor immune cell infiltration analysis was performed, 

and the enrichment scores of these DEGs showed 
significant tumor suppressive effects in both the 

chemotherapy group and the immunotherapy group 

(Figure 2B). A comparison of the immune cell infiltration 

scores between the two groups showed that the immature 

dendritic cells (DCs) were significantly higher in the 

chemotherapy group than the immunotherapy group (P < 

0.01), while the central memory CD8 T cells and type 2 

T helper cells were significantly higher in the 

immunotherapy group than the chemotherapy group (P < 

0.05) (Supplementary Figure 1A). The Pearson 

correlation test between immunoinfiltrating cells is 

shown in the attached Supplementary Figure 1B. In 

addition, these seven signature genes were divided into 

high and low groups according to their median 

expression levels. Significant anti-tumor effects were 

observed based on these groupings, and the high 

expression group of CCKBR and KCNJ11 showed better 

anti-tumor effects (Supplementary Figure 1C). 

 

Functional enrichment in the PPI network 

 

The functional enrichment analyses of the 50 genes 

screened by the PPI network included gene ontology 

terms (cell composition, molecular function and 

biological process), pathways (KEGG and Reactome) 

and protein domains (InterPro and Ffam database). 

(Supplementary Figure 2A). The biological functions 

and effects of these key genes are shown in 

Supplementary Figure 2. The cell composition category 

mainly includes cell membrane synapses, keratin 

filaments, collagen trimers, cell junctions and ion 

channel complexes (Supplementary Figure 2B). The 

molecular function category mainly includes ion 

channel activity and receptor binding, such as cytokine 

activity and receptor binding function, chemokine 

activity and receptor binding function, collagen and 

hormone binding function, etc., (Supplementary Figure 

2C). The enrichment results of the integrated protein 

domains were mainly conserved sites of CXC 

chemokines, chemokine IL-8-like superfamily, 

hemopexin superfamily and intermediate filament 

(Supplementary Figure 2E). The signaling pathways 

mainly included IL-17, TNF and estrogen signaling, 

ECM, cytokine-cytokine and neuroactive-ligand 

receptor interactions, and nicotine and morphine 

addiction (Supplementary Figure 2F). 

 

Differences in the survival of signature genes 

 

As shown in Figure 2C, patients with high expression of 

the signature genes CCKBR, KCNJ11, ITGA10, and 

IGFBP1 had higher overall survival prognoses while 

patients with low expression of NMU, MMP13, and 

CEACAM5 had higher overall survival. This finding 

implies that patients with longer overall survival periods 

are positively correlated with anti-tumor scores for 
certain signature genes with high expression (CCKBR, 

KCNJ11, ITGA10, and IGFBP1) and other signature 

genes with low expression (NMU, MMP13 and 
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Table 1. Characteristics of chemotherapy and immunotherapy patients. 

Group Chemotherapy Immunotherapy P (Stat) Effect Size (CI)# 

Observations (N)      

 46 47    

Gender % (N)       

FEMALE 33% (15) 36% (17) 0.89@ 

(0.02) 
 
 

0.86 (0.33; 2.2) 

MALE 67% (31) 64% (30)  

missing 0% (0) 0% (0)  

Age at diagnosis (year)      

Mean (SD) 55 (16) 51 (12) 0.65$ 
(0.16) 

0.28 (–0.14; 0.7) 

valid (missing) 45 (1) 45 (2)  

Treatment response % (event)       

Progressive Disease 46% (21) 21% (10) 
0.035@ 
(8.6) 

0.39 (0.15; 0.6) 

Complete Response 17% (8) 15% (7)  

Partial Response 4.3% (2) 6.4% (3)  

Stable Disease 0% (0) 11% (5)    

missing 33% (15) 47% (22)    

Days drug therapy (days)      

Mean (SD) 75 (86) 238 (233) <0.001$ 
(0.46) 

 

–0.94 (–1.4; –0.45) 

valid (missing) 38 (8) 35 (12)  

OS % (event)       

Yes 28% (13) 55% (26) 
0.019@ 
(5.5) 

0.33 (0.13; 0.84) 

No 70% (32) 45% (21)  

missing 2.2% (1) 0% (0)  

OS.time (days)      

Mean (SD) 1.8e + 03 (1.8e + 03) 2.4e + 03 (1.9e + 03) 0.24$ 
(0.22) 

–0.34 (–0.76; 0.085) 

valid (missing) 45 (1) 44 (3)  

DSS % (event)       

Yes 33% (15) 62% (29) 
0.012@ 
(6.3) 

0.31 (0.12; 0.79) 

No 65% (30) 38% (18)  

missing 2.2% (1) 0% (0)  

DSS.time (days)      

Mean (SD) 1.8e + 03 (1.8e + 03) 2.4e + 03 (1.9e + 03) 0.24$ 
(0.22) 

–0.34 (–0.76; 0.085) 

valid (missing) 45 (1) 44 (3)  

PFI % (event)       

Yes 11% (5) 23% (11) 
0.2@ 
(1.6) 

0.41 (0.1; 1.4) 

No 87% (40) 77% (36)  

missing 2.2% (1) 0% (0)  

PFI.time (days)      

Mean (SD) 1.3e + 03 (1.7e + 03) 1.5e + 03 (1.6e + 03) 0.33$ 
(0.2) 

–0.14 (–0.56; 0.28) 

valid (missing) 45 (1) 45 (2)  

#Effect size is calculated by Cohen’s d statistics. @P value and statistic result are calculated by Chi-sq.test. $P value and statistic 
result are calculated by ANOVA. Abbreviations: CI: confidential interval; OS: overall survival; DSS: disease specific survival; PFI: 
progression free interval. 

 

CEACAM5). However, based on the anti-tumor 

properties described above, this property was significant 

only in the signature genes CCKBR and KCNJ11 

(Supplementary Figure 1). 
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Then, receiver operating characteristic curves 

(ROCs) of these signature genes were drawn, and 

the area under the curve (AUC) was used to indicate 

the predictive value of the model. As shown in 

Figure 2D, the AUC values of the CCKBR, KCNJ11, 

NMU and MMP13 genes were greater than 0.7 and 

the AUC values of the other signature genes were 

between 0.7 and 0.6. In addition, the sensitivity, 

specificity and accuracy of the seven characteristic 

genes were also calculated to evaluate the predictive 

value of the signature genes in the ROC model. 

 

 
 

Figure 1. Cumulative number of survived events in patients with metastatic melanoma undergoing chemotherapy and 
immunotherapy. (A–C) The Log-rank test for overall survival, disease specific survival, and progression-free interval survival curves of the 

chemotherapy and immunotherapy groups. (D) Survival curves of overall survival of male and female patients. 
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Differences in mutations, methylation and treatment 

response 

 

The signature genes CEACAM5, ITGA10 and MMP13 

had the highest proportion of mutations among all 467 

patients with cutaneous melanoma of the skin (Figure 

3A and 3B). Although the frequency of mutations in the 

immunotherapy group was higher than that in the 

chemotherapy group, no significant difference was 

found between the two groups because the total 

 

 
 

Figure 2. Flowchart of screening signature genes and its Kaplan-Meier survival curve and receiver operating characteristic 
curve (ROC). (A) Flowchart of screening signature genes. Including volcano plot of differentially expressed genes (DEGs), DEGs’ PPI 

network and Lasso-COX fitting model. (B) DEGs immune cell infiltration analysis, Pearson correlation test of Anti-tumor and Pro-tumor 
suppression based on immune cell type enrichment scores. (C) Log-rank test for survival curves of signature genes. (D) ROC curve, area 
under curve (AUC), sensitivity, specificity and accuracy values of signature genes. 
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sample of the study was only 93 cases (Figure 3C). A 

comparison of the protein domains of the missense 

mutations showed that the protein domains of the 

immunotherapy group mainly occurred in the box-

labeled region while those of the chemotherapy group 

mainly occurred outside the box-labeled region. 

 

 
 

Figure 3. Genetic variation and relative expression differences of signature genes between chemotherapy and 
immunotherapy. (A and B) Mutation frequency and type of signature genes. (C) Mutations and protein domain differences of signature 

genes between chemotherapy group and immunotherapy group. (D) Differences in relative expression levels (log2(CPM)) of signature 
genes between the two groups. (E) Comparison of complete response (CR), partial response (PR) and progressive disease (PD) differences in 
signature genes between the two groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, NS: no significance.  



 

www.aging-us.com 23679 AGING 

Treatment responses include complete response, partial 

response, and disease progression, which are important 

indicators for judging the effectiveness of tumor 

treatment. Based on significant differences in signature 

genes between the two treatment groups (Figure 3D), 

they were grouped according to the treatment response, 

and significant differences in disease progression were 

observed for all genes except for the MMP13 gene and 

differences in complete response were mainly observed 

for the CCKBR, KCNJ11, ITGA10, IGFBP1 and 

CEACAM5 genes (Figure 3E). No significant 

differences were found for partial responses. 

 

In addition, a group comparison was performed for 

methylation site changes of these signature genes. 

Significant differences were not found between the 

chemotherapy group and the immunotherapy group or 

between the treatment response groups. The comparative 

results are shown in Supplementary Figure 3. 

 

Expression changes of signature genes in metastatic 

melanoma tissues 

 

Using basic public data, this study verified the 

expression changes of signature genes in patients with 

metastatic melanoma after chemotherapy and 

immunotherapy. The gene expression level and protein 

concentration were expressed using real-time qPCR and 

western blotting, respectively, with reference to the 

relative expression level of the internal control. As 

shown in Figure 4A–4B, the comparison of the relative 

protein concentration of characteristic gene expression 

showed that the protein concentrations of CCKBR, 

ITGA10 and IGFBP1 in melanoma tumor tissue in the 

postoperative chemotherapy group were significantly 

higher than those in the immunotherapy group while the 

protein concentrations of KCNJ11, NMU, MMP13 and 

CEACAM5 in the chemotherapy group were 

significantly lower than those in the immunotherapy 

group. In addition, the relative differences in gene 

expression levels (Figure 4C) were consistent with the 

results of previous data analysis (Figure 3D). It is worth 

noting that the difference in protein concentration 

expressed by the KCNJ11 gene is opposite to the 

difference in gene expression level. Additionally, the 

hematoxylin-eosin (HE) staining results showed that the 

skin tissue structure of tumor patients was disordered 

and deeply stained compared with that of normal 

individuals (Figure 4D). 

 

DISCUSSION 
 

It is generally believed that melanoma is an immunogenic 

cancer and immunotherapy, with its potential therapeutic 

effects, may theoretically resolve the deficiency of tumor 

chemotherapy resistance. However, in this study, patients 

with metastatic melanoma who received immunotherapy 

did not obtain a longer overall survival and progression-

free interval and in fact experienced a higher mortality 

rate caused by specific diseases. In addition, studies have 

evaluated the use of immunotherapy based on interferon 

alfa-2b [16, 17] and high-dose IL-2 [18] to treat 

metastatic melanoma; however, the results were not as 

effective as in theory. Four prospective trials in Atkins’ 

observation study [16] showed that in patients with high-

risk resection of melanoma, adjuvant therapy with high-

dose interferon-alpha-2b can effectively improve the 

relapse-free survival rate but not the overall survival rate. 

Moreover, this therapeutic effect only occurred in 

patients older than 46 years of age in two prospective 

studies, and significant differences were not observed in 

the combined result. In the case of a combination of 

many melanoma treatment methods (such as cocktail 

therapy), in which one or a combination plays a key role, 

it is difficult to obtain a fixed answer under different 

circumstances. For example, in a randomized phase III 

trial of combination chemoimmunotherapy (dacarbazine, 

cisplatin, and interferon-alpha-2b) with or without IL-2 

as adjuvant therapy, the results did not show a significant 

improvement in progression-free survival or the 

treatment response rate in patients with metastatic 

melanoma [19]. 

 

Similar to the differences in immune cell infiltration 

observed earlier in this study, immature DCs have 

strong antigen-phagocytosis ability and differentiate 

into mature DCs when they ingest antigens or are 

stimulated by certain factors [20], while mature DCs 

express high levels of costimulators and adhesion 

factors [21]. A recent study showed that treatment with 

immature dendritic cell-targeted vaccines significantly 

improved the survival rate in murine melanoma models, 

and this improved efficacy was positively correlated 

with tumor lysate gene expression levels and tumor-

infiltrating lymphocytes (TILs) [22]. Appropriate 

chemotherapy is not only the main method of killing 

immature cells and proliferating active cells but can also 

produce abundant antigens to activate a large number of 

immature DCs. Immature DCs, as the most functional 

APC found thus far, can acquire the initiation ability of 

specific cytotoxic T lymphocytes (CTLs) under 

independent or dependent induction of T helper cells 

[23]. In addition, a DC-based immunotherapy vaccine 

(Sipuleucel-T) for prostate cancer was approved for use 

by the FDA in 2010 [24, 25]. 

 

Growing evidence has shown that tumors progress 

slowly over a long period of time before they manifest 

as a distinct disease. According to a recent study by 
Harvard Medical School and others, the initial 

cancer-causing mutation may have appeared as early as 

40 years ago, at least in some cases [26]. This finding 
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seems slightly alarmist, although it provides sufficient 

warning of the importance of tumor diseases. After all, 

many deaths are caused by tumors every year, with 1.76 

million new cancer cases and 600,000 cancer deaths in 

the United States in 2019 [27] and an estimated 4.3 

million new cancer cases and 2.9 million cancer deaths 

in China in 2018 [28]. Moreover, certain deaths caused 

by tumor diseases (such as lung cancer and colorectal 

cancer) have a tendency to increase annually, especially 

in low-income countries [29]. Detection of mutant 

genes and CpG methylation is of great significance to 

the selection of targeted therapy for patients, and it is 

also the main reason for immunotherapy resistance [4, 

5]. Although significant differences in signature gene 

mutations and CpG methylation were not observed 

between the two treatment groups, it is undeniable that 

mutations and methylation occurred and may play an 

important role in the development of melanoma and the 

exploration of new treatment methods. 

 

Tumor genesis is characterized by a series of complex 

and persistent environmental factors. According to the 

functional enrichment results of the 50 key genes 

screened by PPI in this study, systemic treatment not 

 

 
 

Figure 4. Validation of signature genes in patients with metastatic cutaneous melanoma undergoing chemotherapy and 
immunotherapy. (A and B) Western blot results of signature genes and t-test comparison results of gray values between the two groups. (C) 
T-test comparison results of the relative expression levels of signature genes in real-time qPCR between the two groups. (D) Hematoxylin-
eosin (HE) staining: normal skin tissue, tumor tissues of metastatic melanoma patients receiving chemotherapy and immunotherapy. *P < 
0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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only induces changes in the basic functions and 

activities of cells (e.g., membrane synapses, ion channel 

complexes, etc.,) but also leads to abnormalities in the 

immune and endocrine systems (e.g., 

cytokines/chemokines, TNF and estrogen signaling). 

Subsequently, researchers have proposed a new tumor 

treatment method: combination therapy targeting the 

tumor microenvironment [30]. TIL infusion, as a new 

immunomodulatory strategy, was approved for clinical 

use by the FDA in 2019 and can effectively extend the 

lives of patients with advanced cancer. The number of 

infused cells was related to a good response. This 

strategy has been applied for patients with metastatic 

melanoma [31, 32] and can be used as an alternative 

therapy after the failure of immune checkpoint inhibitor 

therapy [33]. Solid tumors that are highly infiltrated 

with immune cells and proinflammatory cytokines have 

been classified as inflammatory tumors [34]. 

 

The tumor microenvironment is an environment composed 

of malignant cells, normal cells, immune components, 

blood vessels, ECM, and other molecules. These 

components can work alone and jointly to affect sensitivity 

to chemotherapy or immunotherapy. As new 

immunomodulatory treatments and technological 

innovations continue to advance the field of cancer 

immunotherapy, the goal of personalized medicine seems 

to have become a reality. From single reagents to systemic 

treatment (including physical, chemical, biological and 

immunotherapy), almost every treatment strategy is 

associated with a study claiming that it prolongs the 

survival time of patients. However, almost all patients are 

ultimately defeated by the tumor or the side effects, which 

has led to many questions about the effectiveness of cancer 

treatment. Thus, with all these advanced treatments, one 

may wonder why a significant reduction in cancer deaths 

has not occurred. Perhaps God knows the answer. 

 

In short, huge challenges remain in exploring the most 

effective method for treating advanced melanoma, and 

this journey remains full of possibilities. In addition to 

the difficulties mentioned above, this study not only 

explores and verifies the differences in the expression of 

signature genes in patients with metastatic melanoma 

who received either chemotherapy or immunotherapy 

but also provides insights into differences in signature 

gene in terms of biological function, gene mutation 

frequency, protein domain, and CpG methylation level. 

These findings could provide important clues for the 

discovery of new tumor immunotherapy strategies. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Difference in DEGs-based immune cell infiltration. (A) Immune cell infiltration difference between 

chemotherapy and immunotherapy groups. (B) Pearson correlation of immune cell infiltration enrichment score. (C) Immune cell 
infiltration difference between low expression group and high expression group of signature genes. 
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Supplementary Figure 2. Enrichment map of 50 important genes screened by PPI network. (A) Enrichment results of different 
functional distribution. (B–F) Dotplot of top 20 items in the enrichment results of cell composition, molecular function, biological process, 
integrated protein domains and KEGG pathway.  
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Supplementary Figure 3. Comparison of differences in CpG methylation of signature genes between the two groups. (A) 
Differences in the distribution of CpG methylation sites of signature genes between groups in chromosomes. (B) The difference in CpG 
methylation levels between the two groups, as well as in the complete response (CR), partial response (PR) and progressive disease (PD) 
subgroups. 
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Supplementary Tables 
 

Supplementary Table 1. Primers of signature genes. 

Symbols Forward primers (5′ → 3′) Reverse primers (5′ → 3′) Amplicon size 

CCKBR GGGACACGAGAATTGGAGCTG AACCGCCTTGCAGATGACG 249 

ITGA10 AACATCACCCACGCCTATTCC GTTGGTAGTCACCTAAGTGGC 207 

KCNJ11 AGGTCCAAGTGACTATTGGCT TCTGCACGATGAGGATCAGGA 81 

IGFBP1 TTGGGACGCCATCAGTACCTA TTGGCTAAACTCTCTACGACTCT 114 

NMU CTCAGGCATCCAACGCACT GACTTGCCCAACTTCTGTGTC 136 

CEACAM CTGTCCAATGACAACAGGACC ACGGTAATAGGTGTATGAGGGG 174 

MMP13 ACTGAGAGGCTCCGAGAAATG GAACCCCGCATCTTGGCTT 103 
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Supplementary Table 2. 50 important genes screened through PPI network. 

Symbols Gene names log2 Fold 

Change 

P value PMID Function 

KLK3 kallikrein related peptidase 3  5.400  2.52E-23  10218588  angiogenesis  

SLC17A6  solute carrier family 17 member 6  –4.658  6.89E-20  10820226  amino acid transmembrane transport  

CHRNA1  cholinergic receptor nicotinic alpha 1 subunit  3.543  2.64E-12  10195214  action potential  

DLK1  delta like non-canonical Notch ligand 1  –4.428  5.84E-12  10354070  molecular_function  

SFTPA2  surfactant protein A2  3.575  6.19E-12  10781424  activation of innate immune response  

FCER1G  Fc fragment of IgE receptor Ig  1.968  2.59E-10  10049942  cell activation  

KRT14  keratin 14  –3.028  5.63E-10  10583131  molecular_function  

SFN  stratifin  –2.655  3.62E-09  10524633  cell cycle checkpoint  

ORM1  orosomucoid 1  2.314  5.94E-09  11027547  cell activation  

COL17A1  collagen type XVII alpha 1 chain  –2.405  7.51E-09  10022517  immune system process  

LMO1  LIM domain only 1  –2.211  1.28E-08  10603358  
negative regulation of transcription by RNA 

polymerase II  

COL6A5  collagen type VI alpha 5 chain  2.158  1.78E-08  14702039  molecular_function  

CCKBR  cholecystokinin B receptor  1.682  7.36E-08  10100325  peptide receptor activity  

ITGA10  integrin subunit alpha 10  2.459  1.05E-07  10702680  molecular_function  

KCNJ11  
potassium voltage-gated channel subfamily J 

member 11  
1.682  1.19E-07  10093054  nucleotide binding  

EREG  epiregulin  2.476  2.06E-07  10681561  reproduction  

GABRB2  
gamma-aminobutyric acid type A receptor beta2 

subunit  
1.984  2.93E-07  10023064  system process  

ADCY8  adenylate cyclase 8  2.718  3.09E-07  10075700  nucleotide binding  

KRT16  keratin 16  –2.625  4.24E-07  10521820  ameboidal-type cell migration  

NRXN1  neurexin 1  –2.371  4.33E-07  11036064  cell morphogenesis  

THBS1  thrombospondin 1  1.612  4.47E-07  101549  MAPK cascade  

IGFBP1  insulin like growth factor binding protein 1  1.507  7.07E-07  10329650  regulation of cell growth  

LIF  LIF interleukin 6 family cytokine  2.101  8.01E-07  10205054  reproduction  

XAGE2  X antigen family member 2  2.286  2.59E-06  10197611  molecular_function  

NLGN3  neuroligin 3  –1.557  3.51E-06  10767552  cell morphogenesis  

CACNA1B  calcium voltage-gated channel subunit alpha1 B  –2.042  4.21E-06  10455105  nucleotide binding  

KLRD1  killer cell lectin like receptor D1  1.584  4.30E-06  10023772  natural killer cell mediated immunity  

CXCR6  C-X-C motif chemokine receptor 6  1.541  5.16E-06  10590105  
G protein-coupled chemoattractant receptor 

activity  

SYT3  synaptotagmin 3  –1.794  7.08E-06  10531343  cell morphogenesis  

MCHR1  melanin concentrating hormone receptor 1  2.294  1.78E-05  10421367  peptide receptor activity  

CTSG  cathepsin G  1.907  1.96E-05  10512690  lytic vacuole  

IVL  involucrin  –2.015  2.22E-05  10908733  cornified envelope  

KRT5  keratin 5  –2.084  2.25E-05  10234505  molecular_function  

NMU  neuromedin U  –1.514  2.61E-05  10783389  temperature homeostasis  

KRT6C  keratin 6C  –2.036  3.51E-05  11683385  molecular_function  

SAGE1  sarcoma antigen 1  1.560  3.65E-05  10919659  cellular_component  

LRRTM1  leucine rich repeat transmembrane neuronal 1  –1.967  5.79E-05  12477932  regulation of receptor internalization  

TCN1  transcobalamin 1  1.801  8.91E-05  11373332  transition metal ion transport  

TEX15  
testis expressed 15, meiosis and synapsis 

associated  
–1.854  0.000  11279525  reproduction  

CXCL9  C-X-C motif chemokine ligand 9  1.541  0.000  10201891  
syncytium formation by plasma membrane 

fusion  

CCL20  C-C motif chemokine ligand 20  1.584  0.000  10064080  G protein-coupled receptor binding  

MMP1  matrix metallopeptidase 1  –1.752  0.001  10224132  immune system process  

DDX43  DEAD-box helicase 43  –1.587  0.001  10919659  nucleotide binding  

CEACAM5  
carcinoembryonic antigen related cell adhesion 

molecule 5  
–1.590  0.002  10436421  immune system process  

CXCL5  C-X-C motif chemokine ligand 5  1.666  0.002  10068592  molecular_function  

GRIA2  
glutamate ionotropic receptor AMPA type  

subunit 2  
1.586  0.003  10027300  amyloid-beta binding  

VGF  VGF nerve growth factor inducible  1.554  0.004  10381005  reproduction  

CCL21  C-C motif chemokine ligand 21  –1.513  0.008  10201891  MAPK cascade  

MMP13  matrix metallopeptidase 13  1.533  0.008  10074939  skeletal system development  

EDN3  endothelin 3  1.997  0.009  10231870  MAPK cascade  

 


