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INTRODUCTION 
 

Approximate 8-12% of couples suffered from infertility, 

and male infertility accounts for about 50% of the 

etiology therein [1]. Male infertility is mainly caused by 

impaired spermatogenesis, which is manifested clinically 

as azoospermia, oligospermia, teratozoospermia, and 

asthenospermia [2]. Azoospermia is the most severe 

factor of male infertility and included two major 

subtypes: obstructive azoospermia (OA) and non-

obstructive azoospermia (NOA). The testes of patients 
with OA usually have normal sperm production ability, 

and abnormal sperm delivery due to obstruction results 

in azoospermia, while NOA is caused by impaired 

spermatogenesis in the testes, accounting for 10% of 

male infertility [3]. 

 

OA patients have normal spermatogenesis, but due to 

various pathological changes, such as seminal vesicle 

hypoplasia, chronic epididymitis, and prostatitis, the  

vas deferens obstruction prevents sperm from entering 

the semen [4]. The causes of NOA are more 

complicated. Common pathogenic factors include 

hereditary diseases, congenital testicular abnormalities, 

pathological changes of the testis, endocrine diseases, 
radiation, physical, chemical, and pharmaceutical 

damages [5]. Removing the obstruction of the vas 

deferens by microsurgery is the first choice for treatment 
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ABSTRACT 
 

Non-obstructive azoospermia (NOA) is among the most severe factors for male infertility, but our 
understandings of the latent biological mechanisms remain insufficient. The single-cell RNA sequencing (scRNA-
seq) data of 432 testicular cells isolated from the patient with NOA was analyzed, and the cell samples were 
grouped into 5 cell clusters. A sum of 455 cell markers was identified and then included in the protein-protein 
interaction network. The Top 5 most critical genes in the network, including CCT8, CDC6, PSMD1, RPS4X, 
RPL36A, were selected for the diagnosis model construction through the random forest (RF). The RF model was 
a strong classifier for NOA and obstructive azoospermia (OA), which was validated in the training cohort  
(n = 58, AUC = 1) and external validation cohort (n = 20, AUC = 0.9). We collected the seminal plasma samples 
and testicular biopsy samples from 20 OA and 20 NOA cases from the local hospital, and the gene expression 
was detected via Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) and Immunohistochemistry. The 
RF model also exhibited high accuracy (AUC = 0.725) in the local cohort. In summary, a novel gene signature 
was developed and externally validated based on scRNA-seq analysis, providing some new biomarkers to 
uncover the underlying mechanisms and a promising clinical tool for diagnosis in NOA. 
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of OA, while intracytoplasmic sperm injection (ICSI) 

and testicular sperm extraction (TESE) are more 

recommended for NOA [6]. Hence, the differential 

diagnosis of OA and NOA is of great significance 

because it is directly related to the choice of treatment 

methods [7]. 

 

With the rise and advancement of gene sequencing and 

big-data analysis, the development of gene-based 

models for disease diagnosis has attracted increasing 

attention. These genetic models acted as valuable tools 

to guide clinical practice and provided potential clues 

for investigating pathogenesis [8, 9]. Among the high-

throughput sequencing methods, single-cell RNA 

sequencing analyzed the transcriptomics at single-cell 

resolution, assessing the cell heterogeneity and 

diversity with high efficacy [10]. The scRNA-seq-

based models have been successfully established in 

various diseases, such as bladder cancer [11], 

pancreatic ductal adenocarcinoma [12], and skin 

cancer [13], showing the tremendous advantages of 

scRNA-seq to achieve greater understandings of 

disease initiation and progression. However, no 

genetic diagnostic model for NOA based on scRNA-

seq has been constructed. 

 

The present study analyzed the scRNA-seq data of 432 

testicular cells isolated from the patient with NOA and 

screened the marker genes among different cell 

clusters. Subsequently, a protein-protein interaction 

(PPI) network was established, and the hub genes of 

the network were identified. The random forest 

algorithm was utilized for diagnostic model 

construction for NOA, and two independent NOA 

datasets were downloaded from Gene Expression 

Omnibus (GEO) as the training and external validation 

cohorts, respectively. The collected samples from The 

Third Affiliated Hospital of Southern Medical 

University were also utilized for validation through 

Real-Time quantitative Polymerase Chain Reaction 

(RT-qPCR). 

 

MATERIALS AND METHODS 
 

Data collection 

 

The scRNA-seq matrix of 432 testicular cells from an 

NOA patient (GSE157421) was directly downloaded on 

GEO (https://www.ncbi.nlm.nih.gov/geo/). GSE9210, 

including 11 OA and 47 NOA samples, and GSE145467, 

including 10 OA and 10 NOA samples, were also 

obtained as the training and external validation datasets, 

respectively. GSE9210 and GSE145467 were both 

Agilent microarray experiments for human testicular 

tissues. The probe IDs were converted into gene symbols 

using R software (version 4.1.0). 

Processing of scRNA-seq data 

 

The Seurat package of R was used to normalize the 

scRNA-seq data and to perform the quality control [14]. 

The filtering criteria were set as follows: nFeature_RNA 

> 50 and percent.mt < 5, which meant the cells with 

detected gene numbers ≤ 50 and the proportion of 

mitochondria ≥ 5% were excluded from the present 

study. The Top 10 genes exhibiting the most variable 

among the cell samples were identified with the 

FindVariableFeatures function of Seurat. Subsequently, 

the cell samples clustering was conducted via principal 

component analysis (PCA) and t-distributed stochastic 

neighbor embedding (t-SNE) based on the Top 1500 

most variable genes. The markers genes of various cell 

clusters were screened with |logarithmic fold change 

[logFC]| > 0.8 and adjusted P < 0.05. The cell types were 

annotated via the SingleR and celldex packages. The 

monocle package was adopted for pseudotime analysis, 

which re-verified the correctness of the cell type 

annotation. 

 

Construction of the protein-protein interaction 

network 

 

The cell markers extracted from the scRNA-seq 

analysis were then used to establish a protein-protein 

interaction (PPI) network to identify the possible hub 

genes associated with the pathogenesis of NOA through 

the STRING database (https://string-db.org/). The 

confidence score was set to 0.9 to ensure the reliability 

of the established network as possible. The cytoHubba 

plug-in of Cytoscape software (version 3.8.0) was used 

to measure the importance of the genes in the network 

via degree algorithm. 

 

Functional enrichment 

 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) enrichment were conducted to 

annotate the biological functions of the genes in the 

network through the clusterProfiler R package. The 

gene sets with P < 0.05 and Q < 0.05 were considered to 

be statistically significant. 

 

Development of a random forest model 

 

The Top 5 core genes in the network were chosen as the 

variables for model construction. The diagnostic model 

was developed through the randomForest R package. 

Ntree =500 and mtry=3 was set as the arguments for the 

random forest. Mtry is defined as the number of 

variables sampled per iteration and ntree refers to the 
number of decision trees contained in the random forest. 

The pROC package was utilized to draw the receiver 

operating curves (ROCs) and to evaluate the 95% 
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confidence interval (CI) of areas under curves (AUCs) 

based on 2000 bootstrap sampling, which were applied 

to measure the random forest’s predictive performance 

in the training and external validation datasets. The 

confusion matrices were visualized via R software. 

Mean Decrease Accuracy and Mean Decrease Gini were 

used to calculate the importance of the variables in the 

random forest model, which were positively associated 

with the importance. Mean Decrease Accuracy meant 

the degree of reduction in the accuracy of random forest 

prediction after changing the value of a variable into a 

random number, and Mean Decrease Gini meant the 

influence of each variable on the heterogeneity of 

observations at each node of the classification tree [15]. 

We also compared the AUCs of the single gene and the 

5-gene RF model via Delong’ test to check whether the 

AUCs have been significantly altered. The expression 

divergence of the hub genes in each cell cluster was 

visualized via a bubble plot and a scatter plot with the 

Seurat package. 

 

Clinical sample collection 

 

This study protocol was approved by the Medical Ethics 

Committee of The Third Affiliated Hospital of Southern 

Medical University, and written consent was obtained 

from all patients. The patients with OA and NOA 

between October 2019 and September 2021 were 

enrolled in this study, and the diagnosis of OA or NOA 

relied on the testicular biopsy. The biopsy samples were 

immediately fixed with 4% paraformaldehyde 

(ThermoFisher Scientific, China) overnight, embedded 

in paraffin, and sectioned 8-10 μm thick. Age, 

Johnsen’s Score, follicle-stimulating hormone (FSH), 

luteinizing hormone (LH), and testosterone (T) of the 

cases were also collected. 

 

All the study subjects were abstinent for 3-5 days before 

the semen collection. The semen samples were obtained 

by masturbation. The semen was liquified for 20-30 

minutes at room temperature. The seminal plasma was 

collected by centrifuging the semen at 4° C at 10000 x g 

for 10 minutes, and the precipitate was discarded. The 

seminal plasma was stored at -80° C for further study. 

 

RT-qPCR 

 

The total RNA was extracted with the Trizol-

chloroform method (Trizol reagent, Invitrogen, USA) 

after keeping the seminal plasma gently thawed on ice. 

The cDNA was synthesized with PrimeScript RT 

Reagent Kit (Takara, China) and amplified by SYBR 

Premix ExTaq kit (Takara, China) following the 
manufacturer’s recommendations. The qualification of 

the RNA expression was based on ABI 7600 system 

(Applied Biosystems, USA). GAPDH was chosen as the 

internal reference gene. The 2−ΔΔCt methods were 

utilized to calculate the gene expression value. All the 

PCR experiments were repeated three times. The primer 

sequence was synthesized by the TSINGKE company 

(Guangzhou, China), as shown in Table 1. 

 

Immunohistochemistry 

 

The slides were washed with xylene and added to the 

ethanol as follows: 100% ethanol for 4 minutes; 90% 

ethanol for 4 minutes; 80% ethanol for 4minutes; 70% 

ethanol for 4 minutes. The sections were repaired in 

antigen repair solution (ThermoFisher Scientific, China) 

for 10 minutes at 95° C. 5% bovine serum albumin 

(BSA) in phosphate buffered saline (PBS) was used to 

block the non-specific binding sites for 1 hour. During 

the immunohistochemical staining with RPS4X (1:100, 

Proteintech, China), the slides and the antibody were 

incubated for 2 hours at room temperature in a 

humidified chamber. After the slides were washed 3 

times with PBS, the anti-rabbit secondary antibody 

(Proteintech, China) was added to the slides for 1 hour 

at room temperature. Images were acquired by standard 

microscopy (Nikon Eclipse 90i, Nikon, Japan). The 

gray-scale of the images were analyzed according to the 

integral optical density (IOD), which was calculated 

by Image-Pro Plus (version 6.0, Media Cybernetics, 

USA). 

 

Statistical analysis 

 

The statistical analyses were based on R software 

(version 4.0.3, R core team) and GraphPad Prism 8 

(version 8.4.3, GraphPad, USA). All the data of this 

study was presented as mean ± standard deviation (SD). 

The two-tailed Student’s t-test was performed for  

the variance detection for the RT-qPCR and immuno-

histochemistry data, and P < 0.05 was considered as 

statistically significant. Welch-corrected t-test was 

utilized to compare the difference of age, Johnsen’s 

Score, FSH, TH, and T between OA and NOA cases. 

Delong’s test was conducted to compare the AUCs of 

different ROCs by means of roc.test function of R 

pROC package. *P < 0.05, **P < 0.01, ***P < 0.001. 

 

RESULTS 
 

Identification of cell markers via scRNA-seq analysis 

 

The workflow of the present study was shown in  

Figure 1. First, the scRNA-seq data of an NOA patient’s 

testicular sample was analyzed, and a sum of 432 

testicular cells was acquired. The quality control of the 
detected gene numbers, gene sequencing count, and  

the percent of mitochondrial genes was indicated in 

Figure 2A. The percent of mitochondrial genes was 
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Table 1. The primers used in present study for RT-qPCR. 

Genes Sequence (5’-3’) 

CCT8: Forward AGGAGGGAGCGAAACACTTTT 

CCT8: Reverse GTTGCTGCATCGTTTGTCACA 

CDC6: Forward CCAGGCACAGGCTACAATCAG 

CDC6: Reverse AACAGGTTACGGTTTGGACATT 

PSMD1: Forward TCCGAGTCCGTAGACAAAATAGA 

PSMD1: Reverse CCACACATTGTTTGGTGTAGTGA  

RPL36A: Forward CTAAAACCCGCCGGACTTTCT 

RPL36A: Reverse CTTCCTGTCATAACGCCGCTT 

RPS4X: Forward TGGCAGCTCCAAAGCATTG 

RPS4X: Reverse GACACTCTCTCAACTTGTGGG 

GAPDH: Forward GGAGCGAGATCCCTCCAAAAT 

GAPDH: Reverse GGCTGTTGTCATACTTCTCATGG 

 

 
 

Figure 1. The workflow of the present study. 
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Figure 2. The identification of cell markers via scRNA-seq analysis. (A) The quality control chart. (B, C) The association of detected 
gene counts with the percent of mitochondrial genes (B) and sequencing depth (C). (D) The Top 10 genes with the most differentially 
expressed among various cell samples. (E) The PCA analysis. (F) The P-values of each PC. (G) The cell samples were divided into 5 clusters.  
(H) The cell type annotation. (I) The heat map indicating the expression level of the cell markers in different cell clusters. scRNA-seq, single-
cell RNA sequencing; PCA, principal component analysis; PC, principal component. 
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negatively associated with detected gene counts 

(Pearson r = -0.53, Figure 2B); meanwhile, the high 

positive correlation between sequencing depth and 

detected gene counts was found (Pearson r = 0.94, 

Figure 2C). The Top 10 genes, including HIST1H4C, 

MT-RNR2, PRM1, COX1, TEX101, ND4, ND4L, and 

PRM2, showing the most significant expression 

difference among all cell samples, were revealed in 

Figure 2D. Subsequently, PCA was conducted to 

preliminarily classify the cell samples (Figure 2E), and 

the P-value distribution in each principal component 

(PC) was shown in Figure 2F. The Top 20 and Top 30 

genes associated with PC1-4 were illustrated in the  

dot plot (Supplementary Figure 1A) and the heat  

map (Supplementary Figure 1B), respectively. With the 

t-SNE dimension-reduction algorithm, 432 testicular 

cells were divided into 5 different cell clusters  

(Figure 2G). Cell cluster 1 was annotated as induced 

pluripotent stem (iPS) cells, and the remaining 4 cell 

clusters were all annotated as gametocytes (Figure 2H). 

Ultimately, a total of 456 cell markers were identified 

with the limma package (Supplementary Table 1). The 

heat map displayed the expression level of Top 10 

differentially expressed genes (DEGs) among the cell 

clusters (Figure 2I). 

 

Cell trajectory analysis 

 

In scRNA-seq analysis, the correct cell type annotation 

has always been a difficult point. We conducted the 

pseudotime analysis to confirm whether the cell type 

annotation was right. As shown in Figure 3, iPS cells 

 

 
 

Figure 3. The trajectory analysis of the cell samples. 
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gradually differentiated into gametocytes over time, 

which was reasonable and logical. The cell trajectory 

analysis validated the annotation results. 

 

PPI network construction and functional enrichment 

 

Compared with the DEGs extracted from the tissue with 

different statuses, such as OA and NOA, the DEGs 

between different cell clusters, also known as cell 

markers, could reflect the pathogenesis with a higher 

resolution. Hence, the cell markers from the scRNA-seq 

analysis were then used to construct the PPI network. 

With the confidence score > 0.9 filtering, 30 genes were 

included in the network, as displayed in Figure 4A. The 

Top 10 hub genes ranked by degree were shown in 

Figure 4B and Supplementary Table 2. KEGG (Figure 

4C) and GO (Figure 4D) functional annotation indicated 

the genes in the PPI network were mostly enriched in 

ribosome, tight junction, DNA replication, and many 

other critical pathways involved in cell activities. 

 

 
 

Figure 4. PPI network construction and functional enrichment. (A) Construction of a PPI network of the cell markers. (B) The Top 10 
most important gene in the network. (C) KEGG pathway enrichment. (D) GO functional annotation. PPI, protein-protein interaction; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology. 
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Establishment and validation of a random forest 

model 

 

Here, we detected the diagnostic value of the hub genes 

of NOA from the scRNA-seq and PPI analyses. 

Compared with the single gene, a multi-gene 

combination would be more potent for prediction, 

which has been demonstrated in many previous studies 

[16]. With the rapid development of computer 

technology, machine learning is increasingly applied to 

disease diagnosis [17, 18]. Hence, we implemented 

random forest, a widely used and powerful machine 

learning algorithm, to construct the diagnosis model 

[19, 20]. GSE9210 was set as the training dataset, and 

AUC of the random forest model was 1.000 (95% CI = 

1.000-1.000), as displayed in the ROC (Figure 5A) and 

confusion matrix (Figure 5B). The performance of the 

diagnostic model in the external validation was also 

favorable with the AUC = 0.900 (95% CI = 0.769-

1.000). Figure 5C, 5D showed the ROC and confusion 

matrix of the established model in the external 

validation cohort. 

 

The diagnostic value of the genes in the diagnostic 

model was also detected. First, the Mean Decrease 

Accuracy (Figure 6A) and Mean Decrease Gini (Figure 

6B) of each gene were calculated, and RPS4X was 

found to serve as the most important variables in the 

random forest model. Besides, ROC analyses indicated 

the AUCs of RPS4X were 0.932 and 0.920 in the 

training and external validation datasets, respectively, 

suggesting RPS4X was a promising biomarker for NOA 

(Figure 6C, 6D). In addition, Delong’s test between the 

AUCs of the 5-gene RF model and the single gene 

indicated that RPS4X and RPL36A were important 

variables in the model, as displayed in Table 2. 

 

 
 

Figure 5. Validation of the diagnostic efficacy of the random forest model. (A, B) The ROC (A) and confusion matrix (B) of the 

predictive model in the training dataset. (C, D) The ROC (C) and confusion matrix (D) of the predictive model in the external validation 
dataset. ROC, receiver operating curve. AUC, area under curve; NOA, non-obstructive azoospermia; OA, obstructive azoospermia. 
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The expression level of RPS4X in human testicular 

samples from NOA and OA patients was also detected 

via immunohistochemical staining. It was found that 

RPS4X was significantly up-regulated in the testes of 

20 NOA patients compared with that in 20 OA patients, 

as displayed in Figure 6E. 

In addition, the expression level of the hub genes in  

the cell clusters was also compared. As indicated in 

Figure 7A, 7B, RPS4X was significantly up-regulated  

in cell cluster 1, which was annotated with iPS cells, 

implying RPS4X might exert their pathogenetic functions 

during the differentiation of iPS cells into gametocytes. 

 

 
 

Figure 6. The diagnostic value of each variable in the random forest model. (A, B) The Mean Decrease Accuracy (A) and Mean 
Decrease Gini (B) of the variables. (C, D) The ROCs showed the predictive performance of each gene in the training (C) and external 
validation cohorts (D). (E) The expression of RPS4X in the testicular biopsy samples from 20 NOA (up) and 20 OA (down) patients (x200). 
ROC, receiver operating curve. AUC, area under curve; NOA, non-obstructive azoospermia; OA, obstructive azoospermia; IOD, integral 
optical density. *, P < 0.05. 
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Table 2. P-values of the Delong’s tests. 

The comparison GSE9210 GSE145467 Local cohort 

CCT8 vs. The RF model < 0.001 < 0.001 0.941 

CDC6 vs. The RF model 0.002 0.313 0.442 

PSMD1 vs. The RF model < 0.001 0.007 0.692 

RPS4X vs. The RF model 0.035 0.756 0.047 

RPL36A vs. The RF model <0.001 0.134 0.796 

ROC, receiver’s operating curve; RF, random forest. 

 

 
 

Figure 7. The expression level of the random forest model’s genes in each cell cluster, which was visualized by a bubble plot (A) and a scatter 

diagram (B). 
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Experimental validation of the RF model in seminal 

plasma samples 

 

A total of 40 azoospermia patients were enrolled, 

containing 20 OA and 20 NOA subjects, after excluding 

the samples with low RNA’s amount and unclear 

diagnosis. The clinical characteristics of the subjects 

were displayed in Table 3. The merge of multiple 

groups with different means and SDs from GSE9210 

cohort into one group was conducted via an online tool 

(http://www.obg.cuhk.edu.hk/ResearchSupport/StatTool

s/CombineMeansSDs_Pgm.php). We analyzed the 

mRNA expression level of CCT8, CDC6, PSMD1, 

RPL36A, and RPS4X, which comprised the RF model, 

in the seminal plasma of OA and NOA patients. It  

was found that CCT8 (P < 0.01, Figure 8A) and  

CDC6 (P < 0.05, Figure 8B) were significantly up-

regulated in the OA samples, while PSMD1 (P < 0.05, 

Figure 8C), RPL36A (P < 0.01, Figure 8D), and 

RPX4X (P < 0.05, Figure 8E) were obviously 

decreased in NOA patients’ seminal plasma. Table 4 

indicated the AUCs and corresponding 95% CI of each 

gene in GSE9210 cohort, GSE145467 cohort, and 

local cohort. 

 

The RF model was also a promising classifier in the 

seminal plasma from the ROC analysis (AUC = 0.725, 

95% CI = 0.589-0.861, Figure 8F). Figure 8G displayed 

the confusion matrix of the model in local cohort. The 

accuracy, sensitivity, specificity, positive predictive 

value, and negative predictive value of the RF model in 

each cohort were shown in Table 5. 

 

DISCUSSION 
 

NOA includes changes in spermatogenesis caused  

by various hypothalamic and pituitary diseases, as  

well as primary spermatogenesis failure caused by 

different etiologies, and usually has a poor prognosis 

[21]. Such patients have no obvious signs of 

obstruction in the ultrasound examination of the 

reproductive system, but the obvious feature is that the 

patient's testicular volume is often small and cannot 

produce sperm or produce very few sperm. Patients 

with OA can often be diagnosed with ultrasound of the 

reproductive system, but some azoospermia patients 

exhibited both spermatogenic dysfunction and 

reproductive tract obstruction, which is known as 

mixed azoospermia. Therefore, imaging methods such 

as the ultrasound are far from sufficient to confirm the 

diagnosis of NOA. Many biomarkers associated with 

NOA have been discovered, such as follicle-

stimulating hormone [22], serum inhibin B [23], and 

anti-Mullerian hormone [24], but more studies on the 

biomarkers are helpful for clinicians to achieve a more 

precise diagnosis. 

In addition, from the perspective of pathogenesis, 

although many theories have been proposed to explain 

the pathogenesis of NOA, our understandings of the 

biological processes associated with NOA remains 

insufficient. Nowadays, the widespread applications of 

gene sequencing, especially scRNA-seq, have deepened 

the knowledge of NOA [25, 26]. For instance, Wang  

et al. had disclosed the unique role of autophagy 

homeostasis in the spermatogenesis of NOA cases 

through scRNA-seq analysis [27]. Liu et al. utilized 

scRNA-seq to detect the genetic change of ACE2 in 

testicular cells of normal and NOA patients, uncovering 

the possible mechanisms of how SARS-CoV-2  

affected testicular cells [28]. These studies strongly 

demonstrated the usefulness of scRNA-seq for NOA’s 

mechanism detection. However, the scRNA-seq-based 

diagnostic model for NOA has not been reported. 

 

Here, the scRNA-seq data of the testicular cells 

extracted from an NOA patient was analyzed. The cell 

markers, which were defined as the DEGs among 

different cell clusters, were used to construct a PPI 

network. GO and KEGG enrichment indicated the genes 

in the network were mainly involved in the cell cycle-

related pathways, such as DNA replication, translational 

initiation, and regulation of G2/M transition of mitotic 

cell cycle. Subsequently, the Top 5 hub genes in the PPI 

network were chosen for diagnostic model 

development. GSE9210 and GSE145467 were utilized 

to construct and externally validate the predictive 

model, respectively, and a sum of 78 cases was 

enrolled, including 57 NOA and 21 OA patients. We 

also collected the seminal plasma samples of 20 OA and 

20 NOA patients from The Third Affiliated Hospital of 

Southern Medical University, and detected the 

diagnostic efficacy of the RF model via RT-qPCR. 

Another important highlight of the research was that the 

random forest algorithm, a dimension reduction 

machine learning technique, was adopted for predictive 

model construction. The ROC analyses in the training 

cohort (AUC = 1.000), external validation cohort (AUC 

= 0.900), and local cohort (AUC = 0.725) demonstrated 

the feasibility and effectiveness of the strategy. 

 

Some novel biomarkers for NOA were also screened. 

Ribosomal Protein S4 X-Linked (RPS4X) was essential 

for the formation of cytoplasmic ribosomes and 

participated in the initiation and progression of multiple 

diseases [29–31]. RPS4X acted as the strongest 

predictor in the random forest model with the highest 

Mean Decrease Accuracy and Mean Decrease Gini. 

ROCs also indicated that RPS4X was a promising 

diagnosis biomarker for NOA both in the training (AUC 
= 0.932) and external validation (AUC = 0.920) cohorts. 

RPS4X was significantly up-regulated in the iPS cells 

of testicular tissue isolated from the patient with NOA. 

http://www.obg.cuhk.edu.hk/ResearchSupport/StatTools/CombineMeansSDs_Pgm.php
http://www.obg.cuhk.edu.hk/ResearchSupport/StatTools/CombineMeansSDs_Pgm.php
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Table 3. The baseline information of the OA and NOA patients from GSE9210 cohort and local cohort. 

Parameters 
GSE9210 Local cohort 

OA (n = 11) NOA (n = 47) P-value OA (n = 20) NOA (n = 20) P-value 

Age (years) 33.3 ± 8.5 35.0 ± 5.7 0.542 32.5 ± 6.7 34.1 ± 7.4 0.478 

Johnsen's Score 7.9 ± 1.2 2.4 ± 1.3 < 0.001 7.7 ± 1.5 3.5 ± 0.9 < 0.001 

FSH (mIU/ml) 10.1 ± 9.3 29.2 ± 9.1 < 0.001 11.2 ± 8.8 23.8 ± 9.5 < 0.001 

LH (mIU/ml) 4.5 ± 2.3 8.8 ± 4.8 < 0.001 5.3 ± 2.6 7.5 ± 2.2 < 0.01 

T (ng/ml) 4.8 ± 1.7 3.5 ± 1.6 0.041 4.2 ± 1.1 3.6 ± 0.7 0.043 

FSH, follicle-stimulating hormone; LH, luteinizing hormone; T, testosterone; NOA, non-obstructive azoospermia; OA, 
obstructive azoospermia. 

 

All the evidence suggested RPS4X played an 

important role in NOA. However, the association 

between RPS4X and NOA has never been reported, 

and how RPS4X regulated spermatogenesis of NOA 

patients remains unclear. Ribosomal Protein L36a 

(RPL36A) was also played an important role in  

the exertion of ribosomal function. The association of 

RPL36A with infertility has been reported. Selvaraju 

et al. has found RPL36A was up-regulated in the high-

fertile bulls’ sperm, but the roles of RPL36A in human 

infertility are still unknown [32]. Overall, our findings 

helped to identify novel biomarkers, providing  

the possible cut-in for further elucidation of the 

mechanisms in NOA. 

 

 
 

Figure 8. The validation in human seminal plasma samples. (A–E) The expression level of CCT8 (A), CDC6 (B), PSMD1 (C), RPL36A (D), 
and RPS4X (E) in human seminal plasma from 20 OA and 20 NOA patients. (F, G) The ROC (F) and confusion matrix (G) displayed that the RF 
model was a promising classifier in the collected human samples. NOA, non-obstructive azoospermia; OA, obstructive azoospermia. *,  
P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Table 4. The AUCs of the genes and the RF model in each cohort. 

ID 
GSE9210 GSE145467 Local cohort 

AUC 95% CI AUC 95% CI AUC 95% CI 

CCT8 0.632 0.475-0.790 0.510 0.231-0.789 0.734 0.556-0.912 

CDC6 0.711 0.532-0.889 0.750 0.489-1.000 0.640 0.456-0.824 

PSMD1 0.621 0.471-0.771 0.520 0.247-0.793 0.679 0.508-0.850 

RPS4X 0.932 0.869-0.995 0.920 0.805-1.000 0.798 0.656-0.939 

RPL36A 0.735 0.608-0.862 1.000 1.000-1.000 0.700 0.528-0.872 

The RF model 1.000 1.000-1.000 0.900 0.769-1.000 0.725 0.589-0.861 

AUC, area under curve; CI, confidence interval; RF random forest. 

 

Table 5. The predictive performance of the random forest model in each cohort. 

Cohort Accuracy Sensitivity Specificity Positive predictive value Negative predictive value 

GSE9210 1.000 1.000 1.000 1.000 1.000 

GSE145467 0.900 0.833 1.000 1.000 0.800 

Local cohort 0.725 0.800 0.680 0.600 0.850 

 

The limitations of the present study should be 

acknowledged. First, the research is retrospective, and a 

large-scale, multi-center, and prospective clinical trait 

would be beneficial to confirm the usefulness in  

clinical practice. Second, several novel biomarkers were 

identified, but their biological functions in NOA are 

unknown, and a series of experimental exploration 

ought to be conducted. 

 

In this paper, we presented a random forest diagnosis 

model to distinguish NOA from OA, which was based on 

scRNA-seq analysis and externally validated, providing 

novel insights into the underlying mechanisms of NOA. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 

 
 

Supplementary Figure 1. The top 4 components and the correlated genes in PCA analysis. (A) The Top related genes to each 
principal component. (B) The heatmap indicating the expression level of the Top related genes. The colors ranging from purple to yellow 
represented the expression values from low to high. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The cells markers of the cell clusters. 

 

Supplementary Table 2. The analysis of the PPI network. 

node_name MCC DMNC MNC Degree EPC BottleNeck EcCentricity Closeness Radiality Betweenness Stress ClusteringCoefficient 

UGT1A10 1 0 1 1 1.429 1 0.06667 1 0.2 0 0 0 

UGT1A1 1 0 1 1 1.429 1 0.06667 1 0.2 0 0 0 

RPL36A 6 0.46346 3 3 4.331 1 0.12 7.05 1.87059 0 0 1 

RPL39 6 0.46346 3 3 4.291 1 0.12 7.05 1.87059 0 0 1 

RPL10 6 0.46346 3 3 4.346 1 0.12 7.05 1.87059 0 0 1 

PRKCE 1 0 1 1 1.403 1 0.06667 1 0.2 0 0 0 

PPP1CA 1 0 1 1 1.403 1 0.06667 1 0.2 0 0 0 

LIN7B 1 0 1 1 1.747 1 0.06667 2 0.31111 0 0 0 

HIP1 1 0 1 1 1.796 1 0.06667 2 0.31111 0 0 0 

HIF1A 1 0 1 1 3.412 1 0.15 6.75 2.11765 0 0 0 

PRIM1 1 0 1 1 3.035 1 0.12 6.35 1.87059 0 0 0 

CLSPN 1 0 1 1 3.082 1 0.12 6.35 1.87059 0 0 0 

GINS2 1 0 1 1 3.034 1 0.12 6.35 1.87059 0 0 0 

FBXO5 2 0.30779 2 2 4.677 1 0.15 7.91667 2.29412 0 0 1 

ESCO2 1 0 1 1 3.147 1 0.12 6.35 1.87059 0 0 0 

CDC6 6 0.30779 2 6 5.521 5 0.15 9.91667 2.43529 116 116 0.06667 

ITGB1 1 0 1 1 1.449 1 0.06667 1 0.2 0 0 0 

CD9 1 0 1 1 1.449 1 0.06667 1 0.2 0 0 0 

RPS4X 7 0.46346 3 4 5.06 4 0.15 9 2.36471 84 84 0.5 

TUBA8 2 0.30779 2 2 4.384 1 0.15 7.5 2.18824 0 0 1 

RGS6 1 0 1 1 3.558 1 0.15 7 2.15294 0 0 0 

PDCL3 1 0 1 1 3.37 1 0.15 7 2.15294 0 0 0 

TUBA4A 2 0.30779 2 2 4.562 1 0.15 7.5 2.18824 0 0 1 

CCT8 7 0.30779 2 7 6.502 18 0.2 11.33333 2.71765 186 186 0.09524 

PSMD1 5 0.30779 2 5 6.164 18 0.2 10.5 2.68235 152 152 0.2 

BPI 2 0.30779 2 2 4.974 1 0.2 8.33333 2.43529 0 0 1 

CHGB 1 0 1 1 1.43 1 0.06667 1 0.2 0 0 0 

APLP2 1 0 1 1 1.43 1 0.06667 1 0.2 0 0 0 

VAMP2 3 0 1 3 2.248 4 0.13333 3 0.4 6 6 0 

AP1S2 1 0 1 1 1.747 1 0.06667 2 0.31111 0 0 0 

 


