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INTRODUCTION 
 

Breast cancer is the most common malignancy in 

women worldwide, with a continuous increase in its 

incidence [1]. Over the past decades, advancements in 

determining the molecular mechanisms of breast 

cancer have led to the identification of canonical 

markers for breast cancer subtypes, including 

immunohistochemical, proliferative, genomic, and 

immune markers [2]. Additionally, endocrine therapy, 
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ABSTRACT 
 

Antitumor immunotherapy can enable promising and durable responses following their clinical application. 
However, heterogeneity in the tumor immune microenvironment leads to differences in the individual 
response rates. In this study, we identified novel immune-related molecular subclasses of breast cancer using a 
non-negative matrix factorization analysis. We enrolled 4184 patients with breast cancer, including 1104 
patients from The Cancer Genome Atlas as a training cohort and 3080 patients from another four independent 
datasets as validation cohorts. In the training cohort, 36.9% of patients who exhibited significantly higher 
immunocyte infiltration and enrichment of immune response-associated signatures were categorized into an 
immune class, which was confirmed by probing the expression of immunocyte markers (CD3, CD19, and 
CD163). Within the immune class, 53.3% of patients belonged to an immune-suppressed subclass, characterized 
by the activation of stroma-related signatures and immune-suppressive cells. The remaining patients in the 
immune class were allocated to an immune-activated subclass. The interferon-γ and granzyme B levels were 
higher in the immune-activated subclass, whereas the transforming growth factor-β1 and programmed cell 
death-1 (PD-1) levels were higher in the immune-suppressed subclass. The established molecular classification 
system was recapitulated in validation cohorts. The immune-activated subclass was predicted to have a better 
response to anti-PD-1 immunotherapy. The immune-related subclasses were associated with differences in 
copy number alterations, tumor mutation burden, neoantigens, tumor-infiltrating lymphocyte enrichment, 
PD-1/programmed death-ligand 1 expression, mutation landscape, and various infiltration immunocytes. 
Overall, we established a novel immune-related molecular classification of breast cancer, which may be used to 
select candidate patients for immunotherapy. 
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targeted therapy, chemotherapy, and immunotherapy 

have been preferably used for individual breast cancer 

subtypes [3, 4]. For example, neoadjuvant combination 

therapy, which adopts targeted agents and 

chemotherapy, is recommended for human epidermal 

growth factor receptor 2 (HER2)-positive and triple-

negative breast cancers [5]. For advanced breast cancer 

with metastasis, the use of small molecule inhibitors 

and immunotherapy are fundamental strategies based on 

the tumor subtype and molecular characteristics [6]. 

Despite improvement in the oncologic outcomes of 

patients with breast cancer in recent years, most patients 

with advanced breast cancer are at a higher risk of 

relapse and distant metastasis, which ultimately leads to 

their death [7, 8]. Traditional classification systems and 

prognostic prediction markers do not accurately reflect 

the biological heterogeneity and clinical complexity of 

breast cancer. Therefore, it is important to identify 

novel molecular subclasses contributing to tumor 

heterogeneity to guide optimal clinical management. 

 

Antitumor immunotherapy, which enhances immune 

activation, has shown encouraging results in patients with 

breast cancer [9, 10]. In a recent phase-III randomized 

controlled trial (IMpassion130), patients with breast 

cancer were successfully treated with programmed cell 

death-1 (PD-1) [11]. Combination therapy of immune 

checkpoint inhibitors (ICIs) with nanoparticle albumin-

bound-paclitaxel has been approved as the standard 

first-line therapy in a subpopulation of patients with 

metastatic triple-negative breast cancer [12]. 

Additionally, the KEYNOTE-522 study suggested the 

use of immunotherapy in patients with early breast 

cancer [13]. However, our incomplete understanding of 

tumor microenvironment (TME) interactions limits the 

clinical application of immunotherapy, as only a subset 

of patients with breast cancer benefit from antitumor 

immunotherapy [14]. Therefore, further dissection of the 

components of the TME and identification of individual 

patient molecular characteristics and immune status could 

provide vital information for tailoring appropriate 

strategies for candidate patients. 

 

Computational algorithms have been applied for the 

dissection of transcriptomic sequencing data for cancer 

subtyping. Non-negative matrix factorization (NMF) is 

an analysis method that could aid in virtually micro 

dissecting the molecular characteristics from bulk gene 

expression profile data. NMF is considered versatile in 

characterizing various immune landscapes in 

hepatocellular carcinoma and small-cell lung cancer 

[15, 16]. In this study, we used NMF to dissect the gene 

expression profiles in breast cancer. We established a 
novel immune-related classification system of breast 

cancer that could guide the selection of candidate 

patients for immunotherapy. 

RESULTS 
 

Establishment of a novel immune-related molecular 

classification system for patients with breast cancer 

 

To identify the immune-related subclass of patients with 

breast cancer, we comprehensively dissected the mRNA 

expression profiles using a combinational algorithm 

(Supplementary Figure 1). A total of 4184 patients with 

breast cancer were enrolled from public databases, 

including 1104 patients from The Cancer Genome Atlas 

(TCGA; as the training cohort) and 3080 patients from 

four external cohorts (as the validation cohort; Table 1). 

Ten expression patterns were identified in the training 

cohort using the NMF algorithm (Supplementary Figure 

2A). Using the ESTIMATE algorithm, the immune 

enrichment score of each patient was calculated. The 

average expression value of the eighth pattern was 

significantly higher than that of other patterns 

(Supplementary Figure 2B). Thus, we regarded this 

pattern as an “immune factor.” The maximum NMF 

decomposition weight among the remaining nine 

patterns was selected as the representative of these nine 

patterns, and then the genes were sorted according to 

the difference between weight of pattern 8 and 

maximum weight of the other patterns, and the top 150 

genes were selected as "exemplar genes,” which are 

presented in Supplementary Table 1. These exemplar 

genes were highly enriched in signaling involved in 

immune activation, such as B-cell-mediated immunity, 

complement activation, immunoglobulin-mediated 

immune response, humoral immune response, 

immunoglobulin complex, antigen binding, and antigen 

processing and presentation (Supplementary Figure 3A, 

3B). These results further verified immune-related 

signaling and functions of the immune factor. 

 

Based on the 150 example genes, the patients in the 

training cohort were roughly classified by consensus 

clustering, which was refined using the 

multidimensional scaling random forest algorithm to 

group the patients more precisely (Supplementary 

Figure 4A). Two groups were established, one 

accounted for 36.9% of patients in the training cohort 

(407/1104) and the other accounted for 63.1% of 

patients (697/1104) (Supplementary Figure 4B). The 

previously established immune-related signatures were 

analyzed to explore the characteristics of the established 

subclasses (Supplementary Table 2). The immunocyte-

related signatures, tertiary lymphoid structures (TLS), 

IFN signatures, and cytolytic activity (CYT) scores of 

patients in the high-immune enrichment group were 

significantly higher than those of patients in the low-

enrichment group (all P < 0.05, Figure 1A). This high-

immune enrichment group was considered as the 

immune class, whereas the low-enrichment group was 
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Table 1. Patient characteristics. 

 TCGA GSE2109 GSE25066 GSE58644 METABRIC 

Overall 1104 350 508 318 1904 

Data array RNA-seq Microarray Microarray Microarray Microarray 

Age (years)      

≥60 514 165 104 143 1062 

<60 589 184 404 175 842 

Sex      

Male 12 – – – 0 

Female 1091 – – – 1904 

Stage      

T0  – 3 – – 

T1 281 – 30 43 – 

T2 641 – 255 58 – 

T3 138 – 145 13 – 

T4 40 – 75 1 – 

ER status      

Positive 814 160 297 247 1459 

Negative 239 83 205 70 445 

PR status      

Positive 704 127 243 – 1009 

Negative 346 113 258 – 895 

HER2 status      

Positive 164 61 6 58 236 

Negative 566 163 485 253 1668 

Abbreviations: ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 2; TCGA: 
The Cancer Genome Atlas. 
 

defined as the non-immune class. These results were 

confirmed in our clinical tumor samples via 

immunohistochemistry staining. The immune and non-

immune classes were screened from our collected tumor 

samples with RNA sequencing data using the above-

mentioned algorithm. The levels of CD3, CD19, and 

CD163 (markers of T, B, and myeloid cells) in the 

immune class were higher than those in the non-

immune class (Figure 1B). Moreover, the functional 

enrichment analysis revealed that differentially 

expressed genes (DEGs) between the immune and non-

immune classes were mainly associated with immune-

related pathways, including Th17/Th1/Th2 cell 

differentiation, complement activation, adaptive 

immune response, and lymphocyte-mediated immunity 

(Supplementary Figure 5A, 5B). Similarly, immune 

cells and immune response-related pathways were 

significantly activated in the immune class, as 

determined using the gene set enrichment analysis 

(Supplementary Figure 5C). 

 

The molecular classes were compared with those in 

previously reported breast cancer-related molecular 

classification to further validate the robustness of the 

immune-based classification system. Thorsson et al. 

[17] identified six subclasses widely used for immune-

related classification. PAM50, a 50-gene signature, 

provides intrinsic molecular subclasses for risk 

stratification in patients with breast cancer [18]. IFN-γ 

dominant (204/407 vs. 191/697, P < 0.01) and ER- 

(HER2 and Basal, 154/407 vs. 121/697, P < 0.01) 

subtypes were more enriched in the immune class, 

whereas wound healing (108/407 vs. 265/697, P < 0.01) 

and ER+ (LumA and LumB, 235/407 vs. 554/697, P < 

0.01) subtypes were significantly reduced (Figure 1A). 

The IFN-γ dominant and ER- subtypes are reportedly 

associated with high immunogenicity, implying the 

immune activation characteristics of the immune class. 

 

Immune class was divided into immune-activated 

and immune-suppressed subclasses based on the 

activation of stromal signatures 

 

The role of the TME component in regulating immune 

activation varies with the release of chemokines, 

cytokines, and other soluble factors, as well as ligands 

expressing inhibitory receptors [19, 20]. To explore the 

component influencing the immunotherapeutic effect, 
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the immune class was further analyzed using the nearest 

template prediction (NTP) algorithm. As shown in 

Figure 2A, 46.7% (190/407) of patients showed a lack 

of stromal-activated signatures and relatively low 

stromal enrichment scores in the immune class, whereas 

the remaining 53.3% (217/407) of patients in the 

immune class presented the opposite results. Compared 

with patients lacking stromal-activated signatures, 

patients with stromal-activated signatures showed 

higher TGF-β signatures, such as the Wnt/TGF-β, 

fibroblast TGF-β response (fibroblast-TBR), T cell 

TGF-β response (T cell-TBR), late TGF-β, and cancer-

associated ECM (C-ECM) signatures (Figure 2A). 

Pinyol et al. reported a Wnt/TGF-β proliferation 

subclass with immunosuppressive pro-carcinogenic 

microenvironment [21]. TGF-β suppresses CD4+ T 

helper 2 cell-mediated anti-cancer immunity, and blocks 

TGF-β signaling prevents breast cancer progression 

 

 
 

Figure 1. Identified immune-related subclasses of patients with breast cancer. (A) Consensus-clustered heatmap on the TCGA-

BRCA cohort (n = 1,104) based on the example genes of immune factors selected by NMF, and refine it through the multidimensional 
scaling random forest to define the immune class (407/1104, 36.9%, pink bar). Immune-related signatures were compared between 
immune and non-immune classes. Red and blue bars correspond to high and low scores of each signature, respectively. (B) Representative 
images of CD3, CD19, and CD163 (markers of T, B, and myeloid cells, respectively) staining in the immune and non-immune classes. Scale 
bar, 100 μm. Abbreviations: IFN: interferon; TLS: tertiary lymphoid structure; CYT: cytolytic activity score; NMF: non-negative matrix 
factorization; TCGA–BRCA: The Cancer Genome Atlas-Breast Cancer. 
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[22]. TGF-β is a recognized immunosuppressant in the 

immune microenvironment, and C-ECM regulated by 

activated CAFs can also recruit immunosuppressive cells 

[23, 24]. Therefore, we defined the stromal-activated 

group as the immune-suppressed subclass, whereas 

patients with a lack of stromal activation were 

included in the immune-activated subclass. 

Additionally, the immunosuppressive cell-related 

signature (i.e., Treg cells, tumor-infiltrating Treg cells 

(TITRs), myeloid-derived suppressor cells (MDSCs)) 

and PD-1 signaling were upregulated in the immune-

suppressed subclass compared with those in the 

immune-activated subclass (Figure 2A). The mRNA 

expression of immunosuppressive genes such as TGFB1, 

TGFB3, and LGALS1 was also significantly upregulated 

in the immune-suppressed class (Figure 2B). 

 

 
 

Figure 2. Identified immune-activated and -suppressed subclasses of the immune class. (A) Based on the activation of 

stromal signatures, the immune class was divided into immune-suppressed (217/407, 53.3%; blue bar) and immune-activated (190/407, 
46.7%, red bar) subclasses by NTP. Immune suppression-related signatures were compared between the immune-activated and -
suppressed classes. Red and blue bars correspond to high and low scores of each signature, respectively. The signatures predicted to be 
positive by the NTP algorithm are marked in red, and those predicted to be negative are marked in gray. ( B) Expression levels of 
immunosuppressive genes were compared between the immune-activated and -suppressed subclasses. Abbreviations: TITR: tumor-
infiltrating Tregs; MDSC: myeloid-derived suppressor cell; C-ECM: cancer-associated extracellular matrix; NTP: nearest template 
prediction; ns: not significant. P > 0.05, ****P ≤ 0.0001). 



 

www.aging-us.com 24318 AGING 

To validate the varied TME status, we probed the 

protein levels of markers representing immune 

activation and suppression in our collected clinical 

tumor samples by immunofluorescence staining. The 

immune-activated and -suppressed subclasses were 

screened from our collected tumor samples with RNA 

sequencing data using the NTP algorithm. The protein 

levels of IFN-γ and granzyme B co-staining with CD8+ 

T cells were upregulated in the immune-activated 

patients compared with those in the immune-suppressed 

patients (Figure 3A, 3B). Notably, the TGF-β1+CD45+ 

or PD-1+CD8+ double-positive cells were higher in the 

 

 
 

Figure 3. Immune-activated and -suppressed status of the tumor niche. (A) Co-staining of CD8 and IFN-γ in immune-activated and 

-suppressed patients. (B) Co-staining of CD8 and granzyme B in immune-activated and -suppressed patient samples. (C) Co-staining of CD45 
and TGF-β1 in immune-activated and -suppressed patient samples. (D) Co-staining of CD8 and PD-1 in immune-activated and -suppressed 
patient samples. Scale bar, 100 μm. Abbreviations: Immu-act: immune-activated; Immu-sup: immune-suppressed. 
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immune-suppressed patients than in the immune-

activated patients (Figure 3C, 3D). Collectively, the 

immune class could be further subdivided according to 

the component of TME, implicating that immune-

suppressive signaling and immune-suppressive cell 

elimination could potentially improve anti-cancer 

immunotherapy in patients with immune-suppressed 

status. 

 

Recurrence of the established molecular classification 

in four independent cohorts 

 

To recapitulate our established immune-based 

molecular classification, four additional external cohorts 

with mRNA expression profiles (i.e., METABRIC, 

GSE2109, GSE5066, and GSE58644) were examined. 

Based on the top 150 DEGs defined as a classifier, 

patients in the validation cohorts were separated into 

immune and non-immune classes; the immune class 

was further subdivided into immune-activated and -

suppressed subclasses as mentioned for the training 

cohort. In METABRIC, 48.6% (926/1904) of patients 

with higher enrichment scores for immune-related 

signatures were allocated to the immune class, whereas 

the remaining 51.4% (978/1904) of patients were 

allocated to the non-immune class. In the immune class, 

56.6% (524/926) of patients who showed a lack of 

activated tumor-stromal characteristics were assigned to 

the immune-activated subclass (Supplementary Figure 6). 

Notably, these three immune-related subclasses were 

recapitulated in the other three validation cohorts 

(Supplementary Figures 7–9). The proportion of patients 

in the immune class was approximately 50%, and that in 

the immune-activated subclass was 50.3%–64.5% in all 

cohorts. Consistently, immune enrichment scores, 

immune signaling molecules, and immune-related 

signatures of the immune class were significantly 

upregulated compared with those in the non-immune 

class. Signatures related to immune suppression (e.g., 

TGF-β-related signatures, Treg cells, TITR, and 

MDSCs) were significantly higher in the immune-

suppressed subclass than in the immune-activated 

subclass. The mRNA expression of immunosuppressive 

genes such as TGFB3 and LGALS1 was also 

significantly upregulated in the immune-suppressed 

subclass compared with that in the immune-activated 

subclass (Supplementary Figure 10). Collectively, the 

use of NMF consensus clustering and NTP could 

accurately and robustly classify patients with breast 

cancer into three types of immunophenotypes. 

 

Identified molecular subclasses associated with 

response to immunotherapy 

 

For a newly defined immunophenotype, its guidance in 

clinical treatment is a concern. Therefore, the potential 

of our immunophenotype classification system to 

predict ICI treatment response was evaluated in all 

cohorts. The mRNA expression profile similarity 

between patients with breast cancer and those with 

melanoma receiving anti-PD-1 treatment was calculated 

using a submap algorithm. Notably, patients in the 

immune-activated subclass presented higher mRNA 

expression profile similarity with those who responded 

to anti-PD-1 treatment than patients in the other two 

groups (Figure 4A). These results indicate that patients 

in this subclass can gain more benefits from anti-PD-1 

immunotherapy. Tumor immune dysfunction and 

exclusion (TIDE) is a well-accepted algorithm for 

evaluating a patient’s response to ICI treatment based 

on tumor expression profile data [25]. The results of 

TIDE revealed that patients in the immune-activated 

subclass had a higher predicted response rate than those 

in the other two groups (Figure 4B). Collectively, these 

results indicated that patients in the immune-activated 

subtype could be candidate patients for receiving ICI 

treatment. 

 

Heterogeneity in tumor molecular characteristics 

between immune-related subclasses 

 

To explore the molecular mechanism leading to varied 

immunophenotypes, a series of tumor molecular 

characteristics was compared between immune-related 

subclasses. Patients in the immune class had a lower 

deletion burden of copy number alterations (CNAs) at 

the arm level than those in the non-immune class 

(Figure 5A). Additionally, the immune class had a 

higher level of tumor mutation burden (TMB), 

neoantigens (NeoAgs), tumor-infiltrating lymphocytes 

(TILs), and PD-1/PD-L1 expression than the non-

immune class (Figure 5B–5F). The mutation landscape 

of the three immunophenotypes showed an obvious 

discrepancy in the MutSigCV algorithm. TP53 mutation 

frequency was significantly higher in the immune class 

than in the non-immune class (immune class, 47.7% vs. 

non-immune class, 15.4%, P < 0.01) (Figure 5G). In the 

immune-activated subclass, the mutation percentage of 

ITIH5L and FBXW7 was significantly higher than that 

in the other two subclasses (ITIH5L: immune-activated, 

4.4% vs. immune-suppressed, 2.0% and non-immune, 

0.96%; FBXW7: immune-activated, 4.4% vs. immune-

suppressed, 2.9% and non-immune, 0.80%, 

respectively, all P < 0.05). PIK3CA showed a higher 

mutation percentage in the immune-suppressed subclass 

than that in the other two subclasses (immune-

suppressed, 41.5% vs. immune-activated, 20.0% and 

non-immune, 36.3%, respectively, P < 0.01). In the 

non-immune class, the frequency of GATA3 mutation 
was significantly upregulated (non-immune, 14.5% vs. 

immune-activated, 9.4% and immune-suppressed, 8.8%, 

respectively, P = 0.04). Collectively, the immune class 
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had higher TMB, NeoAgs, TIL enrichment, and PD-1/ 

PD-L1 expression and lower CNA, implying that all 

these factors underlie the mechanism of varied 

immunophenotypes of breast cancer. 

 

Infiltrated immune cell types correlated with 

immune-related subclasses 

 

Different immune cell subtypes may have antitumor or 

protumor effects. For example, CD8+ cytotoxic T cells, 

natural killer cells, CD4+ T helper cells, and M1 

macrophages have antitumor roles, whereas Treg cells, 

M2 macrophages, and MDSCs assist in tumor immune 

evasion. To explore the variations in the immune cell 

components among the three immunophenotypes, we 

compared constituent ratio of multiple immune cell 

subtypes in the training set. Using CIBERSORT 

analysis, the ratio of cytotoxic immunocytes (such as 

plasma cells, CD8+ T cells, memory-activated CD4+ 

T cells, follicular helper T cells, and M1 macrophages) 

was significantly higher in the immune-activated 

subclass, implying immune activation status (Figure 

6A). In contrast, the ratio of memory resting CD4+ 

T cells, M0 macrophages, M2 macrophages and resting 

mast cells was significantly higher in the immune-

suppressed subclass compare with immune-activated 

subclass (Figure 6A). Using the TIMER algorithm, the 

ratio of CD4+ T cells and neutrophils was slightly 

 

 
 

Figure 4. Different responses to immunotherapy of patients belonging to the established molecular subclasses.  (A) Similarity 

between patients of different subclasses and patients with melanoma who received ICI treatment were compared using the submap 
algorithm. Patients in the immune-activated subclass had higher mRNA expression profile similarity with patients that responded to anti-
PD-1 treatment. (B) Distribution of the clinical response to ICI treatment in the three immunophenotypes was determined using the TIDE 
analysis. Patients in the immune-activated subclass had a higher predicted response rate than the other two groups. 
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higher in the immune-activated subclass, whereas the 

ratio of macrophages was significantly higher in the 

immune-suppressed subclass (Figure 6B). These results 

further confirmed the immune-activated and -

suppressed status of the patients with breast cancer. 

DISCUSSION 
 

Although immunotherapy with ICIs shows promising 

results in anti-cancer therapy, only a small subset of 

patients responds to it [26]. Exploring predictive markers 

 

 
 

Figure 5. Association between immune-related molecular subclasses and molecular characteristics. (A–F) Copy number 

deletion at the arm level (A), TMB (B), neoantigens (C), TIL abundance (D), and PD-1/PD-L1 mRNA expression levels (E, F) were compared 
between patients in the immune and non-immune subclasses. (G) Oncoprint of differentially mutated tumor-related genes among the 
three immunophenotypes. Abbreviations: TIL: tumor-infiltrating lymphocytes; TMB: tumor mutant burden; NeoAg: neoantigen. *P ≤ 0.05, 
**P ≤ 0.01, ***P ≤ 0.001, or ****P ≤ 0.0001. 
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and stratifying patients based on certain characteristics 

are important strategies to improve the effect of 

immunotherapy [27]. Although classic molecular 

classification systems of breast cancer already exist, 

they do not account for the immune status and cannot 

effectively guide immunotherapy. Recently, a novel 

definition of cancer, integrating the dynamic crosstalk 

between malignant cells and immunocytes, has enabled 

the identification of novel immune-related subtypes 

associated with patient outcomes and response to ICIs 

[28]. Additionally, an immune-based classification 

system called the “immunoscore,” determined using 

 

 
 

Figure 6. Varied infiltrating immune cell subtypes among the three immunophenotypes. (A, B) Comparison of the immune cell 

type composition among the three immunophenotypes using CIBERSORT (A) and TIMER (B) algorithms. ns (not significant): P > 0.05, *P ≤ 
0.05, **P ≤ 0.01, ***P ≤ 0.001, or ****P ≤ 0.0001, ns symbol was hidden. 
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T-cell infiltration, has been demonstrated to be more 

robust than tumor-node-metastasis classification [29]. In 

this study, we micro dissected gene expression profiles 

of patients with breast cancer and identified a new 

immune-related molecular classification system of 

breast cancer using the NMF algorithm. The established 

immune-related molecular subclasses were associated 

with response to ICIs, and predictors of the ICI 

response, such as TMB, NeoAgs, TILs, PD-1/PD-L1 

expression, genomic alteration, and infiltrating immune 

cell types. 

 

NMF, an analysis method that separates multiple-scale 

data into limited primary components, has been adopted 

in dissecting bulk sequencing data [30]. We divided 

patients into immune and non-immune classes based on 

the immunocyte infiltration level according to the NMF 

analysis. The patients in the immune class presented a 

higher immunocytes, immune activation-related 

signature, IFN-γ, cytolytic activation, and tertiary 

lymphoid structure, representing immune “hot” tumors. 

In contrast, the non-immune class represented immune 

“cold” tumors. These results were validated by probing 

the expression of markers of immunocytes using 

immunohistochemistry staining. Although immune 

“hot” tumors are infiltrated with immunocytes, 

immune-suppressive signaling may harness the 

antitumor immune effect [31, 32]. Therefore, 

investigating the components in the tumor immune 

niche is pivotal in cancer immunotherapy. According to 

stromal activation calculated using the NTP algorithm, 

the immune class was further separated into immune-

activated and -suppressed subclasses. The immune-

suppressed subclass showed higher scores for TGF-β 

signaling, such as fibroblast–TBRs, T-cell–TBRs, and 

late TGF-β signaling. TGF-β secreted by malignant 

epithelial cells, CAFs, and immunocytes further 

generate an immune-suppressive niche via metabolic 

reprogramming of the tumor and by orchestrating the 

inactivation of immune cells, leading to a decrease in 

the efficacy of anti-cancer immunotherapies [33]. 

Additionally, the immune-suppressed subclass was 

more enriched with immune suppressive cells and 

signaling (e.g., MDSCs, M2 macrophages, Treg cells, 

and PD-1 signaling) than the immune-activated 

subclass. These results were recapitulated in another 

four independent cohorts and validated through 

immunohistochemistry and immunofluorescence 

staining of clinical samples, confirming the robustness 

of our established molecular classification. Collectively, 

these results implied that patients belonging to the 

immune-activated subclass might respond to ICI 

monotherapy. In contrast, patients in the immune-
suppressed subclass may need ICI in combination with 

agents to eliminate immune suppressive cells or 

molecules. 

Immunotherapy has revolutionized the paradigm of cancer 

management, with promising and durable responses across 

various tumor types [12]. However, despite the 

identification of TMB, TILs, and PD-1 expression as 

markers to predict the response to ICIs, recognizing 

candidate patients who will respond to immunotherapy 

remains challenging [34]. To interrogate the predictive 

significance of the identified immune-related subclasses, 

we evaluated the response rate to ICIs of patients 

belonging to the three molecular subclasses. Unexpectedly, 

the immune-activated subclass had the highest response to 

ICIs, whereas the immune-suppressed subclass had the 

lowest response to ICIs. These results suggest that patients 

belonging to the immune-activated subclass may be 

potential candidates for ICI therapy, thus providing a new 

strategy for selecting patients to receive ICI therapy. 

 

To explore the molecular characteristics from the 

perspective of genomics and transcriptomics, we 

investigated the CNAs, TMB, NeoAgs, and gene 

mutations among the immune-related subclasses. 

Recent studies have reported that patients with lower 

CNA burden show a better outcome and a favorable 

response to immunotherapy, which may be because 

higher CNA induces immune evasion [35]. Consistent 

with the findings of previous studies, lower CNA 

deletion at the arm level was observed in the immune 

class than in the non-immune class. Additionally, 

classic markers to predict the response to ICIs, such 

as TMB, NeoAgs, TIL, and PD-1/PD-L1, were 

significantly upregulated in the immune class compared 

with those in the non-immune class confirming 

susceptibility to immunotherapy in patients allocated to 

the immune class. Gene mutation landscape is a pivotal 

component involved in the varied immunophenotypes. 

We observed different mutation frequencies among the 

three subclasses, reflecting potential mechanisms 

influencing the tumor immune niche. Immune cell 

subtype analysis among the three subclasses also 

confirmed the immune-activated and -suppressed status 

of patients with breast cancer. Further experimental 

conformation is warranted for an in-depth investigation 

of the underlying molecular mechanisms. Additional 

validation in larger breast cancer cohorts receiving ICI 

therapy is also needed. 

 

Tekpli et al. established a three-subclass classification 

with gradual levels of immune infiltration of breast 

cancer [36]. They also identified subclass B associated 

with a poor response to neoadjuvant chemotherapy and a 

pro-tumorigenic immune infiltration. This classification 

provides a novel prognostic factor of immune contexture, 

which may be applied to make precise treatment 
decisions and improve outcome of patients with breast 

cancer. Our study identified an immune-suppressive 

subclass, which shows significant characteristics of 
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immune suppression. Thus, we add a novel immune-

suppressive subclass to current molecular classification 

of breast cancer. Our results suggest that patients with 

breast cancer allocated to the immune-activated subclass 

have a “hot” immune status. The tumor may be regressed 

by ICI immunotherapy with single-agent treatment. In 

contrast, for patients in the immune-suppressed subclass, 

ICI therapy combined with a TGF-β inhibitor or an agent 

to eliminate immune-suppressive cells might improve 

efficacy. Our novel classification provides new insights 

and assists in identifying candidates for tailored optimal 

immunotherapy. 

 

MATERIALS AND METHODS 
 

Study cohort 

 

The study cohort comprised 4184 patients with breast 

cancer from public databases whose omics data and the 

corresponding follow-up information were available. 

TCGA–Breast Cancer (BRCA) cohort, derived from 

UCSC Xena (http://xena.ucsc.edu/) and containing 

details of 1104 patients with breast cancer, was used as 

the training cohort. The validation cohort comprised 

four independent external data cohorts, which were 

obtained from the Gene Expression Omnibus (GSE2109 

(n = 350), GSE25066 (n = 508), and GSE58644 (n = 

318), http://www.ncbi.nlm.nih.gov/geo/), and Molecular 

Taxonomy of Breast Cancer International Consortium 

(METABRIC, n = 1904, https://www.cbioportal.org/). 

Clinical tumor samples from patients with breast cancer 

were obtained from West China Hospital. The trial was 

conducted in accordance with the Declaration of 

Helsinki (as revised in 2013). The study was approved 

by the Biomedical Ethics Committee of West China 

Hospital, and informed consent was obtained from all 

participants. 

 

Identification of the immune-related molecular 

subclasses in patients with breast cancer 

 

As a gene expression profiler of the training cohort, an 

unsupervised NMF algorithm was used to conduct 

virtual microdissection [37]. To screen the immune-

related NMF factor, the immune enrichment score of 

each patient was calculated using the ESTIMATE 

method [38]. The average expression value of the eighth 

pattern was significantly higher than that of other 

patterns. Thus, this pattern was regarded as an “immune 

factor”. The largest NMF decomposition weight among 

the remaining nine factors is selected as the 

representative of these nine factors, and then sorts the 

genes according to the difference between weight in 

factor 8 and max weight in other factors, and the top 

150 genes are selected as “exemplar genes”. Then, we 

used NMFConsensus to dichotomize TCGA–BRCA 

cohort into immune and non-immune classes according 

to “exemplar genes”. To further correct the 

classification results from NMFConsensus, we used a 

multidimensional scaling random forest algorithm 

provided in the randomForest (v4.6-16) package. 

According to previously defined activated stroma 

signatures [39], the immune class was further allocated 

into immune-activated and immune-suppressed 

subclasses using the NTP (CMScaller_0.99.2 package) 

algorithm. 

 

Characterization of immunophenotypes of the 

established molecular subclasses 

 

To characterize the immunophenotypes of the 

established molecular subclasses, gene set variation 

analysis (v1.34.0) package [40] and NTP algorithm 

were used to perform enrichment scoring and positive 

prediction of immune-related signatures established 

previously (Supplementary Table 2). For immune and 

non-immune classes, DEGs that met the following 

criteria were determined using DESeq2 software: padj < 

0.05 and the absolute value of a log-2-fold change > 1. 

Functional enrichment analyses (Kyoto Encyclopedia of 

Genes and Genomes and Gene Ontology) of the DEGs 

were conducted using the clusterProfiler (v3.14.3) 

package [41]. GSEA was performed on molecular 

signature database gene sets (MSigDB) to enrich 

pathways in the immune class using the fgsea (v1.12.0) 

package [42]. 

 

CNAs, TMB, NeoAgs, and TILs were compared between 

the immune and non-immune subclasses. GDAC 

Firehose (https://gdac.broadinstitute.org) provided 

CNAs as calculated using GISTIC2.0 for use by 

researchers. Additionally, in a previous study, Saltz 

et al. [43] evaluated the abundance of TILs through 

hematoxylin and eosin-stained images of TCGA 

samples. The TMB was calculated using the maftools 

(v2.6.05) package based on TCGA–BRCA mutation data 

(http://xena.ucsc.edu/). NeoAg for individual patients 

in the training cohort was obtained from a previous 

study by Rooney et al. [44]. In addition, to identify 

genes with differential mutations among the three 

immunophenotypes, we first used the MutSigCV (v1.41) 

package to predict significant cancer-related mutated 

genes (P < 0.01) based on the mutation data, and then 

used independent tests to screen the differential mutation 

genes. Finally, we used maftools to display the mutation 

landscapes of the immunophenotypes. 

 

Validation of the robustness of established molecular 

classification 

 

We used the top 150 DEGs between immune and non-

immune classes in the training cohort as the classifier. 

http://xena.ucsc.edu/
http://www.ncbi.nlm.nih.gov/geo/
https://www.cbioportal.org/
https://gdac.broadinstitute.org/
http://xena.ucsc.edu/
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The NMF and ESTIMATE algorithms were performed 

to dichotomize the validation cohorts into immune and 

non-immune classes. The NTP method was conducted 

to further divide the immune class into immune-

activated or -suppressed subclasses. 

 

Prediction of response to immunotherapy of 

immune-related subclasses 

 

To evaluate the response rate to ICIs of different 

molecular subclasses, TIDE (http://tide.dfci. 

harvard.edu/) algorithm and submap analyses 

(Genepattern module “submap”) were conducted. 

 

Assessment of tumor-infiltrating immune cell types 

 

To explore the variations in immune cell types of 

different molecular subclasses, the CIBERSORT 

(https://cibersort.stanford.edu/) and TIMER 

(http://timer.cistrome.org/) analyses were performed. 

 

Immunohistochemistry and immunofluorescence 

 

To verify the three immunophenotypes in patients 

with breast cancer, the tumor samples were subjected 

to immunohistochemistry and immunofluorescence 

staining. The primary antibodies used were anti-TGF-

β1 (Invitrogen, MA516949), anti-PD-1 (Abcam, 

ab52587), anti-interferon (IFN)-γ (Abcam, 

ab231035), anti-CD8 (CST, 703065), anti-CD45 

(Abcam, ab40763), anti-CD3 (Abcam, ab16669), 

anti-CD163 (Abcam, ab182422), anti-CD19 (Abcam, 

ab134114), and anti-granzyme B (CST, 468905). 

Details regarding these analyses are provided in a 

previous study [45]. 

 

Statistical analysis 

 

Statistical analyses were conducted using R software 

unless otherwise stated, and the statistical 

significance level was set at 0.05. Student’s t-test and 

analysis of variance were used to analyze normally 

distributed variables, and Wilcoxon and Kruskal–

Wallis tests were used to analyze non-normally 

distributed variables. Fisher’s exact test and 

Pearson’s chi-squared test were conducted to evaluate 

categorical variables (ns (not significant): P > 0.05, 
*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, or ****P ≤ 

0.0001). 

 

Data availability  

 

All data generated or analyzed during this study are 
included in this published article and its supplementary 

information files; further inquiries can be directed to the 

corresponding author. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Flowchart summarizing the analysis methods involved in this research. 



 

www.aging-us.com 24330 AGING 

 
 

Supplementary Figure 2. “Immune factors” identified from bulk sequencing data. (A) A total of 10 patterns were identified using 

the NMF algorithm. Integration with the ESTIMATE algorithm revealed that the eighth pattern was enriched in most patients with high-
immune enrichment scores. (B) Boxplots showed the immune enrichment score of each patient in different NMF factors. ****P < 0.0001. 
Abbreviation: NMF: non-negative matrix factorization. 
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Supplementary Figure 3. Functional enrichment analysis of the top 150 exemplar genes in “immune factor.” (A) Histogram 
showing the top 5 enriched pathways for each GO category. Different colors indicate different GO categories, the length of the column 
indicates the size of the adjust p-value, and the line indicates the number of enriched genes. (B) Bubble plot showing the top 15 enriched 
pathways for KEGG enrichment. The horizontal axis indicates the rich factor (number of enriched genes/number of genes contained in the 
pathway), the size of the dot indicates the number of genes enriched in each pathway, and the color of the dot indicates the adjust p-value. 
Abbreviations: GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes. 
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Supplementary Figure 4. Two immune-based classes were identified by consensus clustering. (A) The classification results of 

NMF consensus were further corrected using the multidimensional scaling random forest algorithm. (B) The heatmap shows the patients’ 
distribution in different categories. Abbreviation: NMF: non-negative matrix factorization. 

 

 
 

Supplementary Figure 5. Characteristics of immune activation for each immune class. (A) Bubble plot showing the top 15 

enriched pathways for KEGG enrichment. The horizontal axis indicates the rich factor (number of enriched genes/number of genes 
contained in the pathway), the size of the dot indicates the number of genes enriched in each pathway, and the color of the dot indicates 
the size of the adjust p-value. (B) Histogram showing the top 5 enriched pathways of each GO category. Different colors indicate different 
GO categories, the length of the column indicates the size of the adjust p-value, and the line indicates the number of enriched genes. (C) 
Representative immune activation-related signaling pathways were evaluated by gene set enrichment analysis. Abbreviations: KEGG: Kyoto 
Encyclopedia of Genes; GO: Gene Ontology. 
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Supplementary Figure 6. Validation of the established immune-related molecular classification in the METABRIC cohort. 
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Supplementary Figure 7. Validation of the established immune-related molecular classification in the GSE2109 cohort. 
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Supplementary Figure 8. Validation of the established immune-related molecular classification in the GSE25066 cohort. 
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Supplementary Figure 9. Validation of the established immune-related molecular classification in the GSE58644 cohort. 
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Supplementary Figure 10. Expression of immunosuppressive genes was compared between immune-activated and immune-
suppressed subclasses in four independent external cohorts. ns: P > 0.05, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, or ****P ≤ 0.0001. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Top 150 weighted genes of factor 8. 

 

Supplementary Table 2. Previously established immune-related signatures. 

Signature name Reference 

Immune enrichment score Yoshihara et al. Nat Commun. 2013; 4:2612 

Stromal enrichment score Yoshihara et al. Nat Commun. 2013; 4:2612 

Immune signaling molecules Cancer Genome Atlas Network. Cell. 2015; 161:1681–96 

13 T-cell signature Spranger et al. Proc Natl Acad Sci U S A. 2016; 113:E7759–68. 

T cells Bindea et al. Immunity. 2013; 39:782–95 

CD8 T cells Bindea et al. Immunity. 2013; 39:782–95 

Treg cells Angelova et al. Genome Biol. 2015; 16:64 

TITR signature Magnuson et al. Proc Natl Acad Sci U S A. 2018; 115:E10672-e81 

MDSC Angelova et al. Genome Biol. 2015; 16:64 

T.NK. metagene Alistar et al. Genome Med. 2014; 6:80 

B-cell cluster Iglesia et al. Clin Cancer Res. 2014; 20:3818–29. 

B.P. metagene Alistar et al. Genome Med. 2014; 6:80 

Macrophages Bindea et al. Immunity. 2013; 39:782–95 

TLS signature Finkin et al. Nat Immunol. 2015; 16:1235–44 

6-gene IFN signature Chow et al. J Clin Oncol. 2016; 34:318–327 

CYT Rooney et al. Cell. 2015; 160:48–61 

WNT/TGF-β signature Lachenmayer et al. Clin Cancer Res. 2012; 18:4997–5007 

C-ECM signature Chakravarthy et al. Nat Commun. 2018; 9:4692 

M1/M2 macrophages Coates PJ et al. Cancer Res. 2008; 68:450–6 

Late TGFB signature Coulouarn C et al. Hepatology. 2008; 47:2059–67 

T cells-TBRS Calon A et al. Cancer Cell. 2012; 22:571–84 

Fibroblast-TBRS Calon A et al. Cancer Cell. 2012; 22:571–84 

Stromal activated Moffitt RA et al. Nat Genet. 2015; 47:1168-78 

PD-1 signaling Quigley M et al. Nat Med. 2010; 16:1147–51 

IS Thorsson V et al. Immunity. 2018; 48:812e830.e14. 

PAM50 Parker et al. J Clin Oncol. 2009; 27.8:1160 

Abbreviations: TITR: tumor-infiltrating Tregs; MDSC: myeloid-derived suppressor cell; IFN: interferon; TLS: tertiary lymphoid 
structure; CYT: cytolytic activity score; C-ECM: cancer-associated extracellular matrix. 

 


