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INTRODUCTION 
 

Tau is a microtubule-associated protein (MAP) that 

plays an important role in the assembly and 

stabilization of microtubules. It is predominantly an 

axonal protein and is involved in the regulation of 

neuronal morphology, neurite extension and axonal 

transport of organelles [1–4]. The pathological 

aggregation of the microtubule associated tau protein 

into filaments is a histopathological characteristic of 

tauopathies, including Alzheimer’s disease (AD) [5, 6]. 

However, recent studies suggest that soluble tau 

oligomers, the precursors to the higher order paired 

helical filaments (PHFs) and neurofibrillary tangles 

(NFTs), are more toxic and have a greater potential in 

spreading the tau pathology [7–9]. Moreover, it is also 

documented that the levels of tau oligomerization are 

elevated prior to NFTs formation in the brain of AD 

patients supporting a dynamic relationship between tau 

oligomerization and the progression of tauopathy in 

AD brains [10, 11]. 

 

Aging is one of the greatest risk factors for the 

development and progression of neurodegenerative 
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ABSTRACT 
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transgenic nematodes expressing the full length of wild type tau in neuronal cells and monitored mitochondrial 
morphology alterations over time. Although tau-expressing nematodes did not accumulate detectable levels of 
tau aggregates during larval stages, they displayed increased mitochondrial damage and locomotion defects 
compared to the control worms. Chelating calcium restored mitochondrial activity and improved motility in the 
tau-expressing larvae suggesting a link between mitochondrial damage, calcium homeostasis and neuronal 
impairment in these animals. Our findings suggest that defective mitochondrial function is an early pathogenic 
event of tauopathies, taking place before tau aggregation and undermining neuronal homeostasis and 
organismal fitness. Understanding the molecular mechanisms causing mitochondrial dysfunction early in 
tauopathy will be of significant clinical and therapeutic value and merits further investigation. 
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diseases, including tauopathies [12, 13]. Moreover, 

multiple studies have shown an interconnection 

between tau pathology and mitochondrial dysfunction 

[14, 15]. Indeed, tau-mediated mitochondrial damage 

could be due to reduced levels of mitochondrial 

activity [16–18], its interaction with mitochondrial 

proteins [11], modulation of mitochondrial dynamics 

[19] and activation of the mitochondrial apoptotic 

pathway [20–22]. Mitochondria constantly undergo 

fusion and fission to regulate their size, shape and 

numbers in response to nutrient availability, stress 

conditions and energy demand of the cell [23]. 

Neurons are particularly vulnerable to impairment of 

mitochondrial dynamics because they are largely 

dependent on mitochondria for energy production, 

especially at the synapses and because distribution of 

mitochondria to distal parts of the neuron require 

energy [24–27]. Mitochondrial fusion and fission 

events are also quality control mechanisms, since 

fusion complements damaged components of a 

mitochondrion with those of a healthy mitochondrion, 

and mitochondrial fission facilitates the selective 

autophagic removal of defective organelles, known as 

mitophagy [28]. Previous studies have shown that tau 

accumulation and mislocalization disturbs microtubule 

stability and interferes with transport of neuronal 

organelles, including mitochondria. These disturbances 

in trafficking partly explain tau mediated synapse and 

memory deficits in tauopathies [6, 8]. Although the 

effect of tau lesion on mitochondrial metabolism is 

frequently reported, it remains unclear whether altered 

mitochondrial homeostasis is a result of fully 

developed tau pathology or it is an early event in 

tauopathies and as such may play a critical role in the 

disease progression. 

 

Here, we report that excessive mitochondrial damage 

is an early event in neuronal cells in a nematode 

model of human tauopathy. Transgenic animals 

expressing the full length of wild type tau displayed a 

reduced number of mitochondria in neuronal 

processes of C. elegans larvae. The morphological 

characteristics of mitochondria indicated that tau 

expression promotes deregulation of mitochondrial 

function during nematode development and 

adulthood. Despite the fact that tau aggregation was 

mainly observed in adult animals, locomotion deficits 

were also present during larval stages underscoring 

the toxic effects of tau in organelle function and 

cellular physiology. Finally, we found that chelating 

calcium by ethylene glycol tetraacetic acid (EGTA) 

increased the mitochondrial membrane potential and 

improved motility in the tau-expressing larvae 
suggesting a positive correlation between 

mitochondrial function, calcium homeostasis and 

neuronal performance. 

RESULTS 
 

Age-dependent aggregation of wild type tau in C. 

elegans neurons 

 

To investigate the impact of tau on mitochondrial 

activity, neuronal function and organismal physiology, 

we utilized an already characterized nematode strain 

that expresses the full length of wild type human tau 

protein under the control of the pan-neuronal promoter 

of the snb-1 gene (the nematode synaptobrevin 

homologue) [29]. To avoid possible toxic effects of tau 

overexpression, we used a transgenic nematode strain 

expressing wild type tau at low levels (tauwt-low; PIR3, 

henceforth tau-expressing nematodes), which display 

mild phenotypic abnormalities [29]. We collected age-

synchronized worms and performed total tau protein 

extraction from the transgenic nematodes to assess the 

formation of tau oligomers and aggregates over time. 

We found that high molecular weight tau oligomers 

started to accumulate from day three of adulthood and 

gradually increased in C. elegans neurons with age 

(Figure 1A and Supplementary Figure 1A–1B). 

Accumulation of tau protein with age was not due to 

altered transcriptional activity of the tissue specific snb-

1 promoter (Gene Expression Omnibus (GEO) dataset 

GSE832 [30]). 

 

A recent study demonstrated that a low level of tau 

expression impaired mitochondrial number and 

distribution in neuronal processes in the tau-expressing 

C. elegans strain during day 1 and day 3 of adulthood 

[29]. To further examine the effect of low level of tau 

expression on neuronal mitochondria integrity, we 

generated transgenic animals co-expressing 

mitochondria-targeted mKate2::HA with wild type tau 

in neuronal cells. Interestingly, we found that 3-day-

old tau-expressing animals displayed more and smaller 

axonal mitochondria compared to the age-matched 

wild type nematodes (Figure 1B–1D and 

Supplementary Figure 2A). A growing body of 

evidence suggests that challenging conditions trigger 

mitochondrial fragmentation generating smaller 

organelles to promote the isolation and subsequent 

removal of damaged mitochondria through mitophagy 

[31–34]. Notably, several mutant isoforms of tau have 

been shown to inhibit mitophagy leading to the 

accumulation of defective mitochondria and 

subsequently to cellular and tissue deterioration [35, 

36]. Thus, our finding suggests that fragmented and 

damaged mitochondria accumulate in the neurons of 

tau-expressing worms. Although mitochondrial 

activity gradually declined with age in wild type 

animals, the mitochondrial membrane potential was 

highly reduced even in young tau-expressing 

nematodes (Figure 1E–1F and Supplementary Figure 
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2B), underlining the toxic effect of tau expression on 

energy metabolism. 

 

Proprioception has an essential role in the movement 

coordination and body balance of an organism. Age-

dependent deterioration of biological systems and 

pathological conditions could cause proprioception 

impairment leading to uncontrolled and inefficient 

mobility [37]. In C. elegans, proprioception can be 

evaluated by monitoring the sinusoidal wave pattern 

 

 
 

Figure 1. Impaired mitochondrial homeostasis and motility defects in tauwt-expressing 3-day adult animals. (A) Age-

dependent accumulation of wild type tau protein in neuronal cells (heigh molecular weight; HMW). (B) Representative fluorescent images 

of transgenic nematodes expressing pan-neuronally mitochondria-targeted mKate2::HA. Scale bar, 20 m. Tauwt-expressing 3-day-adult 
nematodes display (C) increased mitochondrial population and (D) smaller organelle compared to their wild type counterparts (n = 30; ***P 
< 0.0001; unpaired t-test). (E, F) Tauwt expressing nematodes display decreased mitochondrial membrane potential (n = 40; ***P < 0.0001; 

unpaired t-test). Scale Bar, 100 m. (G) Representative images of 3-day adult wild type and tauwt expressing nematodes tracks. (H) Body 
bends of 3-day adult wild type and tauwt- animals per 30 seconds in M9 buffer (n = 20; ***P < 0.0001; unpaired t-test). 
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that is generated by the periodic bending of its head and 

body [38, 39].  Wild type nematodes inscribe a 

sinusoidal track as they move on an agar plate seeded 

with OP50 E. coli bacterial strain. The characteristic 

properties (amplitude and wavelength) of tracks 

generated by the tau-expression animals were 

dramatically perturbed indicating severe motility 

deficits (Figure 1G). Moreover, we assessed the 

locomotion by measuring bending behavior in both wild 

type and the tau-expressing nematodes during 

adulthood. Different age groups of wild type and 

transgenic nematodes were placed in a 10 μl droplet of 

M9 buffer and were allowed to swim freely for 1 

minute, to become accustomed to their new 

environment. Body bends were then monitored for 30 

seconds. In accord with the abnormal sinusoidal tracks, 

the tau-expressing nematodes displayed pronounced 

locomotion defects throughout adulthood compared to 

the wild type animals (Figure 1H and Supplementary 

Figure 2C). These results suggest that mitochondrial 

dysfunction in the tau-expressing nematodes could 

mediate energy deprivation subsequently leading to 

neuronal deregulation and eventually to motility 

defects. 

 

Impaired activity of neuronal mitochondria and 

motility defects in larval stages 

 

Accumulating evidence underscores the effect of 

critically high levels of tau and tau lesions on 

mitochondrial homeostasis [40, 41]. Tau may influence 

mitochondrial function both directly via its localization 

on mitochondrial compartments and indirectly through 

perturbation of cytoskeleton components [40–47]. 

While the association between tau levels and energy 

metabolism is established, it is not clear whether 

mitochondrial dysfunction is an early pathological 

feature of high levels of tau or a consequence of its 

excessive formation of protein aggregates. To 

discriminate between these two scenarios, we focused 

on the L1 and L4 larval developmental stages. Although 

the formation of tau oligomers and/or aggregates was 

not detectable in neuronal cells of L1 and L4 larvae 

(Figure 1A), tau-expressing animals displayed a 

reduction in body bends compared to the wild type 

nematodes (Figure 2A–2B). We next monitored the 

mitochondrial population in the neuronal processes of 

the ventral and dorsal cord of both the L1 and L4 larvae, 

which expressed pan-neuronally mitochondria-targeted 

mKate2::HA and wild type tau.  We found decreased 

mitochondrial density in ventral (Figure 2C–2D; Figure 

3A, 3B) and dorsal cord neurons in larval stages 

(Supplementary Figure 3A–3B, 3F–3G). 
 

To investigate whether the locomotion deficits were 

generated because of excessive mitochondrial damage, 

we evaluated several aspects of mitochondrial 

morphology, including size, perimeter and circularity, 

which have been used to evaluate mitochondrial 

dysfunction [48–51]. Tau-expressing larvae presented 

smaller and more globular mitochondria compared to 

the wild type counterparts (Figure 2E–2G, Figure 3C–

3E and Supplementary Figure 3C–3E, 3H). Moreover, 

mitochondrial membrane potential assessment of the 

tau-expressing nematodes displayed fewer active 

organelles indicating that tau expression is sufficient to 

alter not only the shape of mitochondrial networks but 

also their activity during early development (Figure 2H 

and Figure 3F). These results indicate that increased 

mitochondrial damage and impaired energy generation 

might drive neuronal dysfunction and the abnormal 

locomotion of the tau-expressing nematodes and 

highlight mitochondrial defects as an early pathological 

feature of tauopathy. 

 

Calcium homeostasis modulates mitochondrial 

activity and neuronal fitness in tau-expressing 

nematodes 

 

Ca2+ is an important second messenger that controls 

multiple cellular processes. Local Ca2+ signals are 

widely recognized as broad regulators of neuronal 

function and survival [52, 53]. Neurons are highly 

dependent on balanced Ca2+ homeostasis, since they 

have developed intricate regulatory mechanisms 

coupling Ca2+ signaling with their molecular and 

biochemical machineries. Indeed, altered cytosolic 

Ca2+ fluctuations lead to impaired 

neurotransmission, axon guidance, spine formation 

and subsequently to neuronal loss and cognitive 

dysfunction [54, 55]. 

 

A recent study in C. elegans demonstrated that 

overexpression of a mutant isoform of tau (tauA152T) 

promoted necrotic cell death of glutamatergic neurons 

through dysregulation of the cytosolic calcium levels 

[56]. Therefore, we examined whether calcium 

deregulation is implicated in the impairment of 

mitochondrial activity in the tau-expressing nematodes. 

Interestingly, supplementation with 10 mM EGTA, a 

calcium chelating agent, restored mitochondrial 

membrane potential in tau-expressing animals without 

any detectable effect on wild type worms (Figure 4A). 

Moreover, the bending behavior, the sinusoidal wave 

pattern and the velocity of tau-expressing L4 larvae 

were improved following calcium chelation without 

any substantial effect on the behavior in wild type 

(Figure 4B–4E and Supplementary Figure 4A). 

However, EGTA treatment could not rescue the severe 
motility defect in the tau-expressing nematodes during 

adulthood (Supplementary Figure 4B). Moreover, 

EGTA supplementation did not affect tau oligomer and 
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aggregate formation, suggesting that calcium chelation 

solely impacts mitochondrial homeostasis 

(Supplementary Figure 5A–5B). These findings 

suggest that tau expression results in altered calcium 

homeostasis enhancing neuronal vulnerability to 

degeneration during aging, and demonstrate tight 

interplay between tau overexpression, calcium 

homeostasis, and mitochondrial function, in neuronal 

health. 

DISCUSSION 
 

Aging is universally associated with a marked decrease 

in brain function and increased susceptibility to 

neurodegeneration. In human populations, this is 

manifested as an ever-increasing prevalence of 

devastating neurodegenerative conditions, including AD 

and other types of dementia. Therefore, the 

development of novel therapeutic interventions against 

 

 
 

Figure 2. Altered mitochondrial morphology and activity in tauwt-expressing larvae. Wild type and tauwt L1 (A) and L4 (B) larvae 

body bends per 30 seconds in M9 buffer. (C) Mitochondrial population in the ventral nerve cord of L1 nematodes. (D) Representative 

fluorescent images of transgenic nematodes expressing pan-neuronally mitochondria-targeted mKate2::HA. Scale bar, 20 m. Tauwt-
expressing L1 larvae display (E) smaller, (F, G) more circular and (H) Fewer active mitochondria compared to wild type animals. Scale bar, 

100 m. (n = 50; NS P > 0.05, **P < 0.001, ***P < 0.0001; unpaired t-test). 
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human aging and age-related pathologies is a top 

research priority. 

 

Mitochondrial dysfunction is a recognized hallmark of 

aging and age-associated diseases [12, 57]. Recent 

studies in AD mouse models suggest that Aβ plaques 

and tau tangles formation are accompanied with 

mitochondrial dysfunction [58–60]. However, it 

remains elusive whether impaired mitochondrial 

metabolism is an early pathological feature of disease 

development. It is shown that Aβ and tau are localized 

to mitochondria, where they perturb energy metabolism 

through either their interference with mitochondrial 

import machinery or inhibition of mitochondrial 

enzymes and electron transport chain function [61–63]. 

Moreover, tau aggregates promote mitochondrial 

dysfunction and exacerbate Aβ-related mitochondrial 

damage [18, 64]. Although these results implicate Aβ 

and tau lesions in energy homeostasis, the role of 

mitochondrial impairment on the initiation and 

progression of AD is not well understood. 

 

Our model recapitulates several key features of the 

human neurodegenerative disorders, including adult 

onset, progressive neurodegeneration, accumulation of 

abnormal tau, and shorter lifespan. The cumulated 

results of our study indicate that, at least in this 

tauopathy model, neurotoxicity depends on protein 

alterations and mitochondrial dysfunction, which takes 

place before the formation of detectable levels of 

aggregates during larval stages, underscoring the 

detrimental neurotoxic effect of high level of tau 

(Supplementary Figure 6). Tau-expressing nematodes 

presented an increased number of defective 

 

 
 

Figure 3. Tauwt-expressing L4 nematodes display impaired mitochondrial morphology and function. (A) Representative 

fluorescent images of L4 transgenic nematodes expressing panneuronally mitochondria-targeted mKate2::HA. Scale Bar, 20 m. (B) 
Mitochondrial population in the ventral nerve cord of L4 nematodes. Neuronal processes of tauwt-expressing L4 larvae display (C) 
smaller, (D, E) more circular and (F) fewer active mitochondria compared to wild type animals (n = 30–50; **P < 0.001, ***P < 0.0001; 
unpaired t-test). 
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mitochondria in neuronal processes, which may be a 

result of impaired removal of damaged organelles. 

Indeed, recent studies in nematodes and mammalian 

cells have demonstrated that mutant isoforms of tau 

block neuronal mitophagy and result in pronounced 

mitochondrial damage and neuronal loss [35, 36]. In 

sharp contrast, mitochondrial density was markedly 

reduced in the L1 and L4 tau-expressing larvae 

suggesting that mitophagy is still efficient in 

eliminating dysfunctional organelles at least in the 

larvae. Thus, aging and tau aggregate formation act 

synergistically to deregulate mitochondrial activity and 

quality surveillance mechanisms, leading to a gradual 

accumulation of defective organelles and subsequently 

to neurodegeneration. 

 

A growing body of evidence demonstrates that calcium 

homeostasis collapse is a critical modulator of tau-

mediated neurotoxicity. Transgenic nematodes 

expressing the mutant tau isoform A152T (tauA152T) 

displayed progressive degeneration of glutamatergic 

neurons through impairment of cellular calcium levels 

that eventually lead to necrotic cell death induction. 

Interestingly, depletion of the Ca2+ binding chaperones 

calreticulin (CRT-1) and calnexin (CNX-1) and the Ca2+ 

-dependent phosphatase calcineurin (CNB-1) delayed 

neuronal cell death in L4 larvae [56]. Due to the 

subcellular localization of CRT-1 and CNX-1 in 

endoplasmic reticulum (ER), these findings support that 

tauA152T expression impairs ER homeostasis resulting in 

enhanced release of Ca2+ into the cytoplasm. A very 

recent study in rat primary cortical neurons and human 

iPSC-derived neurons documented that tau mutations 

inhibit mitochondrial Na+/Ca2+ exchanger (NCLX) 

function and deregulate mitochondrial calcium efflux, 

leading to altered cytosolic Ca2+ levels and subsequently 

 

 
 

Figure 4. Cytoplasmic calcium chelation rescues motility defects in tauwt-expressing larvae. (A) Mitochondrial activity is 

increased in tauwt-expressing L4 nematodes upon 10 mM EGTA supplementation. Locomotion defects are ameliorated in both (B) L1 and (C) 
L4 tauwt-expressing nematodes in response to 10 mM EGTA treatment (n = 50; ***P < 0.0001; unpaired t-test). (D) Representative images of 
wild type and tauwt-expressing nematodes tracks with or without 10 mM EGTA treatment. (E) Velocity assessment of wild type and tauwt-
expressing nematodes with or without 10 mM EGTA treatment (n = 8; NS P > 0.05, *P < 0.03; unpaired t-test). 
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to increased vulnerability of neuronal cells to cell death. 

[65]. Therefore, tau mutations could modulate calcium 

homeostasis by influencing the main cellular storage 

sites ER and mitochondria. 

 

Although we cannot exclude possible differences in 

mechanisms of tau toxicity between C. elegans and 

human disease, the enhanced biological toxicity of 

mutant tau as reported previously, the degenerative 

nature of the pathology, and the selective accumulation 

of abnormal tau in areas of neuronal degeneration, all 

argue that the mechanisms of tau neurotoxicity are 

conserved between C. elegans and humans. 

Collectively, our findings underline the essential impact 

of early tau oligomer formation on mitochondrial 

dysfunction and disease development. Investigating the 

tight interplay between tau oligomers and energy 

metabolism will enlighten new avenues for therapeutic 

strategies to slow or halt the progression of dementia-

related diseases such as AD. The C. elegans tauopathy 

model can be used as a screening platform to identify 

novel genes and chemical compounds that protect 

against early tau-mediated mitochondrial damage and 

neurotoxicity. 

 

MATERIALS AND METHODS 
 

C. elegans strains and culture methods 

 

We followed standard procedures for C. elegans strain 

maintenance (Brenner, 1974 Genetics 77). Nematode 

rearing temperature was kept at 20°C, unless noted 

otherwise. The following strains were used in this 

study: N2: wild-type Bristol isolate, PIR3: pirIs3[psnb-1 

htau40WT-low; pmyo-2GFP]. To monitor mitochondrial 

morphology in neuronal cells, we used the following 

transgenic animals: SJZ216: foxSi44[prgef-1TOMM-

20::mKate2::HA]I and foxSi44[prgef-1TOMM-

20::mKate2::HA]I; pirIs3[psnb-1htau40WT-low; pmyo-2 

GFP]. We used Ethylene glycol tetraacetic acid (EGTA) 

as a chemical to reduce specifically cytosolic calcium. 

EGTA was administered at a final concentration of 

10 mM. EGTA concentration was prepared by dilutions 

in 150 ml of sterilized water, from a concentrated stock 

solution (0.5 M), and applied to the top of the agar 

medium. Plates were then gently swirled to allow the 

drug to spread to the entire OP50-seeded NGM surface. 

Identical drug-free water solutions were used for the 

control plates. Animals were treated with EGTA for two 

generations. 

 

Thrashing assay 

 

Wild type and tauwt-expressing L1, L4 and 3-day-adult 

nematodes were transferred in 10 μl M9 buffer using an 

eyelash pick. Animals were allowed to swim freely for 

1 minute to be accustomed to the new environment. 

Then, body bends were assessed for 30 seconds. For 

each experiment, at least 50 animals were examined for 

each strain/condition. Each assay was repeated at least 

two times. The Prism software package (GraphPad 

Software) was used for statistical analyses. 

 

Mitochondrial imaging 

 

TMRE (tetramethylrhodamine, ethyl ester, perchlorate) 

is a dye that accumulates in intact, respiring 

mitochondria. Embryos/eggs were placed and grown at 

20°C in the presence of 150 nM TMRE. Stained and 

washed L1, L4 and 3-day-adult nematodes were 

immobilized with levamisole before mounting for 

microscopic examination with a Zeiss AxioImager Z2 

epifluorescence microscope. Images were acquired 

under the same exposure. Average pixel intensity values 

were calculated by sampling images of different 

animals. The mean and maximum pixel intensity were 

calculated for each animal in these images using the 

ImageJ software (http://rsb.info.nih.gov/ij/). For each 

experiment, at least 30–50 animals were examined for 

each strain/condition. The assessment of the 

mitochondrial morphology was performed by using 

ImageJ software, as it is previously described [66]. 

For quantitative characterization of mitochondrial 

morphology fluorescent images were acquired and used 

for the analysis. Background was subtracted and the 

resulting images were thresholded at the default setting. 

The resulting particles were analyzed and the following 

parameters were collected for each mito-mKate2-

labeled particle: area, perimeter and circularity. 

Mitochondrial number was evaluated by counting the 

average number of mito-mKate2-labeled puncta per 100 

μm of axonal length. Each assay was repeated at least 

three times. The Prism software package (GraphPad 

Software) was used for statistical analyses. 

 

Worm tracking software 

 

To obtain synchronized populations of worm, 5–7 L4 

worms were transferred onto NGM plates (with or 

without EGTA) and allowed to lay eggs for 24 h. After 

removing the adult worms, each synchronized progeny 

was cultured to L4 larvae. For worm imaging, tracking, 

and describing the worm crawling, synchronized L4 

larvae were recorded using the Wormlab software 

(MBF Bioscience) and captured at rates 15 frames per 

second. Each worm was manually detected, and their 

locomotion were analyzed for each frame. The 

movements were exported to Excel files and worm 

tracks were generated by GraphPad Prism software. The 
velocity was evaluated by measuring the distance of 

each worm that moved for 30 seconds and was 

calculated by utilizing ImageJ based on the worm track 

http://rsb.info.nih.gov/ij/


 

www.aging-us.com 23884 AGING 

graph. Statistical analysis was performed using 

GraphPad Prism software. 

 

Western blot analysis 

 

For total tau protein extraction, age-synchronized 

worms were washed off NGM plates using M9 buffer. 

To completely remove the bacteria, the washing steps 

were repeated thrice. The resulting worm pellets were 

resuspended in 1X protein sample buffer containing 

(20 mM Hepes, pH 7.9, 25% glycerol, 0.42 M NaCl, 1.5 

mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT) and lysed 

by sonication (3 × 10 s, 10 s break) on ice. After a brief 

centrifugation at 40,000 g for 15 min, the supernatants 

were analyzed on 3–12% native PAGE. The entire 

extraction procedures were carried out on ice and 

centrifugation steps were performed at 4°C. All buffers 

contained Complete Protease and Phosphatase Inhibitor 

cocktail (Sigma-Aldrich). The proteins were transferred 

to nitrocellulose membranes and immunoblotted. The 

following antibodies were used: K9JA (1:5,000; no. 

A0024; Dako), Anti-Tau (T22), oligomeric antibody 

(1:1000; ABN454; Sigma-Aldrich). Coomassie staining 

serves as loading control. For SDS-PAGE, 100 

synchronized worms of the indicated ages were washed 

off NGM plates with M9 buffer and the bacteria were 

removed in the subsequent washing steps. The resulting 

worms were allowed to settle under gravity to form a 

pellet and were resuspended in 100 μl of 2X protein 

sample buffer containing 355 mM 2- mercaptoethanol 

and boiled at 96°C for 10 min. The supernatant was 

collected by brief centrifugation. Proteins were 

separated in Tris-glycine SDS gel and transferred onto 

PVDF membrane. Each experiment was done in two 

biological replicates. The following antibodies were 

used: Anti-Human Tau (#A0024; Dako), Tau 

monoclonal antibody (TAU-5) (#AHB0042, Invitrogen) 

Pan actin (ACTN05 (C4) #MA5-11869; Life 

Technologies), GAPDH (#sc25778; Santa Cruz 

Biotechnology). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The protein levels of tauwt are gradually elevated in neuronal cells with age. (A, B) Worm extracts 

prepared from 3-, 6-, 9-day adult transgenic tauwt-expressing nematodes were resolved by SDS-PAGE and immunoblotted with Anti-Tau, 
Tau 5 and K9JA, antibodies (NS P > 0.05, **P < 0001, ***P < 0.0001; one-way ANOVA corrected with Sidak multiple comparison test). 
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Supplementary Figure 2. (A) Representative brightfield and fluorescent images of transgenic nematodes expressing pan-neuronally 

mitochondria-targeted mKate2::HA. Scale bar, 20 m (B) Mitochondrial membrane potential (TMRE staining) and (C) locomotion gradually 
decline with age in both wild type and tauwt-expressing adult nematodes. (n = 50; NS P > 0.05, **P < 0.0021, ***P < 0.0002; two-way ANOVA 
corrected with Sidak multiple comparison test). 
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Supplementary Figure 3. Mitochondrial morphology in the dorsal nerve cord of tauwt-expressing larvae. Representative 

fluorescent images of (A) L1 and (F) L4 transgenic nematodes expressing pan-neuronally mitochondria-targeted mKate2::HA. Scale Bar, 

20 m. Mitochondrial population in the dorsal nerve cord of (B) L1 and (G) L4 tauwt-expressing nematodes. Tauwt-expressing larvae display 
(C, H) smaller, (D, E) more circular organelles compared to wild type animals (n = 30–50; NS P > 0.05, ***P < 0.0001; unpaired t-test). 
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Supplementary Figure 4. Calcium chelation does not restore locomotion defects of tauwt-expressing nematodes during 
adulthood. (A) Tracks of mid-point of wild type and tauwt-expressing nematodes with or without 10 mM EGTA treatment. Animals were 
allowed to crawl in OP50-seeded NGM plates for 10 minutes. The tracks were generated by using WormLab software. (B) Body bends of 1-, 
3-, 6- and 9-day wild type and transgenic tauwt-expressing nematodes with or without 10 mM EGTA treatment (n = 20; NS P > 0.05, two-way 
ANOVA corrected with Sidak multiple comparison test). 
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Supplementary Figure 5. EGTA supplementation does not affect the formation of tau oligomers or aggregates in C. elegans 
neurons. Worm extracts prepared from L1, L4 and 1-day transgenic tauwt-expressing nematodes with or without 10 mM EGTA treatment, 
were resolved by (A) native PAGE and (B) SDS-PAGE and immunoblotted with Anti-Tau (T22), oligomeric antibody. Irrespective of the EGTA 
treatment, tau oligomers are enriched in L1 larval stage worm lysates. Band (~720 KDa marked by red arrow) on native PAGE, and 
(~60 KDa) on SDS-PAGE correspond to oligomeric tau species. 
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Supplementary Figure 6. Mitochondrial dysfunction is an early pathogenic feature of tauopathy. Although transgenic animals 

expressing tauwt in neurons display excessive mitochondrial damage, which is characterized by decreased mitochondrial number, 
fragmented mitochondrial network and reduced membrane potential, and abnormal locomotion from L1 and L4 larval stages, tau 
aggregates are accumulated during adulthood. Thus, perturbed mitochondrial morphology and function manifest an early pathogenic event 
in the development and progression of tauophathies. 

 

 


