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INTRODUCTION 
 

Cervical cancer (CC) is the fourth most common type of 

malignancy that affects women across the world [1]. 

While the incidence and mortality rates of cervical 

cancer have declined significantly in high-income 

countries, the overall prognosis for CC patients in low-

income countries remains poor [2, 3]. And in the event 

of recurrence and metastasis, the patient’s prognosis is 

further reduced, so cervical cancer will remain a heavy 

burden of disease for a long time to come. Therefore, 

obtaining a lucid understanding of the molecular 

mechanisms that underly the development of cervical 

cancer is crucial, and formulating methods for the early 

diagnosis and treatment is essential to improving the 

survival rate of CC patients. 

 

Cell death is mainly divided into two categories, namely 

programmed death and non-programmed death. 

Programmed death mainly includes apoptosis, pyroptosis, 

and necroptosis, and non-programmed death mainly 

includes cell necrosis. Pyroptosis is a programmed cell 

death mechanism that is distinct from apoptosis and 

necrosis. It is mediated by the enzyme called caspase and 
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ABSTRACT 
 

Cervical cancer (CC) is one of the most common malignancies encountered in gynecology practice. However, 
there is a paucity of information about specific biomarkers that assist in the diagnosis and prognosis of CC. 
Pyroptosis is a form of programmed cell death whose different elements are related to the occurrence, 
invasion, and metastasis of tumors. However, the role of pyroptosis phenomena in the progression of CC has 
not yet been elucidated. This study focuses on the development of a pyroptosis-associated prognostic signature 
for CC using integrated bioinformatics to delineate the relationships among the signature, tumor 
microenvironment, and immune response of the patients. In this respect, we identified a prognostic signature 
that depends on eight pyroptosis-related genes (PRGs) that designate with better prognostic survival in the 
low-risk group (P<0.05) and where AUC values were greater than 0.7. A multi-factor Cox regression analysis 
indicated that such a signature could be used as an independent prognostic factor, and both the DCA and the 
Nomogram suggested that the proposed prognostic signature had good predictive capabilities. Interestingly, 
this prognostic signature can be applied to multiple tumors and thus, is versatile from a clinical point of view. In 
addition, there were significant differences in the tumor microenvironment and immune infiltration status 
between the high- and low-risk groups (P<0. 05). The core gene granzyme B (GZMB) was screened and the CC-
associated regulatory axis, GZMB/ miR-378a/TRIM52-AS1, was constructed, which may promote CC 
progression, and further experimentation is needed to validate these results. 
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inflammasomes, and is characterized by a rapid plasma 

membrane rupture followed by the release of cellular 

contents and pro-inflammatory substances such as 

interleukins (IL). This triggers an inflammatory cascade 

that ultimately destroys the cell [4]. Pyroptosis not only 

plays an important role in infectious diseases, cardio-

vascular diseases, and diseases that affect the central 

nervous system, but is also closely related to the 

development of tumors, for which it has both favorable 

and deleterious aspects [5]. On the one hand, when it is 

considered as an intrinsic immune mechanism, pyroptosis 

is a process that inhibits the occurrence and development 

of tumors. On the other hand, when considered as a type 

of pro-inflammatory cell death, pyroptosis provides a 

suitable microenvironment for tumor growth. The key 

elements that are involved in pyroptosis, such as 

inflammatory vesicles, gasdermin proteins, and pro-

inflammatory cytokines, are also associated with the 

occurrence, invasion, and metastasis of tumors [6, 7]. 

Meanwhile, earlier studies have found that HeLa cells 

that overexpress gasdermin–B (GSDMB) exhibit evident 

pyroptosis characteristics [8]. Immune cells too, promote 

HeLa pyroptosis by releasing granzyme-B (GZMB)  

and lysing gasdermin-E (GSDME) [9]. In human 

papillomavirus (HPV)-positive cells, the expression of 

IL-1β, an important inflammatory molecule involved in 

pyroptosis, was completely inhibited. This effectively 

blocked the containment of tumor cells by pyroptosis. 

Meanwhile, the expression of SIRT1 in the CC cells 

affected the stability of the RelB mRNA, which in turn 

affected the expression of AIM2. When SIRT1 was 

knocked down, the RelB stability was enhanced 

significantly and the expression of the inflammation-

related AIM2 genes wasup-regulated, triggering AIM2 

inflammation vesicle-mediated pyroptosis [10, 11]. 

However, the characterization and determination of the 

prognostic value of PRGs for CC has not yet been 

completed. 

 

In this study, we analyzed the genetic data of cervical 

cancer in the TCGA (The Cancer Genome Atlas) 

database and the UCSC Xena database to describe the 

expression levels and genetic changes of PRGs, and 

constructed and validated a prognostic model based on 

CC samples, and screened out core genes and pan-

cancer analysis. 

 

MATERIALS AND METHODS 
 

Datasets and preprocessing 

 

The TCGA database (https://portal.gdc.cancer.gov/) and 

the UCSC Xena database (https://xena.ucsc.edu/) were 

used to obtain CC data. Our research program was shown 

in Supplementary Figure 1. The RNA sequence data, 

clinicopathological parameters, and genomic mutation 

data (including somatic mutations and copy number 

variants (CNV)) were obtained for 306 CC tissues and 3 

paraneoplastic tissue samples. Based on earlier studies [9, 

12, 13], 35 PRGs were included, namely AIM2, CASP1, 

CASP3, CASP4, CASP5, CASP6, CASP8, CASP9, 

ELANE, GPX4, GSDMA, GSDMB, GSDMC, GSDMD, 

GSDME, GZMA, GZMB, IL18, IL1B, IL6, NLRC4, 

NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, NOD1, 

NOD2, PJVK, PLCG1, PRKACA, PYCARD, SCAF11, 

TIRAP, and TNF, as detailed in Supplementary Table 1. 

Comparison of mRNA expression levels of PRGs in 

paraneoplastic tissue and CC tissues, and visualization of 

somatic mutations and CNV in CC tissues by the  

R software ‘maftools’ and the ‘Rcircos’ package.  

The Kaplan Meier-Plotter online platform 

(https://kmplot.com/analysis/) was used to further 

analyze the survival and prognosis of PRGs [14]. All 

subsequent statistical analyses were performed via R 

version 4.0.2. The screening criterion for differential 

expression of PRGs was P<0.05. 

 

Establishment of prognostic signature 

 

The data for 304 CC patients were obtained from the 

TCGA database and used as the training dataset to 

screen for prognosis-related PRGs and exclude samples 

with no survival time. We constructed a prognostic 

signature for the PRGs using a univariate Cox 

proportional regression analysis and the least absolute 

shrinkage and selection operator (Lasso) regression, 

which was stratified according to the risk score (Risk 

score = EXP PRGs 1 × Coefficient1 + EXP PRGs 2 × 

Coefficient2 + ... + EXP PRGs n × Coefficientn). 

Subsequently, the associated risk score was calculated 

for each patient in the training dataset. Based on the 

median score, the patient’s data were grouped as low or 

high risk. The difference in survival between the two 

groups was determined using the log-rank test and the 

Kaplan-Meier curves, while the sensitivity and 

specificity of the prognostic signature were determined 

from the ROC curves plotted using the ‘survivalROC’ 

package. To determine the feasibility and reliability of 

the proposed prognostic signature, the training dataset of 

CC patients (N = 304) was randomly divided into test 

datasets A (N = 152) and B (N = 152) using the ‘Caret’ 

package. Subsequently, the same statistical methods 

were used for validating both test datasets. 

 

Then, independent prognostic analyses and decision 

curve analysis (DCA) were performed to combine the 

clinical features, and a nomogram was constructed to 

predict the one-, three- and five-year survival rates of CC 

patients to assess the prognostic value of the signature. 

 

The TCGA pan-cancer transcriptional expression data 

and clinical data were obtained from the Xena database 

https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/
https://kmplot.com/analysis/
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that includes 33 cancer types, as detailed in 

Supplementary Table 2. The prognostic model was 

applied to the remaining 32 tumors to analyze their 

prognostic outcomes for the different cancers. The risk 

score was considered to be significantly associated with 

CC patient survival when p<0.05. 

 

Tumor mutation burden, tumor microenvironment, 

and immune cell infiltration analysis 

 

Tumor mutation burden (TMB) is a biomarker that can 

predict how a patient might respond to immunotherapy 

[15]. Differences in TMB between the high and low-

risk groups were compared based on original data of 

somatic mutations in CC patients, and the risk scores 

and TMB were compared using the Spearman 

correlation analysis. An ESTIMATE algorithm was 

used to predict the purity of the CC [16], and the 

proportion of stromal cells (stromal score) and immune 

cells (immune score) that have infiltrated the tumor 

tissue as well as the measured differences in the tumor 

microenvironment (TME) between the two risk groups 

were assessed. 

 

Immune cell infiltration data from CC were obtained 

from the Timer 2.0 database (http://timer.cistrome.org/) 

[17]. Four algorithms were eventually chosen [18–20], 

including TIMER, CIBERSORT, QUANTISEQ, and 

MCPCOUNTER, according to the PRG signature, and 

the correlation between the immune cell infiltration and 

risk score under different algorithms was analyzed 

using Spearman correlation and represented as a bubble 

plot. In addition, the differences in immune function, 

HLA gene expression, immune checkpoint, and m6A 

gene expression were compared for the high- and low-

risk groups using the Wilcox test. P < 0.05 was 

considered to be statistically significant. 

 

Construction of mRNA-miRNA-lncRNA interaction 

network 

 

To screen for the relevant genes in the prognostic 

signature, we searched for protein-protein interactions 

(PPI) via the String (https://string-db.org/) online 

database. The degrees of connectivity of these PRGs 

were also counted. Next, the correlations of genes in the 

PRG signature were evaluated concerning the clinical 

feature ‘Grade’. The patients were divided into two 

subgroups, namely, G1-2 and G3-4, and the Wilcox test 

was used for their analysis. The genes with the highest 

connectivity and statistically significant correlation with 

‘Grade’ in the signature were designated as the core 

genes. 

 

Then, pan-cancer differential analysis, survival analysis, 

and TMB correlation analysis were performed on these 

core genes that were designated in the previous step. 

We used boxplots to summarize the overall levels of 

expression of the core gene in the 33 TCGA cancer 

samples. Based on 18 types chosen from more than five 

adjacent normal tissues, a linear mixed-effect model 

was used to compare and analyze the difference in gene 

expression between the tumor and the paracancerous 

tissues. The TMB scores were obtained from UCSC 

Xena database. Correlation analysis between the core 

gene expression and TMB was performed using 

Spearman’s method. A forest plot was drawn to 

determine whether the expression of the core gene 

correlated with the patient survival obtained by the 

univariate Cox analysis. 

 

To construct the mRNA-miRNA-LncRNA interaction 

network for the core genes, the miRNAs targeted by the 

core genes were predicted using the TargetScan 

(http://www.targetscan.org/vert_72/) and miRTarBase 

(http://mirtarbase.cuhk.edu.cn/) databases. The predicted 

miRNAs were intersected. Subsequently, the differential 

expression levels and prognostic values of these  

miRNAs were analyzed. Based on the prognosis and 

differentially expressed miRNAs, LncBase Predicted v.2 

(https://carolina.imis.athena-innovation.gr/diana_tools/ 

web/index.php?r=lncbasev2/index-predicted) and 

StarBase (http://starbase.sysu.edu.cn/) were used to 

predict the LncRNAs that the miRNAs might eventually 

bind. The differential expression levels and prognostic 

value of these LncRNAs were analyzed in detail, and on 

this basis, we constructed the mRNA-miRNA-LncRNA 

interaction networks. The statistically significant 

difference was P < 0.05. 

 

Availability of data and materials 

 

The information of this study is obtained by the TCGA, 

UCSC Xena, Kaplan Meier-Plotter, Timer 2.0, String, 

TargetScan, miRTarBase, LncBase Predicted v.2, and 

StarBasedatabase database. We are grateful to them for 

the source of data used in our study. 

 

RESULTS 
 

Genetic variation profile of PRGs in CC 

 

First of all, we found that the AIM2, CASP3, CASP4, 

CASP5, CASP6, CASP8, GSDMB, GSDMC, GZMB, 

IL18, NLRP2, NLRP7, NOD2, PYCARD, and TNF 

were significantly up-regulated in CC tissues, while 

ELANE, NLRP1, NOD1, and PJVK were significantly 

down-regulated (Figure 1A). A survival prognosis 

analysis showed that IL 1B and PRKACA had a 

significant correlation with the prognosis of CC patients. 

Those patients with low expression of IL 1B and high 

expression of PRKACA have a better prognosis for 

http://timer.cistrome.org/
https://string-db.org/
http://www.targetscan.org/vert_72/
http://mirtarbase.cuhk.edu.cn/
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2/index-predicted
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2/index-predicted
http://starbase.sysu.edu.cn/
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survival (Figure 1B, 1C). Figure 1D shows the locations 

of the CNV alterations on the PRG chromosomes, and it 

can be observed that CNV changes were prevalent in 

these genes. PRKACA had the highest probability of 

CNV amplification and GPX4 had the highest frequency 

of CNV deletion (Figure 1E). The somatic mutations of 

these PRGs in CC were also analyzed and it was 

concluded that the overall mutation frequency was not 

high in these cases (≤4%) (Figure 1F). 

Construction and evaluation of the effectiveness of 

prognostic signature 

 

A survival analysis of the PRGs in the training dataset 

was conducted via a univariate Cox proportional 

regression model and screened for eight PRGs that had 

prognostic value (Figure 2A). Among these, GZMB and 

TNF were expressed in high level in CC tissue while 

NOD1 was significantly low (Supplementary Figure 2B). 

 

 
 

Figure 1. Expression and genetic variation landscape of PRGs in CC. (A) The boxplot demonstrated the expression of PRGs between 
normal and CC samples. Patients with low expression of IL 1B (B) and high expression of PRKACA (C) have more survival benefits. (D) Location 
of CNV alterations in PRGs on 23 chromosomes in CC cohort. (E) The CNV variation frequency of PRGs. The red and green dots represent CNV 
amplification and deletion, respectively. (F) Genetic alteration on a query of PRGs. PRGs, Pyroptosis-related genes. CC, Cervical cancer. CNV, 
Copy number variation. *p < 0.05, **p < 0.01, and ***p < 0.001. 
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Following this, the pyroptosis-related signature was 

constructed by further downscaling the prognosis-related 

PRGs via Lasso regression (Figure 2B, 2C). The risk 

score was calculated for each patient using the 

expression, risk score= (-0.0037×EXPGPX4) + (0.0377× 

EXPGSDME) + (-0.0043×EXPGZMA) + (-0.026×EXPGZMB) 

+(0.0017×EXPIL1B) + (0.4741×EXPNOD1) + (-0.1298× 

EXPPRKACA) + (0.0642×EXPTNF). According to the 

median, the patients were divided into low-risk and 

high-risk groups, and the survival prognostic analysis 

showed a significant survival benefit for patients 

classified as low-risk (P < 0.001, Figure 3A), with an 

AUC value of 0.789 (Figure 3D). In test datasets A and 

B, the difference in survival prognosis (P < 0.05, Figure 

3B, 3C) and predictive efficacy (AUC values of 0.707 

and 0.943, respectively, Figure 3E, 3F) were validated 

 

 
 

Figure 2. Screening for prognosis-related PRGs and LASSO regression. (A) Forest plot of the prognosis-related PRGs based on P < 

0.05. Red and green indicate high and low risk, respectively. (B) LASSO coefficients for PRGs. Each curve represents a PRGs. (C) 1,000-fold 
cross-validation of variable selection in LASSO regressions by 1-SE criteria. PRGs, Pyroptosis-related genes. LASSO, Least absolute shrinkage 
and selection operator. 
 

 
 

Figure 3. Construction and validation of the pyroptosis-related signature. (A–C) Kaplan-Meier curves showed lower overall survival 
rates in the high-risk group than in the low-risk group in the training dataset, test dataset A and test dataset B (P < 0.05). (D–F) The predicted 
ROC curves for the training dataset, test dataset A and test dataset B were 0.789, 0.707, and 0.943 respectively. 
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similarly, thereby confirming the overall accuracy and 

validity of the prognostic signature. Interestingly, this 

prognostic model indicated a better prognosis for 

patients in the low-risk group than in the high-risk group 

in glioblastoma multiforme (GBM), brain lower grade 

glioma (LGG), liver hepatocellular carcinoma (LIHC), 

and uterine corpus endometrial carcinoma (UCEC) 

(Supplementary Figure 3). 

 

Univariate and multivariate COX analyses in conjunction 

with the patient age, stage, and grade, showed that this 

pyroptosis-related signature was an independent 

prognostic factor for OS in CC patients (p < 0.001, 

Figure 4A, 4B). In addition, the risk score corresponded 

to the highest AUC value (AUC = 0.794, Figure 4C) 

compared to other clinical features. The DCA further 

demonstrated the clinical usefulness of the signature 

(Figure 4D). The Nomogram for both the signature and 

clinical features was stable and accurate, and it can be 

used to predict the one-year, three-year, and five-year 

survival rates in CC patients (Figure 4E). 

Correlation of TMB, TME, and immune cell 

infiltration with prognostic signature 

 

Previous studies have indicated the crucial role of TME 

in the occurrence and development of tumors [21]. As 

TMB predicts patient response to immunotherapy, our 

study found that patients in the high-risk group typically 

had low TMB scores, and the risk score was negatively 

correlated with the TMB score to a significant extent. 

The results of the survival analysis showed that patients 

that scored high on risk and low on TMB possessed a 

significant survival advantage (Figure 5A–5C). 

Compared to the high-risk group, the ESTIMATEScore, 

ImmuneScore, and StromalScore were all higher in the 

low-risk group (Figure 5D). 

 

The relation between the immune response and  

risk score based on the TIMER, QUANTISEQ, 

MCPCOUNTER, and CIBERSORT algorithms is 

shown in Figure 5E. The risk score was negatively 

correlated to the infiltration levels of B cells, T cell 

 

 
 

Figure 4. Prognostic value of the pyroptosis-related signature. (A, B) Univariate and multivariate COX analysis for the prognostic 
signature and clinical features (including Age, Stage, and Grade). (C) The AUC values of the prognostic signature and clinical features. (D) The 
DCA of the prognostic signature and clinical features. (E) Nomogram for both the signature and clinical features to predict one-, three- and 
five-year survival rates. 
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CD8+, and macrophages, and positively correlated to 

the infiltration level of neutrophils. The analysis of 

immune function differences showed that mechanisms 

such as the antigen-presenting cell (APC) co-inhibition/ 

APC_co_stimulation, CC chemokine receptor (CCR), 

check-point, cytolytic_activity, human leukocyte anti-

gen (HLA), Inflammation promotion, and T cell co-

inhibition/ stimulation were significantly more active in 

the low-risk group (Figure 6A). 

 

Considering this analysis of the immune function, the 

levels of HLA-related gene expression l were further 

studied as shown in Figure 6B. The levels of expression 

of HLA-DMA, HLA-DQB1, HLA HLA-DMA, HLA-

DQB1, HLA-DRA, etc. were significantly higher in the 

low-risk group. As checkpoint inhibitors are crucial to 

immunotherapy, the differences in immune checkpoint 

expression between the two groups were analyzed in 

detail. Significant differences were demonstrated in the 

expression of PDCD1LG2, TMIGD2, CD27, CD40LG, 

etc. for the two groups (Figure 6C). Recent research 

suggests that m6A can regulate the immune response 

and also modify the immune microenvironment of the 

tumor [22]. On comparing the m6A-related expression 

of mRNA between the high- and low-risk groups, it was 

seen that YTHDF3 and LRPPRC ad significantly high 

levels of expression in the high-risk group (Figure 6D). 

 

Construction of mRNA-miRNA-lncRNA 

interoperability network 

 

The interrelationships between the 35 PRGs considered 

in this study were retrieved from the STRING database 

and a PPI network having a composite score of > 4.0 was 

constructed. A complex, close-knit network of 

interrelationships was found among these genes was 

determined (Supplementary Figure 4A). Subsequently, 

the degree of connectivity between these genes 

(Supplementary Figure 4B). We further examined the 

relationship between levels of mRNA expression in the 

pyroptosis-related signature and CC grade staging, and 

found that the expressions of GPX4, GZMA, and GZMB 

were significantly higher in the G3-4 group compared to 

the G1-2 group (P < 0.05, Supplementary Figure 4C–4F). 

 

 
 

Figure 5. The relationship between the pyroptosis-related signature and the TMB, TME, and immune cell infiltration.  
(A) Patients in the high-risk group had lower TMB (P<0.05). (B) The correlation between risk score and TMB (R=-0.14, P<0.05). (C) Kaplan-
Meier curves showed lower overall survival rates in the low-TMB combined with the high-risk group than in the other three groups(P<0.05). 
(D) The relationship between the risk score and TME, patients in the high-risk group had the lower stromal score, immune score, and 
estimate score(P<0.05). (E) The relationship between the risk score and immune cell infiltration is based on TIMER, QUANTISEQ, 
MCPCOUNTER, and CIBERSORT algorithm. Bubble plot for immune responses significantly associated with a risk score. TMB, tumor mutation 
burden. TME, tumor microenvironment. 
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Moreover, the degree of connectivity of GPX4, GZMA, 

and GZMB in the PPI network above was 4, 4, and 10, 

respectively, suggesting that GZMB may indeed be 

involved in tumor growth and progression in CC patients. 

 

Pan-cancer expression analysis was performed for 

GZMB, which showed its significantly high expression 

in cholangiocarcinoma (CHOL), colon adenocarcinoma 

(COAD), esophageal carcinoma (ESCA), glioblastoma 

multiforme (GBM), head and neck squamous cell 

carcinoma (HNSC), kidney renal clear cell carcinoma 

(KIRC), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), and UCEC tissues, while 

significantly low expression was observed in lung 

adenocarcinoma (LUAD) and lung squamous cell 

carcinoma (LUSC) tissues (Figure 7A). TMB is a 

biomarker that indicates response to immunotherapy, 

and so, the relation between the expression of GZMB 

and TMB was investigated. The levels of expression of 

GZMB were significantly and positively correlated with 

TMB in bladder urothelial carcinoma (BLCA), breast 

invasive carcinoma (BRCA), cervical squamous cell 

carcinoma, and endocervical adenocarcinoma (CESC 

orCC), CHOL, COAD, LGG, LUAD, STAD, and 

UCEC, Meanwhile, the correlation was significantly 

negative with kidney renal papillary cell carcinoma 

(KIRP) and thyroid carcinoma (THCA) (Figure 7B). 

Interestingly, the cases of CHOL, COAD, STAD, and 

 

 
 

Figure 6. Diversity of immune microenvironment characteristics in high- and low-risk groups. (A) The activity differences of each 
immune function between high and low-risk groups. (B) The differences of each HLA-related gene between both risk groups. (C) The 
expression status of immune checkpoints between both risk groups. (D) The expression status of m6A-related genes between both risk 
groups. *p < 0.05, **p < 0.01, and ***p < 0.001. 
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UCEC in the high-GZMB-expression group also had 

high TMB values, and these are expected to be more 

sensitive to immunotherapy. In contrast, LUAD in the 

low expression group had low TMB values and so, may 

be resistant to cell scorch-related immunotherapy. 

Prognostic correlation analysis showed that the GZMB 

was negatively correlated with survival in BLCA, 

BRCA, CESC, ovarian serous cystadenocarcinoma 

(OV), skin cutaneous melanoma (SKCM), UCEC, and 

uveal melanoma (UVM). Meanwhile, it was positively 

correlated with GBM, KIRC, KIRP, acute myeloid 

leukemia (LAML), and LGG (P<0.05, Figure 7C). 

 

 
 

Figure 7. Pan-cancer analysis of core gene GZMB expression and survival prognosis. (A) Boxplot of GZMB differential expression 
between cancer and adjacent normal tissues. (B) Radar graph indicating the correlation between the GZMB expression and TMB in pan-
cancer by Spearman’s method. (C) Expression of GZMB correlates with overall survival in patients with different cancer types using univariate 
Cox proportional hazard regression models. *p < 0.05, **p < 0.01, and ***p < 0.001. 
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To elucidate the potential molecular regulation 

mechanism of GZMB in CC, we further constructed an 

mRNA-miRNA-LncRNA interaction network. First, 

based on the comprehensive prediction using the TarBase 

and mirTarBase databases, we screened out miRNAs that 

can target and regulate the GZMB core gene, and 

subsequently, ten miRNAs were obtained by considering 

the intersection (Figure 8A). Further analysis showed that 

miR-378a was significantly upregulated in CC (Figure 

8B) and patients who show a high expression have a 

better prognosis for survival (Figure 8C). The LncRNA 

targets upstream of miR-378a were obtained from the 

LncBase and StarBase databases, and a total of five 

LncRNAs (Figure 8D) were obtained by intersection  

to finally construct the mRNA-miRNA-LncRNA inter-

action network (Figure 8E). Subsequently, these five 

LncRNAs were subjected to differential expression 

analysis and survival prognosis analysis, which showed 

that TRIM52-AS1 was significantly downregulated in 

CC (Figure 8F), and its high level of expression indicated 

a considerable survival advantage (Figure 8G). Thus, it 

may be concluded that the GZMB/miR-378a/TRIM52-

AS1 regulatory axis plays an important regulatory role in 

the development of CC. 

 

DISCUSSION 
 

Pyroptosis is a type of programmed cell death that plays 

a dual role in the occurrence and development of 

tumors. It can regulate cell morphology, proliferation, 

 

 
 

Figure 8. The core gene GZMB associated mRNA-miRNA-lncRNA interaction network construction. (A) Venn diagram of miRNAs 
of TarBase and mirTarBase. The expression (B) and prognostic value (C) of miR-378a (Synonyms: has-miR-378a-3p) in CC patients. (D) Venn 
diagram of LncRNAs of LncBase and StarBase. (E) Regulatory network mRNA-miRNA-LncRNA. The expression (F) and prognostic value (G) of 
TRIM52-AS1 in CC patients. CC, Cervical cancer. 
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infiltration, migration, and chemotherapy resistance 

through a variety of cell signaling pathways, thereby 

influencing tumor progression, and may be associated 

with patient prognosis [5]. However, the regulatory 

mechanisms and networks that link pyroptosis and CC 

are not fully understood. Our study aims to elucidate 

this aspect and paths that can be used for developing 

interventions. 

 

In terms of gene expression, we first found that genes 

AIM2, CASP3, CASP4, CASP5, CASP6, CASP8, 

GSDMB, GSDMC, GZMB, IL18, NLRP2, NLRP7, 

NOD2, PYCARD, and TNF were chiefly up-regulated 

in CC tissues, while the genes ELANE, NLRP1, NOD1, 

and PJVK were down-regulated. Among these, those 

CC patients who had low IL 1B expression and high 

PRKACA expression had poorer survival rates. This is 

consistent with earlier findings that indicate that these 

PRGs are closely associated with tumor development. 

In cervical, gastric, and colorectal cancers, high IL-1B 

expression has been associated with shorter patient 

survival [23, 24]. In addition, it has been noted that IL-

1β expression was elevated in prostate cancers that 

show a high tendency to metastasize [25]. During their 

study of head and neck tumors, Dong et al. found a 

considerable increase in lymph node metastasis with 

increased IL-1β expression [26]; this indicated that high 

IL1B expression is detrimental to the survival of tumor 

patients. Many studies have shown that PRKACA is 

crucial to the development and progression of a variety 

of cancers [27], and also that it can be used as a 

biomarker for hepatocellular carcinoma [28]. Therefore, 

these genes have the potential to be new molecular 

targets for CC. 

 

In ovarian and gastric cancers, researchers have 

identified PRGs and also constructed and validated 

several prognostic models for them [13, 29]. Hence, a 

pyroptosis-related signature was formulated, which 

consisted of eight PRGs with prognostic value (GPX4, 

GSDME, GZMA, GZMB, IL1B, NOD1, PRKACA, 

TNF); the univariate Cox proportional risk regression 

and Lasso regression were used, where patients in the 

low-risk group had better prognosis of survival. The 

signature could effectively predict the prognosis for CC 

patients (AUC > 0.7), and several independent 

prognostic analyses have shown that this signature can 

be considered as an independent prognostic factor. The 

associated nomogram has shown to be stable and 

accurate, and therefore can be used satisfactorily to 

predict survival at one, three, and five years in CC 

patients, presenting additional options for prognosis 

prediction in CC. 

 

Another important finding indicates that this prognostic 

model has a significant relation with the TME, which 

confirms that pyroptosis plays a notable role in the 

TME. A mounting body of evidence shows that cell 

death by pyroptosis is particularly important for the 

formation of tumors and TME, and it has a more 

marked effect on the immune microenvironment of the 

tumor [30]. Studies have confirmed that approximately 

95% of cervical cancer cases may be caused by 

persistent HPV infections. Consequently, the human 

immune system plays an important role in the body’s 

infection response process, thus laying the foundation 

for the immunotherapy of cancer [31]. 

 

This was confirmed in our study, which determined 

significant differences in TME and immune function 

between the low- and high-risk groups. It was found 

that patients with high TME scores had a better 

prognosis. This finding is consistent with previous 

studies that concluded that patients with high TME 

scores exhibited a stronger anti-tumor immune 

response, stood to benefit more from immunotherapy, 

and survive longer [32, 33]. In addition, the correlation 

analysis showed that the B cell and T cell CD8+ 

correlated negatively with the risk scores, while 

neutrophils correlated positively with them. Recent 

studies have shown that the gene GSDME is a tumor 

suppressor that can enhance the phagocytosis of tumor-

associated macrophages and promote the infiltration and 

activation of NK cells and CD8+ T lymphocytes, 

thereby inhibiting tumor growth [9]. Xi et al. found that 

GSDMD was positively correlated with the expression 

levels of CD8A, GZMB, and IFNG in non small cell 

lung cancer (NSCLC) tissues, and the expression was 

up-regulated in activated CD8+ T cells. This enhanced 

the lethality of CD8+ T cells towards the NSCLC cells 

[34]. Consistent with this result, Wang et al. found that 

when a bio-orthogonal shear system was applied to 

gasdermin protein activated pyroptosis, it reshaped the 

tumor immune microenvironment of the tumor and 

activated a strong T cell-mediated anti-tumor immune 

response that exerted a powerful anti-tumor effect [35]. 

It was also observed that tumor-associated neutrophils 

are involved in regulating tumor development, while IL-

1β and IL-18 route neutrophils to tumor sites [36]. 

Meanwhile, GSDMD induces neutrophil death [37]. 

Neutrophils may be involved in the local and systemic 

triggering of immune escape in cervical cancer cells. An 

increase in the total neutrophil count in progressive 

cervical cancer reduces the anti-tumor activity of T cells 

and suppresses thereby suppressing the immune action 

[38–40]. At the same time, our study confirmed that the 

expression of multiple immune checkpoints and m6A-

related mRNAs showed considerable difference 

between the low- and high-risk groups. Later studies 

have found that the abnormal expression of the immune 

checkpoints affects the immune microenvironment of 

the tumor and helps tumor cells evade the body’s 
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immune response [41, 42]. These studies unequivocally 

indicate that the host immune response and micro-

environment are closely related to the progression of 

CC. 

 

In our study, GZMB, which is a component of the 

prognostic model, was significantly upregulated in CC 

tissues. That is, GZMB expression was significantly up-

regulated in patients with advanced (grade 3 and grade 

4) CC, while it was negatively associated with survival. 

GZMB is a serine protease and a pro-inflammatory 

molecule that promotes the progression of inflammatory 

diseases and cancers [43]. It is expressed in uroepithelial 

carcinoma, pancreatic cancer, and melanoma cells, and 

is known to promote cancer cell invasion [44–46]. Our 

study also found that GZMB was negatively associated 

with survival in both BLCA and SKCM. For a long 

time, GZMB has been established as being influential in 

protein hydrolysis-mediated apoptosis, while its role in 

pyroptosis has not been given due attention. GZMB was 

found to be able to cleave GSDME and kill lymphocytes 

to activate the process of pyroptosis, thus changing 

apoptosis to pyroptosis [9]. 

 

The GZMB/miR-378a/TRIM52-AS1 regulatory axis 

that has a strong correlation to the development of CC 

was extracted from the mRNA-miRNA-LncRNA 

interaction network. MicroRNA-378a (miR-378a, 

previously known as miR-378) is an important small 

molecule that belongs to the non-coding RNA family. 

The aberrant up-regulation of miR-378a in HPV16/18 

positive cervical cancer tissues has been reported 

earlier. The expression of miR-378a may be elevated by 

the action of oncoprotein E6/E7 [47]. ElevatedmiR-

378a expression has also been reported in cervical 

cancer tissues and cell lines, and may act through the 

ST7L/Wnt/β-catenin signaling pathway [48]. At 

present, there is a paucity of investigations regarding 

the regulation of TRIM52-AS1 in tumors. For example, 

the down-regulation of TRIM52-AS1 inhibited the 

proliferation and migration of renal cell carcinoma 

(RCC) cells and promoted apoptosis in them. Studies on 

hepatocellular carcinoma (HCC) have shown that the 

TRIM52-AS1 knockdown inhibits the proliferation and 

metastasis of HCC cells. TRIM52-AS1 behaves as a 

competitive endogenous RNA (ceRNA) and promotes 

the progression of HCC by sponging the miRNAs and 

up-regulating the expression of the mRNAs that are 

regulated by miRNAs [49, 50]. Therefore, it can be 

concluded that TRIM52-AS is down-regulated in CC 

tissues; this attenuates the sponging effect on miR-378a, 

and increases the binding of miR-378a to GZMB, which 

in turn inhibits and down-regulates the expression of 

GZMB. This agrees with our findings that the overall 

survival was significantly lower in the group that 

showed low-TRIM52-AS1 expression than in the group 

with high-TRIM52-AS1 expression (Figure 8G) in CC 

patients. Moreover, the lower the expression of GZMB 

as a protective factor (Figure 7C), the worse the 

prognosis was; thus, TRIM52-AS1 may be concluded to 

promote the progression of cervical cancer through 

miR-378a/GZMB, which needs to be studied further for 

validation. 
 

In conclusion, we formulated an effective prognostic 

signature and constructed a GZMB/miR-378a/TRIM52-

AS1 regulatory axis based on several PRGs. This is 

expected to be relevant in the theoretical study of 

molecular mechanisms and for assessing the prognosis 

of cervical cancer patients. However, our study has 

some limitations. Tumor heterogeneity has not been 

considered in this study although it cannot be 

overlooked and must be validated by more extensive in-
vivo and in-vitro studies. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Study flow diagram. 
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Supplementary Figure 2. Prognostic pyroptosis-related genes. (A) Heatmap. (B) Boxplot. Compared to normal cervical tissues, GZMB 

and TNF are highly expressed in cervical cancer tissues, while NOD1 is lowly expressed. *p < 0.05, **p < 0.01, and ***p < 0.001. 
 

 
 

Supplementary Figure 3. The pyroptosis-related signature in other tumors. Kaplan-Meier curves showed lower overall survival rates 
in the high-risk group than in the low-risk group in GBM (A), LCG (B), LIHC (C), and UCEC (D) (P < 0.05). GBM, Glioblastoma multiforme. LGG, 
Brain Lower Grade Glioma. LIHC, Liver hepatocellular carcinoma. UCEC, Uterine Corpus Endometrial Carcinoma. 
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Supplementary Figure 4. Identify the core gene of the pyroptosis-related signature. (A) PPI network of the PRGs. (B) The degree of 

binding of PRGs. (C–J) Correlation of genes of the pyroptosis-related signature with the clinical feature Grade. The expression of GPX4, GZMA, 
and GZMB was significantly higher in the G3-4 group. PRGs, Pyroptosis-related genes.  
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Supplementary Tables 
 

 

Supplementary Table 1. Detailed list of pyroptosis genes. 

Gene Full-names 

AIM2 Absent in melanoma 2 

CASP1 cysteine-aspartic acid protease-1 

CASP3 cysteine-aspartic acid protease-3 

CASP4 cysteine-aspartic acid protease-4 

CASP5 cysteine-aspartic acid protease-5 

CASP6 cysteine-aspartic acid protease-6 

CASP8 cysteine-aspartic acid protease-8 

CASP9 cysteine-aspartic acid protease-9 

ELANE elastase, neutrophil expressed 

GPX4 glutathione peroxidase 4 

GSDMA gasdermin A 

GSDMB gasdermin B 

GSDMC gasdermin C 

GSDMD gasdermin D 

GSDME/DFNA5 gasdermin E 

GZMA granzyme A 

GZMB granzyme B 

IL18 interleukin 18 

IL1B interleukin 1 beta 

IL6 interleukin 6 

NLRC4 NLR family CARD domain containing 4 

NLRP1 NLR family pyrin domain containing 1 

NLRP2 NLR family pyrin domain containing 2 

NLRP3 NLR family pyrin domain containing 3 

NLRP6 NLR family pyrin domain containing 6 

NLRP7 NLR family pyrin domain containing 7 

NOD1 

nucleotide binding oligomerization domain 

containing 1 

NOD2 

nucleotide binding oligomerization domain 

containing 2 

PJVK pejvakin/deafness, autosomal recessive 59 

PLCG1 phospholipase C gamma 1 

PRKACA 
protein kinase cAMP-activated catalytic 

subunit alpha 

PYCARD PYD and CARD domain containing 

SCAF11/SFRS2IP SR-related CTD associated factor 11 

TIRAP TIR domain containing adaptor protein 

TNF tumor necrosis factor 
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Supplementary Table 2. Detailed list of pan-cancer names. 

Cancer type Full-names 

ACC Adrenocortical carcinoma 

BLCA Bladder Urothelial Carcinoma 

BRCA Breast invasive carcinoma 

CESC 

Cervical squamous cell carcinoma and endocervical 

adenocarcinoma 

CHOL Cholangiocarcinoma 

COAD Colon adenocarcinoma 

COADREAD 

Colon adenocarcinoma/Rectum adenocarcinoma 

Esophageal carcinoma 

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

ESCA Esophageal carcinoma 

FPPP FFPE Pilot Phase II 

GBM Glioblastoma multiforme 

GBMLGG Glioma 

HNSC Head and Neck squamous cell carcinoma  

KICH Kidney Chromophobe 

KIPAN Pan-kidney cohort (KICH+KIRC+KIRP)  

KIRC Kidney renal clear cell carcinoma 

KIRP Kidney renal papillary cell carcinoma  

LAML Acute Myeloid Leukemia 

LGG Brain Lower Grade Glioma 

LIHC Liver hepatocellular carcinoma 

LUAD Lung adenocarcinoma 

LUSC Lung squamous cell carcinoma 

MESO Mesothelioma 

OV Ovarian serous cystadenocarcinoma 

PAAD Pancreatic adenocarcinoma 

PCPG Pheochromocytoma and Paraganglioma 

PRAD Prostate adenocarcinoma 

READ Rectum adenocarcinoma 

SARC Sarcoma 

SKCM Skin Cutaneous Melanoma 

STAD Stomach adenocarcinoma 

STES Stomach and Esophageal carcinoma 

TGCT Testicular Germ Cell Tumors 

THCA Thyroid carcinoma 

THYM Thymoma 

UCEC Uterine Corpus Endometrial Carcinoma 

UCS Uterine Carcinosarcoma 

UVM Uveal Melanoma 

 


