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INTRODUCTION 
 

Clinical studies have found that early life stress is 

strongly associated with the development of depression 

in adulthood [1–4]. Individuals that have experienced 

early life stress have a significantly higher risk of 

depression, mania, schizophrenia and other psychiatric 

disorders in adulthood than those have not experienced 

early life stress [5]. Early life stress is significantly 

more associated with the onset of depression than 

recent stressful events with depression [6]. In addition, 

patients with depression who experienced a stressful 

event in childhood showed clinical features such as 

earlier age of onset, more severe depressive symptoms, 

more prolonged course, recurrent episodes and 

significantly reduced efficacy of common 

antidepressants [7]. Basic research has also shown that 

early environmental stress induces depression in 

rodents and primates in adulthood [8]. However, the 

pathways or mechanisms through which stressful 

events occurring early in life contribute to the onset of 

depression are not yet entirely clear. Changes in the 

HPA axis are thought to be key factors in depression 

susceptibility [9]. For example, MS can produce 

significant stress. Long-term exposure to stress will 

lead to the HPA axis hyperactivity in response to stress, 

which manifests itself in adulthood and persists. In 

addition, MS increases susceptibility to depression by 

altering both serotonin and dopamine secretion in 

relevant areas of the brain. Besides the endocrine 

system, MS is also closely linked to the immune 

system. Inflammatory mechanisms are involved in 
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ABSTRACT 
 

Depression is the most common mental disorder and has become a heavy burden in modern society. Clinical 
studies have identified early life stress as one of the high-risk factors for increased susceptibility to depression. 
Alteration of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress is one of the key risk factors 
for depression susceptibility related to early life stress. Laboratory animal studies have demonstrated that 
maternal separation (MS) for extended periods elicits HPA axis changes. These changes persist into adulthood 
and resemble those present in depressed adult individuals, including hyperactivity of the HPA axis. In addition, 
there is growing evidence that inflammation plays an important role in depression susceptibility concerned 
with early life stress. Individuals that have experienced MS have higher levels of pro-inflammatory cytokines 
and are susceptible to depression. Recently, it has been found that the gut microbiota plays an important role 
in regulating behavior and is also associated with depression. The translocation of gut microbiota and the 
change of gut microbiota composition caused by early stress may be a reason. In this review, we discussed the 
mechanisms by which early life stress contributes to the development of depression in terms of these factors. 
These studies have facilitated a systematic understanding of the pathogenesis of depression related to early life 
stress and will provide new ideas for the prevention and treatment of depression. 
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enhancing the stress response after early life stress and 

in the development of vulnerability to depression [10, 

11]. Not only that, recent studies have found that the 

altered gut microbiota caused by MS may also play an 

important role. Alterations in composition have been 

found in MS models and rat models of depression. 

Even fecal transplants from Major Depressive Disorder 

(MDD) patients affected depression-like behavior in 

recipient animals [12]. As shown in Figure 1, we 

demonstrated the association between early-life stress 

and depression from the perspective of 

neuroendocrinology, immune and gut microbiota. 

 

Neuroendocrine regulation in early life stress-

induced depression 
 

In rodents (especially rats), MS has become a common 

trigger for various psychiatric disorders, especially 

depression [13–17]. MS may contribute to depression 

susceptibility in adulthood through alterations of the 

HPA axis in response to stress [18, 19], alterations in 

the expression of BDNF in different regions of the 

central nervous system (CNS) [20], alterations in the 

expression of serotonin in the CNS [21] and alterations 

in the expression of dopamine and its receptors [22] 

(Table 1). 

 

HPA axis 

 

Studies over the past few decades have demonstrated 

that hyperactivity of the HPA axis is one of the most 

consistent biological findings in depression [23–27]. 

Laboratory animal studies have shown that separating 

neonatal rodents and non-human primates from their 

mothers for long periods elicits HPA axis changes. 

Those changes persist into adulthood and resemble 

those present in depressed adult individuals, including 

hyperactivity of the HPA axis [28]. 

 

 
 

Figure 1. Early life stress (ELS) contributes to the development of depression through the endocrine system, immune 
system and gut microbiota. ELS can lead to high reactivity of HPA axis response to stress and the disorder of HPA axis is closely related 

to the development of depression. The imbalance of immune system caused by the disorder of glucocorticoid secretion and the change of 
gut microbiota are also related to the development of depression. Abbreviations: GR: glucocorticoid receptor; TLR: Toll-like receptor; GRF: 
corticotropin releasing factor; ELS: early life stress; 5-HT: 5-hydroxytryptamine; IL-1: interleukin-1; IL-6: interleukin-6; IL-10: interleukin-10; 
IL-18: interleukin-18; BDNF, brain-derived neurotrophic factor; SCFA: short-chain fatty acid; AG: adrenal glucocorticoid; GSK3: Glycogen 

synthase kinase 3; NF-B: nuclear factor- -gene binding. 
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Table 1. Neuroendocrine regulation in early life stress-induced depression. 

System 
involved 

Stress 
exposure 

Depression-like 
behavior 

Main findings References 

HPA axis MS Promoting 
Venlafaxine reverses depressive-like behavior 

induced by MS via modulating HPA axis activity. 
Martisova et al., 

2015 

 MS Promoting 
Acupuncture reverses depressive-like behavior 
induced by MS via modulating HPA activity. 

Park et al., 2011 

Serotonin 
system 

MS Promoting 
Serotonergic activity in the hippocampus and the 

raphe decrease under MS-induced depression. 
Jahng, 2011 

 MS Promoting 
5-HT synthesis in hippocampal dentate gyrus 

decreases in the MS rat pups. 
Baek et al., 2012 

 ELS Promoting 
The ELS-induced decrease of SERT expression 

relates to altered serotonergic function, and possibly 
to the susceptibility to depression. 

Wankerl et al., 
2014 

Dopamine 
system 

MS Promoting 
Down regulation of D1 receptors promotes the 

depression-like behavior caused by MS. 
Amiri et al., 

2016 

Neurotrophins MS Promoting 

Enriched environment during the early development 
period is effective in alleviating depression induced 
by ELS through increasing BDNF expression in the 

hippocampus. 

Huang et al., 
2021 

 MS Promoting 
Through the BDNF/PKA/CREB pathway, SiNiSan 
treatment might impose antidepressant effects on 

young and adult MS rats. 
Cao et al., 2019 

Abbreviations: MS: maternal separation; HPA axis: Hypothalamic–pituitary–adrenal axis; ELS: early life stress; 5-HT: 5-
hydroxytryptamine; CREB: cAMP-response element binding protein; BDNF: brain-derived neurotrophic factor; PKA: protein 
kinase A. 

 

Male Wistar rats underwent early MS showed 

significantly reduced glucocorticoid receptor density in 

the hippocampus in adulthood and exhibited depression-

like behaviors in the forced swim test in adulthood [29]. 

Adult mice also showed lasting consequences of ELS 

using limited nesting and bedding material paradigm 

including HPA axis hyperreactivity [30]. Venlafaxine 

reversed the deleterious effects of chronic stress 

including stress-induced depression-like behaviors and 

cognitive deficits. Besides, it reduced subventricular 

zone volume, demonstrating that modulation of stress-

mediated glucocorticoid secretion may be a target for 

the treatment of mood disorders and neurodegenerative 

processes [31]. Acupuncture therapies from the East 

also appeared to improve MS. The HPA axis reactivity 

was mitigated by acupuncture, specifically by reducing 

CORT and ACTH plasma levels in MS rats [32]. When 

endogenous glucocorticoid level is high, GR is more 

important in regulating HPA axis [33]. In the case of 

elevated circulating cortisol levels, depressed patients 

show impaired HPA negative feedback. Many studies 

have described the decrease of GR function (GR 

resistance) in patients with depression and concluded 

that antidepressants play a role by reversing these 

hypothetical GR changes [34]. When the stress 

improves over time, depression behavior can be 

improved to some extent. 

Neurotrophins 

 

Not only does MS alter the response of the HPA axis 

to stress, but MS has also been found to cause 

alterations in neurotransmitters and brain-derived 

neurotrophic factor (BDNF) in the brain [35–39], a 

neurotrophic factor expressed in the brain and 

associated with neuronal growth, synaptic plasticity, 

differentiation and neuronal survival [40]. MS 

decreased hippocampal BDNF and p-AKT/AKT levels 

and was associated with depression-like behavior, 

while an enriched environment reversed this negative 

impact and upregulated the PI3K-AKT pathway [41]. 

Direct infusion of BDNF into the hippocampus or 

midbrain yielded antidepressant-like effects [42]. 

BDNF was also required for the rapid antidepressant 

effects of ketamine [43]. Some findings indicated that 

fast transient translation of BDNF was necessary for 

ketamine’s fast-acting and long-lasting antidepressant-

like behavioral effects. Those long-term antidepressant 

responses may be due to alterations in synaptic 

plasticity initiated by transient increases in BDNF 

translation [44]. Eukaryotic elongation factor 2 kinase 

(eEF2K) null knockout mice administered an acute 

low dose of ketamine did not have increased BDNF 

protein expression and did not show an antidepressant 

response to the drug [45]. 
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Serotonin system 

 

In addition to BDNF, serotonin plays an important role 

in MS-induced depression. Serotonin is closely 

associated with mood disorders and plays a role in the 

corticolimbic network that regulates mood, behavior, 

cognition and motor function. Serotonin transporter 

gene (SERT) DNA methylation is thought to be related 

to stress-related diseases. [46, 47]. In mice with MS, 5-

hydroxytryptamine (5-HT) synthesis in the dorsal suture 

nucleus and cell proliferation in the hippocampal 

dentate gyrus were significantly reduced [48]. 

Depression-like behavior was also observed in two-

month-old MS rats with reduced 5-HT activity in the 

hippocampus [49]. SERT gene (Solute Carrier Family 6 

Member 4, SLC6A4) encodes a protein that transports 

the neurotransmitter serotonin from the synaptic gap to 

presynaptic neurons. It has been shown that ELS caused 

SLC6A4 methylation and that reduced SLC6A4 

expression allowed serotonin to accumulate in the 

synaptic gap [50], thereby impairing normal serotonin 

function and leading to depression. Besides, MS 

triggered the decrease in 5-HT1A receptor expression in 

the CA1 region in the hippocampus of young and adult 

male rats compared with control rats without MS, which 

is also a key factor for depression [20]. 

 

Besides 5-HT, a dopaminergic pathway is a part of the 

reward system. Due to the interaction between the 

dopaminergic system and HPA axis or the interaction 

between the dopaminergic system and serotonin system, 

the effect of chronic stress on reward perception may 

lead to depression. Some studies have demonstrated that 

early psychological stress activates the HPA axis, 

exacerbates DA depletion and is associated with a 

decrease in DA synthesis in the brain. DA deficiency 

resulting from early life stress may, in some instances, 

predispose an individual to depression [51]. In addition, 

MS causes depression-like behavior in adult male mice 

with reduced dopamine level in the striatum. A drug 

that blocks the metabolism of dopamine, selegiline, 

reduces depression-like behavior in MS mice. Both 

dopamine receptors D1 and D2 mediate the 

antidepressant-like effects of selegiline, with D1 

receptors mediating the effects on depression behavior 

and D2 receptors mediating the effects on pleasure 

deficit [52]. 

 

Immunomodulation as a key role in early life 

stress-induced depression 
 

HPA axis and inflammation modulation under early 

life stress have a close relationship. Both psychogenic 

and immune stressors can induce HPA axis and 

inflammation changes. Maternal care deprivation (a 

psychological stressor) model increased the levels of 

pro-inflammatory cytokines (interleukin-1β (IL-1β), 

interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-

α)) and decreased the anti-inflammatory cytokine 

(interleukin-10) level in the brain and serum 

throughout developmental programming [53]. 

Meanwhile, early exposure to lipopolysaccharide (an 

immune stressor) elevated the levels of TNF-α and IL-

1β in the hippocampus in adulthood and also increased 

corticosterone levels in adulthood [54]. There is a 

growing awareness that people with autoimmune 

disorders show a high prevalence of depression 

disorders. By the early 1990 s, the role of 

overproduction of immunomodulatory signaling 

molecules for depression became apparent, particularly 

pro-inflammatory cytokines, which may play a role in 

the development and maintenance of depression [55]. 

Interleukin-1 (IL-1), interferon-gamma (IFN-γ), acute-

phase associated proteins and tumor cytokines have 

now been reported to be associated with depression 

disorder [56]. In addition, treating the hepatitis C virus 

with pro-inflammatory agents such as interferon-alpha 

(IFN-α) leads to depression symptoms in a quarter of 

patients [57]. This inflammatory phenotype is also 

thought to be an important factor in treatment 

resistance in depression. This theory led researchers to 

investigate the antidepressant effects of anti-

inflammatory compounds and showed that TNF 

antagonism improved depressive symptoms in patients 

with high baseline inflammatory biomarkers [58]. 

Given that many antidepressants have anti-

inflammatory effects [59], immune mechanisms are 

now thought to be central to the development of 

depressive symptoms. 

 

Studies have suggested that inflammation plays a key 

role in early life stress leading to depression 

susceptibility. Related research results are listed in 

Table 2. Studies have also showed that repeated MS has 

pro-inflammatory immune consequences in diverse 

tissues. Repeated MS animals exhibited greater 

microglial activation and elevated pro-inflammatory 

cytokine signaling in key brain regions implicated in 

human psychiatric disorders. A recent review indicated 

that minocycline inhibited microglial activation and 

alleviated depression-like behaviors in male adolescent 

mice subjected to MS [60]. A prospective study showed 

that depression adults who experienced severe early life 

stress were 1.48 times more likely to have clinically 

high C-reactive protein (CRP) levels than those 

depression adults without early life stress [61]. In a 

study that followed adolescent females at higher risk of 

depression for more than 2.5 years study, adolescents 

with a history of early life stress had greater increases in 

IL-6 and CRP when they became depressed than their 

peers without a history of early life stress. In addition, 

in this study, adolescents without a history of early life 
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Table 2. Immunomodulation as a key role in early life stress-induced depression. 

Inflammatory 
cytokine 

Stress 
exposure 

Depression-like 
behavior 

Main findings References 

IL-1β MS Promoting 
IL-1β in the vHIP, PFC and serum 

increase under ELS-induced depression 
Wang et al., 2017 

IL-6 MS Promoting 
IL-6 increases under ELS-induced 

depression. 
Miller and Cole, 2012 

Il-10 MS Promoting 
IL-10 in the amygdala and 

hypothalamus decrease under ELS-
induced depression. 

DellaGioia et al., 2010 

TNF-α MS Promoting 
Pro-inflammatory markers TNF-α is up 

regulated under ELS-induced 
depression. 

Wang et al., 2017 

CRP ELS Promoting 
CRP increases under ELS-induced 

depression. 
Danese et al., 2008 

TLR 4 ELS Promoting 
The expression of gene encoding TLR 4 

is up-regulated under ELS-induced 
depression. 

Carroll et al., 2011 

Abbreviations: IL-1β: interleukin-1β; MS: maternal separation; vHIP: ventral hippocampus; PFC: prefrontal cortex; IL-6: 
interleukin-6; IL-10: interleukin-10; TNF-α: tumor necrosis factor-α; CRP: C-reactive protein; ELS: early life stress; TLR 4: Toll-
like receptor. 

 

stress had lower CRP as depressive symptoms 

decreased. In contrast, adolescents with a history of 

early life stress did not have this association [62]. There 

is evidence that the link between early life stress, 

inflammation and depression is detectable at a young 

age. A longitudinal study found that patients who 

experienced early life stress followed by depression had 

significantly higher CRP level than those who only 

suffered from depression and did not experience early 

life stress [63]. Early life stress increased expression of 

the gene encoding Toll-like receptor (TLR) 4, which 

activates the innate immune system response. Besides, 

early life stress reduced the gene expression encoding 

the glucocorticoid receptor, responsible for down-

regulating inflammation in the cortisol response [64]. 

The above studies have suggested that inflammation 

plays a vital role in early life stress leading to 

depression susceptibility. 

 

Studies have shown a sustained process of MS 

increased inflammatory cytokine secretion in 

peripheral and brain tissue in mice exposed to 

lipopolysaccharide (LPS) as adults [65]. Expression of 

the neuroinflammatory marker Iba1 was increased in 

MS mice [66]. MS also induced depression-like 

behavior with microglia activation and over expression 

of histone demethylase Jumonji domain-containing 

protein 3 (Jmjd3). These changes can also be found in 

adulthood. Jmjd3, a trimethylated lysine 27 in histone 

3 (H3K27me3) demethylase, can be activated by 

nuclear factor-kappa B (NF-κB), further regulating the 

expression of pro-inflammatory cytokines and 

resulting in neuroinflammation. Treatment with the 

demethylase Jmjd3 inhibitor GSK-J4 attenuated these 

changes, suggesting that Jmjd3 is involved in MS-

induced depression susceptibility by enhancing 

neuroinflammation in the rat prefrontal cortex and 

hippocampus [67]. It has been shown that depression-

like behavior following MS stress is associated with 

increased expression of TLR-4 and its main signaling 

protein Myd88 in the hippocampus. Voluntary 

physical activity during adolescence can prevent the 

negative effect of early life stress. The depression 

effects of stress are mediated, at least in part, by 

attenuating the innate immune response in the 

hippocampus [68]. MS upregulated pro-inflammatory 

markers TNF-α and downregulated anti-inflammatory 

markers IL-10 in the hippocampus, which activated 

microglia and promoted pro-inflammatory shifts in 

microglia [69]. Early life stress reduced IL-10 

expression in the amygdala and hypothalamus [56], 

and these effects could be reversed by minocycline 

[70]. Besides, MS increased depression and anxiety 

behavior with an increased level of IL-1β in the ventral 

hippocampus (vHIP), prefrontal cortex (PFC) and 

serum, a decreased level of IL-10 in HPV [69]. 

Fluvoxamine had similar effects with mRNA levels of 

IL-1β, IL-6 and TNF-α downregulated in the striatum 

of fluvoxamine-treated rats. Early treatment with 

fluvoxamine suppressed depression behavior in MS 

mice by promoting the expression of anti-

inflammatory cytokines [71]. It has been shown that 

injection of live and heat-killed PS23 cells showed 

positive behavioral effects in MS animals with 

increased propensity to explore and activity in 

behavioral tests and reduced anxiety and depression. 
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Role of gut microbiota in early life stress-

induced depression 
 

Investigation of gut microbiota 

 

In addition to HPA axis and the immune system, gut 

microbiota shaped by early life stress increased 

susceptibility to depression in adulthood. The 

microbiota-gut-brain axis refers to the two-way 

communication between the gut microbiota and the 

brain. Although not fully understood, this complex 

interaction involves multiple physiological systems 

such as the gastrointestinal system and its gut 

microbiota, nervous systems, the immune system and 

the neuroendocrine system [72]. The gut microbiota has 

emerged as an important brain and behavior regulator 

linked to depression [73]. Maes et al. suggested that gut 

microbiota translocation or leaky gut may be a major 

trigger for the development of depression. Gut 

microbiota translocation or leaky gut can activate 

immune cells and stimulate selective immunoglobulin A 

(IgA) and immunoglobulin M (IgM), which indicating 

that gut microbiota may be involved in the 

pathophysiology of depression by causing a progressive 

immune response [74]. In addition, recent studies have 

shown that the gut microbiota regulate the maturation of 

microglia, possibly through the serotonin pathway or 

the secretion of metabolites such as short-chain fatty 

acids (SCFA) [75]. 

 

Meanwhile, early life stresses, such as maternal 

immune activation and MS, have been shown to 

produce gut defects such as increased gut permeability, 

which lead to translocation of gut microbiota [76]. 

Therefore, it can be speculated that altered gut 

permeability and translocation of gut microbiota due to 

early life stress are closely linked to subsequent 

depression episodes. Besides, early life stress shaped 

the gut microbiota and was associated with disease in 

later adulthood [77, 78]. Chronic exposure to limited 

nesting stress during the first-week postnatally has 

sustained effects monitored at weaning including 

hypercorticosteronemia, a leaky gut and a decreased 

gut microbiota diversity [79]. However, the underlying 

mechanisms by which stress regulates microbial 

community composition remain to be elucidated. For 

example, a large body of evidence suggested that 

depression is associated with alterations in the gut 

microbiota composition, often manifested as a 

reduction in abundance and diversity, fecal microbiota 

transplantation is expected to treat diseases related to 

intestinal gut microbiota disorder. [12, 80]. 16S rRNA 

analysis of fecal samples from healthy individuals 

revealed that the most abundant bacteria in terms of 

numbers were phylum Aspergillus, accounting for 70–

75% of the entire, with other bacteria also included 

phylum Aspergillus, phylum Actinomycetes, phylum 

Clostridium and phylum Verrucomicrobial [81]. The 

proportional number of microbiota differed in 

depression patients. Compared to healthy people, the 

largest numbers were found in the phylum Anaplasma 

and lower numbers in the family Lachnospiraceae 
[82]. Similar studies in 2015 found that patients with 

depression had higher levels of Bacteroides, Proteus 

and Acinetobacter, while the number of Firmicutes 

was significantly lower [83]. 

 

Recently, researchers used DNA sequencing to analyze 

the microbiota in the feces of more than 1000 people in 

the Flemish gut microbiota in Belgium found that 

Coprococcus and Dialisterwere reduced in patients with 

depression. There was a positive correlation between 

their quality of life and the potential ability of the gut 

microbiota to synthesize 3,4-dihydroxyphenylacetic 

acid, a breakdown product of the neurotransmitter 

dopamine [84]. These results were the strongest 

evidence to date that a person’s microbiota can 

influence their mental health. Analysis of the gut 

microbiota of MS rats revealed alterations in the 

composition of their gut microbiota. Member of the 

actinomycetes was reduced, while the abundance of 

member of the proteobacteria was elevated [83]. 

 

Therapeutic potential of probiotics 

 

Probiotic interventions have also been shown to reduce 

depression-like behavior in rats and mice and improve 

inflammatory responses (Table 3). In addition, some 

probiotics have now been found to reverse early life 

stress-induced gut microbiota disturbances and persistent 

activation of the HPA axis. Eicosapentaenoic 

acid/Docosahexaenoic (EPA/DHA) acid treatment 

normalizes the interference of early life stress on gut 

microbiota in female rats. The altered composition of the 

gut microbiota resulted in reduced levels of gut 

permeability and thus reduced inflammation [85]. 

Bifidobacterium pseudocatenulatum CECT7765 can also 

ameliorate MS-induced gut inflammation (decreased 

interferon-gamma, IFN-γ), which improves depression-

like behaviors [86]. As shown in Figure 2, early stress 

can affect depression through gut microbiota. 

Bifidobacterium (B.) bifidum G9-1 prevents MS-induced 

hypercortisolemia, reduces MS-induced high 

corticosterone level [87]. Bifidobacterium infantis 

decreased depression-like behavior in MS mice in forced 

swimming and sucrose preference test [88]. Mice 

administered with live Lactobacillus paracasei PS23 

(PS23) cells had lower serum corticosterone levels and 

higher serum anti-inflammatory interleukin-10 (IL-10) 

levels, suggesting that the effect of probiotics may be 

associated with immunomodulatory properties. Ingestion 

of PS128 ameliorated depression-like 
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Table 3. Role of gut microbiota in early life stress-induced depression. 

Probiotics 
Stress 

exposure 
Depression-

like behavior 
Main findings Reference 

Bifidobacterium 
pseudocatenulatum 
CECT7765 

MS Promoting  

B. pseudocatenulatum CECT 7765 
administration reduces depression-like behavior 
in adulthood, reverses intestinal dysbiosis and 

reduces corticosterone production.  

Moya-Pérez et al., 
2017 

Bifidobacteria MS Promoting 
Bifidobacteria treatment results in 

normalization of immune response and reversal 
of behavioral deficits.  

Fukui et al., 2018 

Lactiplantibacillus 
plantarum PS128 

MS Promoting 
Ingestion of PS128 ameliorates depression-like 

behaviors and modulates neurochemicals. 
Liu YW al et al., 

2016 

Lactobacillus 
paracasei PS23 

MS Promoting 

PS23 cells decrease serum corticosterone levels 
accompanied by higher serum anti-

inflammatory IL-10 levels with reducing 
depression-like behavior. 

Liao et al., 2019 

Heat-killed 
Lactobacillus 
paracasei PS23 

ELS Promoting 
PS23 reverses ELS-induced depression-like 

behaviors. 
Wei et al., 2019 

Abbreviations: MS: maternal separation; ELS: early life stress. 

 

 
 

Figure 2. Early life stress produces gut defects and increases gut permeability, leading to translocation of LPS and gut 
microbiota. LPS can aggravate the body’s inflammatory response and increase the risk of depression. Probiotics and SCFA can reverse this 
process and reduce the risk of depression. Abbreviations: LPS: lipopolysaccharide; SCFA: short-chain fatty acid; ELS: early life stress; IL-1β: 
interleukin-1β; IL-6: interleukin-6; IL-10: interleukin-10; TNF-α: tumor necrosis factor-α. 
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behaviors and modulated neurochemicals related to 

affective disorders [89]. The study demonstrated the 

potential of PS23 cells in reversing abnormalities 

induced by early life stress [90]. Interestingly, both live 

and heat-killed PS23 also reversed anxiety-like and 

depression-like behaviors induced by chronic 

corticosterone administration in mice [91]. 

 

The current research is mainly based on specific gut 

microbiota, their metabolites and neurological 

symptoms. But these correlations do not prove cause 

and effect. Besides, many studies have used animal 

models that do not accurately reflect human 

characteristics or behavior. Studies on humans are 

relatively few. They are usually based on relatively 

small populations that may not control for many 

confounding factors that may affect the gut microbiota, 

such as abnormal diets, antibiotics or antidepressants. 

The relationship between early stress and the interaction 

of gut microbiota and its metabolites deserves to be 

further studied to find a new therapeutic target to reduce 

the negative effects of early stress. 

 

CONCLUSIONS 
 

The delicate balance between the stress response, 

immunity and gut microbiota is crucial for nervous 

system health. Early life stress can result in the 

dysregulation of brain physiology and behavior, 

contributing to the development of depression. More 

cohort studies are needed to further reveal the effect of 

early life stress on adulthood. Till now, how to reduce 

the effect of early life stress on adulthood is also a 

problem worthy of study. Meanwhile, much work is 

also needed at a mechanistic level in preclinical and 

human studies to tease apart the relative contribution of 

each of them and the cross-talk between each other. 

 

As stated in the introduction, we now appreciate that 

imbalanced stress and inflammatory responses induced 

by early life stress are undoubtedly involved in the 

development and maintenance of depression, but recent 

evidence suggests that the gut microbiota, too, may play 

a role in the imbalance of these pathways and 

neuropsychology. The role of the microbiota in disease 

is only now emerging, particularly in the field of 

neuropsychology. Further studies may focus on the 

cross-talk between the microbiota and neuroendocrine 

or immune system under early life stress and related 

intervention therapy. 
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