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ABSTRACT 
 

Objective: NINJ2 regulates activation of vascular endothelial cells, and genome-wide association studies 
showed that variants in NINJ2 confer risk to stroke. However, whether variants in NINJ2 are associated with 
coronary artery disease (CAD) is unknown. 
Methods: We genotyped rs34166160 in NINJ2 in two independent Chinese GeneID populations which included 
2,794 CAD cases and 4,131 controls, and performed genetics association studies. Functional studies were also 
performed to reveal the mechanisms. 
Results: Allele rs34166160 significantly confers risk to CAD in the GeneID Hubei population which contained 
1,440 CAD cases and 2,660 CAD-free controls (observed P-obs = 6.39 × 10−3 with an odds ratio (OR) was 3.39, 
adjusted P-adj = 8.12 × 10−3 with an OR of 3.10). The association was replicated in another population, GeneID 
Shandong population contained 1,354 CAD cases and 1,471 controls (P-obs = 3.33 × 10−3 with an OR of 3.14,  
P-adj = 0.01 with an OR of 2.74). After combining the two populations, the association was more significant  
(P-obs = 1.57 × 10−5 with an OR of 3.58, P-adj = 3.41 × 10−4 with an OR of 2.80). In addition, we found that 
rs34166160 was associated with the mRNA expression level of NINJ2 and the flanking region of rs34166160 can 
directly bind with transcriptional factor CCAAT-box/enhancer-binding protein beta, and the risk A allele has 
more transcription activity than non-risk C allele with or without LPS in HUVEC cells.  
Conclusions: Our study demonstrates that the functional rare variant rs34166160 in NINJ2 confers risk to CAD 
for the first time, and these findings further expand the range of the pathology of CAD and atherosclerosis. 

mailto:cqxu@mail.hust.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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INTRODUCTION 
 

Atherosclerosis is the leading pathological cause of 

coronary heart disease (CAD) and ischemic stroke, 

which claims about 14 million of lives every year and is 

the main cause of mortality and morbidity worldwide 

[1, 2]. In China, CAD and stroke are also one of the 

most common public health problems, and account for 

40% of all deaths every year. 

 

Atherosclerosis is a complex trait caused by 

environmental factors, genetic factors, and their 

interactions [3]. Risk factors such as abnormal lipid 

concentrations, obesity, diabetes, smoking, 

hypertension, physical inactivity, psychosocial 

situations, and alcohol intake are shared among CAD 

and ischemic stroke [4, 5]. In addition, epidemiological 

data shows that genetic background plays a critical role 

in both CAD and ischemic stroke [6]. Genetic analysis 

in families or population, such as genome-wide 

association studies (GWAS) revealed a lot of 

susceptibility genes/loci confer risk to the incidence of 

CAD or ischemic stroke, and some of them, including 

ANRIL in 9p21, PCSK9 in 1p32 and BRG1 in 19p13 

were found to confer risk for both CAD and ischemic 

stroke [7]. Identification of novel genetic risk variants 

that are shared by both ischemic stroke and CAD may 

identify the underlying pathophysiology of 

atherosclerosis, and facilitate diagnosis, which may 

ultimately lead to prevention and treatment of ischemic 

stroke and CAD. 

 

In a previous study, we found that ninjurin2 (encode 

by NINJ2) is expressed in human vascular endothelial 

cells, and can regulate the expression of genes 

associated with inflammation and atherosclerosis (IL-

1β, TNF-α, IL-8, IL-6, ICAM-1 and E-selectin) in 

HUVECs. Moreover, we found ninjurin2 can regulate 

LPS-induced endothelial activation, and the adhesion 

of monocytes to endothelial cells through the TLR4/ 

NF-κB/c-jun pathway [8], which proposed that 

ninjurin2 is a novel regulator of endothelial 

activation, and may play important roles in the 

initiation or development of atherosclerosis. 

Endothelial activation is a crucial step in the 

initiation and development of the atherosclerosis 

process. Under irritant stimuli, including 

dyslipidemia, hypertension, and pro-inflammatory 

agents, vascular endothelial cells were activated and 

support monocyte migration into the sub-endothelial 

space, and then differentiate into macrophages and 

take up modified lipoproteins to become lipid-laden 

foam cells. After activation, the normal functions of 

the arterial endothelium are adversely affected, and 

this leads to atherosclerosis and cardiovascular 

diseases, such as CAD and ischemic stroke. 

Previously, GWAS and candidate gene based 

association studies have shown that variants in the 

NINJ2 gene confer risk to the incidence of ischemic 

stroke in several independent populations, including 

Chinese, Korean, Iranian and Caucasian ancestry  

[9–14], however, the detailed mechanisms of how 

NINJ2 regulates endothelial activation are not very 

clear, and the relationship between NINJ2 and 

endothelial activation also need to be confirmed in other 

type of atherosclerosis related disease including CAD. 

 

Here, we tested the hypothesis that the association 

between rs34166160 in NINJ2 and CAD, which is a 

low-frequency variant associated with ischemic stroke 

in Caucasians [15]. We identified rs34166160 in NINJ2 

as a novel genetic risk factor of CAD in the Chinese 

Han population. Expression quantitative trait loci 

(eQTLs) were identified between rs34166160 and 

NINJ2 mRNA expression in Blood cells. Our further 

functional studies also demonstrated that the risk A 

allele of rs34166160 has more transcription activity 

than the non-risk C allele using the Electrophoretic 

Mobility Shift Assay (EMSA) and Luciferase Reporter 

Assay, and may cooperate with transcriptional factor 

C/EBP beta under the LPS induced endothelial 

activation. Our data identified rs34166160 in NINJ2 as 

a susceptibility locus for CAD, and uncovered a 

potential mechanism of rs34166160 conferring risk to 

CAD via regulating the expression of NINJ2 by binding 

with C/EBP beta. 

 

RESULTS 
 

Characteristics of study subjects 

 

The samples involved in the current research were 

selected from the GeneID cohort [16–23]. To avoid 

geographical confounding, our genetic association 

studies between polymorphisms and disease were 

carried out in two independent populations. The 

GeneID-Central population, which contained 1,440 

cases with CAD and 2,660 CAD-free controls, was 

collected from central China (Hubei province). The 

GeneID-North population consists of 1, 354 CAD 

patients and 1, 471 CAD-free controls, and are selected 

from the patients in hospitals in the northern area of 

China. 

 

Basic clinical and demographic characteristics of the 

study populations were shown in Table 1. Initially, the 

association analysis was conducted in the GeneID-

Central population that included 1,440 CAD cases and 

2,660 non-CAD controls as a discovery population. The 

mean ages for cases and controls were 60.42 ± 12.14 

and 61.25 ± 9.83 years, respectively in the GeneID-

Central population. The proportions of females in cases 
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Table 1. Basic demographic and clinical characteristics of CAD patients and controls involved in the present study. 

Characteristic 

GeneID-Central Population GeneID-North Population 

Cases  
(n = 1,440) 

Controls  
(n = 2,660) 

Cases  
(n = 1,354) 

Controls  
(n = 1,471) 

Agea, mean ± SD, years 60.42 ± 12.14 61.25 ± 9.83 63.67 ± 12.69 62.17 ± 10.13 

Sex, Female, n (No. %) 558 (38.75%) 1,021 (38.38%) 604 (44.60%) 678 (46.09%) 

Hypertensionb, n (No. %) 861 (59.80%) 1,566 (58.87%) 827 (61.08%)*** 765 (52.0%) 

Diabetesc, n (No. %) 211 (14.65%)* 327 (12.30%) 225 (16.62%)** 191 (12.99%) 

Total Cholesterol, mean ± SD, mmol/L 4.39 ± 1.07* 4.31 ± 0.85 4.45 ± 1.11* 4.37 ± 1.02 

Triglyceride, mean ± SD, mmol/L 1.55 ± 1.12* 1.44 ± 1.03 1.48 ± 1.29* 1.40 ± 1.33 

HDL-C, mean ± SD, mmol/L 1.18 ± 0.44 1.22 ± 0.38 1.10 ± 0.38 1.17 ± 0.45 

LDL-C, mean ± SD, mmol/L 2.71 ± 0.80** 2.51 ± 0.83 2.64 ± 0.85* 2.55 ± 0.66 

Data are shown as mean +/− standard deviation (SD) for quantitative variables and percent (%) for qualitative variables. *P < 
0.05, **P < 0.01 and ***P < 0.001 between cases and controls for quantitative variables and percent (%) for qualitative 
variables. aAge at the first diagnosis of the disease in CAD case and at enrollment of CAD controls. bHypertension was defined 
as a systolic blood pressure of ≧140 mmHg or a diastolic blood pressure of ≧90 mmHg. cDiabetes was defined as ongoing 
therapy of diabetes or a fasting plasma glucose level of ≥ 7.0 mmol/L. 
 

and controls was 38.75% and 38.38%, respectively 

(Table 1). Association from the discovery population 

was then verified in another independent replication 

case-control population (GeneID-North population) and 

included 1,354 cases and 1,471 controls. The GeneID-

North population included 44.60% females in cases and 

46.20% in controls. The mean age for the cases was 

63.67 ± 12.69 years versus 62.17 ± 10.13 years for 

controls (Table 1). 

 

Variant rs34166160 in NINJ2 associates with CAD 

in two independent populations 
 

The genotype of rs34166160 did not deviate from the 

Hardy-Weinberg equilibrium in controls in both the 

discovery GeneID-Central population (p = 0.99) and 

the replication GeneID-North population (p = 0.99). 

The allelic frequencies of rs34166160 in CAD cases 

were significantly different from those in controls in 

the discovery GeneID-Central population (Table 2). 

The frequency of minor A allele of rs34166160 was 

0.44% in CAD cases and 0.13% in controls. A 

significant association was identified with an 

unadjusted p value (p-obs) of 6.39 × 10−3 and an OR of 

3.39. The association was also significant (an 

adjusted p or p-adj = 8.12 × 10−3 with and OR of 3.10) 

after adjusting for covariates (diabetes mellitus, age, 

hypertension, gender, and plasma lipid 

concentrations) (Table 2). 
 

To further validate the association between rs34166160 

and CAD, we genotype for the rs34166160 variant in 

the replication GeneID-North population that contained 

1,354 CAD cases and 1,471 controls. Interestingly, we 

also found that the A allele of the rs34166160 variant 

confers risk to CAD (p-obs = 3.33 × 10−3 with an OR of 

3.14; p-adj = 0.01 with an OR of 2.74) in the replication 

population (Table 2). 

 

After performing a meta-analysis, two populations were 

combined to yield one large population that included 

2,794 cases and 4,131 controls. In the combined 

population, SNP rs34166160 was found to confer a 

highly significant risk to CAD (p-obs = 1.57 × 10−5, 

OR = 3.58). Moreover, after adjustment for covariates 

including sex and age, this association remained 

significant (p-adj = 3.41 × 10−4, OR = 2.80) in the 

combined population. These results showed that A 

allele of rs34166160 in the NINJ2 gene was 

significantly associated with CAD in the studied 

Chinese population. 

 
Real-time RT-PCR analysis identified that the A 

allele of rs34166160 is associated with the increased 

expression level of NINJ2 mRNA 

 
Rs34166160 (Chr12:623,339, hg38 version of human 

genome data) is located in the first intron of the NINJ2 

gene. Bioinformatical analysis predicts that rs34166160 

is located in an enhancer region according to the 

Ensembl database (Regulatory Feature: 

ENSR00000047562, Chr12:621,401-623,800, hg38, 

http://asia.ensembl.org/), and in a DNase I 

hypersensitive cluster (chr12:623,241-623,470) in 

ENCODE data of UCSC genome browser 

(https://genome.ucsc.edu). ENCODE Candidate Cis-

Regulatory Elements (cCREs) also showed that 

rs34166160 was predicted to be located in an enhancer 

of NINJ2 (Chr12:623,197-623,527, ENCODE Accession: 

EH38E1585530). 

http://asia.ensembl.org/
https://genome.ucsc.edu/
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Table 2. Analysis of allelic association of SNP rs34166160 with CAD in the Chinese Han population. 

Populations 
(n, case/control) 

Risk 
Allele 

Frequency 
(case/control) 

Without Adjustmenta With Adjustmentb 

P-obs OR (95% CI) P-adj OR (95% CI) 

GeneID-Central 
Population (1,440/2,660) 

A 0.0045 vs.0.0013 6.39 × 10−3 3.39 (1.33–8.63) 8.12 × 10−3 3.10 (1.30–8.41) 

GeneID-North population 
(1,354/1,471) 

A 0.0085 vs. 0.0027 3.33 × 10−3 3.14 (1.40–7.04) 0.01 2.74 (1.28–7.66) 

Combined population 
(2,794/4,131) 

A 0.0065 vs. 0.0018 1.57 × 10−5 3.58 (1.96–6.57) 3.41 × 10−4 2.80 (1.30–6.01) 

Abbreviations: P-obs: P value observed; P-adj: P value with adjustment; OR: odds ratio. aUnadjusted P value and odds ratio 
(OR) using Chi-square tests with Pearson’s 2 × 2. bAdjusted P value by multivariate logistic regression analysis for potential 
confounders including age, gender, hypertension, diabetes mellitus and lipid concentrations (Tch, TG, HDL-c and LDL-c). 
 

Based on its position and the prediction results, we 

hypothesized that rs34166160 may be associated with 

the expression level of NINJ2 and enrolled 89 healthy 

study subjects undergoing annual physical examinations 

into GeneID to perform eQTL analysis. We measured 

the mRNA expression levels of NINJ2 using blood 

samples from 9 people with heterozygous genotype of 

rs34166160 (AC genotype) and 80 people with wildtype 

of rs34166160 (CC genotype). The results demonstrated 

that the mean relative expression level of NINJ2 in the 9 

AC genotype carriers was significantly higher than that 

in the 80 CC genotype carriers (p = 0.02, by a Kruskal-

Wallis test) (Figure 1). These data suggest that the 

minor and risk A allele of rs34166160 is associated with 

an increased expression level of NINJ2 mRNA. 

 

Rs34166160 exhibits allelic differences in 

transcriptional activity via CCAAT-box/enhancer-

binding protein beta (C/EBP beta) 

 

Through transcript factor binding prediction analysis, 

we found rs34166160 located in the C/EBP beta binding 

region in both the PROMO (http://alggen.lsi.upc.es/) 

and JASPAR (http://jaspar.genereg.net/) database 

(Figure 2A). First, we tested whether C/EBP beta can 

affect the expression level of NINJ2 in Human 

Umbilical Vein Endothelial Cells (HUVEC). The 

siRNA approach was used to knockdown the expression 

of C/EBP beta in HUVEC, and the results showed that 

compared to controls, expression of NINJ2 was 

decreased by knocking down the expression of C/EBP 

beta in HUVEC (p < 0.05) (Figure 2B). 

 

To validate whether the genomic region overlapping 

rs34166160 has regulatory activity and effect as a 

potential enhancer, we cloned a 1020 bp length genomic 

fragment overlapping rs34166160 harboring each allele 

into the PGL-3-promoter luciferase vector which 

contains a minimal SV-40 promoter. We first performed 

Dual-luciferase assays in Hela cells which did not 

express C/EBP beta. The results seemed to be no 

significant difference in transcriptional activity between 

fragments containing the C allele and A allele of 

rs34166160 without C/EBP beta expression in Hela 

cells (Figure 3A). However, when the luciferase 

transcriptional reporter assays were performed under the 

condition of exogenous overexpression of C/EBP beta 

in Hela cells, the DNA segment containing A allele of 

rs34166160 was about 1.3-fold than the DNA segment 

contained C allele of rs34166160 (p < 0.05) (Figure 

3A). To further investigate the allelic differences in 

transcriptional activity of rs34166160, we cloned a  

30 bp length core genomic segment overlapping 

rs34166160 harboring each allele into the PGL-3-

promoter luciferase vectors containing a minimal SV-40 

promoter and performed the transcriptional reporter 

assays same as above. The data showed the same results 

as the 1020 bp length segment, and the A allele of 

rs34166160 showed more luciferase activity than the 

DNA segment containing the C allele of rs34166160 (P 

< 0.05) (Figure 3B). The data suggest that variant 

rs34166160 impacts as an enhancer, and thereby may be 

a functional variant at the 12p13 locus for CAD. 

 

We also performed EMSA assay using HUVEC nuclear 

extracts and probes flanking the genomic region of 

rs34166160 which is located in chr12:622,485-622,524 

(hg38). Incubation of biotin-labeled probes with different 

allele of rs34166160 will combined with protein of nuclear 

extracts from HUVEC, and the probe with A allele showed 

more binding activity than C allele (Figure 3C). An 

addition of a 200-fold excess of unlabelled sequence was 

used to see whether the DNA-protein interaction is 

specific. The results demonstrated that rs34166160 

exhibits allelic differences in transcriptional activity, and 

may be induced via C/EBP beta. 

 

All these data suggest that the A allele of rs34166160, 

which confers more risk to CAD, have a higher 

transcriptional activity compared with the non-risk C 

allele under the condition of overexpression of C/EBP 

beta.  

http://alggen.lsi.upc.es/
http://jaspar.genereg.net/
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Figure 1. Assessment of the relationship between NINJ2 SNP rs34166160 and the expression level of NINJ2 mRNA by real-
time RT-PCR analysis. Total RNA samples were isolated from blood samples (lymphocytes) of 9 subjects with an AC genotype and 80 

subjects with a CC genotype. Real-time PCR analysis was used to analyze the relative expression level of NINJ2. A linear regression was used 
to compare the differences in the mean RQ values between different genotypes (AC and CC) of SNP rs34166160. 

 

 
 

Figure 2. Transcriptional factor CCAAT-box/enhancer-binding protein beta (C/EBP beta) regulates the expression of NINJ2. 
(A) A schematic diagram shows the predicted binding sites of C/EBP beta in the genomic region overlapping rs34166160 harbored A allele 
not C allele. (B) Knockdown of the expression of C/EBP beta in HUVEC resulted in the decrease of NINJ2 expression (P < 0.05). HUVECs were 
pretreated with scramble siRNA or C/EBP beta siRNA for 48 h, total protein extracts were prepared and blotted with the antibodies specific 
for NINJ2. Three independent experiments were performed. Error bars represent standard deviation (SD).  
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Risk allele A of rs34166160 has a higher 

transcriptional activity under the condition of 

endothelial activation by LPS stimuli 

 

Previous studies have shown that NINJ2 can regulate 

LPS-induced endothelial activation and inflammation 

by interacting with TLR4, and the expression of 

ninjurin2 in HUVEC could be induced by LPS [19]. 

Vascular inflammation is known to be the critical and 

initial step in atherosclerosis. In addition, C/EBP beta 

was reported to mediate LPS-induced endothelial 

activation and inflammation. Therefore, we  

 

 
 

Figure 3. Risk allele A of rs34166160 exhibits a higher transcriptional activity through interacting with C/EBP beta. (A) Data 

from luciferase assays in Hela cells. Reporters containing the 1020 bp length genomic fragment overlapping rs34166160 harbored A allele 
or C allele were co-transfected with pENTER-C/EBP beta or a negative control pENTER into Hela cells. Cells were harvested 48 h after 
transfection and luciferase activities were measured and normalized to renilla activities. (B) Data from luciferase assays in Hela cells. 
Reporters containing a 30 bp length core genomic segment overlapping rs34166160 harboring the A allele or C allele were co-transfected 
with pENTER-C/EBP beta or a negative control pENTER into Hela cells. The measurement of luciferase activities was previously described. 
Three independent experiments were performed. Error bars represent standard deviation (SD). *P < 0.05. (C) The risk allele A of rs34166160 
can directly bind to the transcription factor C/EBP beta. EMSA probe containing risk allele A or wide type allele C of rs34166160 incubated 
with (lanes 2–3; lane 5-6) or without (lane 1; lane 4) nuclear extracts from HUVECs transfected with pENTER-C/EBP beta. Lane 1 and lane 4, 
5′ -end biotin-labeled probe alone; lane 2 and lane 5, EMSA for 5′ -end biotin-labeled probe and HUVECs nuclear extracts; lane3 and lane 6, 
excessive unlabelled probe and HUVECs nuclear extract. 



 

www.aging-us.com 25399 AGING 

hypothesized that the enhancer containing rs34166160 

might mediate the LPS-induced increase in NINJ2 

expression in HUVECs. 

 

To determine whether rs34166160 is involved in 

endothelial cell activation and inflammation induced by 

LPS stimulation, the PGL-3-promoter luciferase vectors 

containing the 30 bp length genomic fragment 

overlapping rs34166160 harboring each allele were 

transfected into HUVEC, and the transcriptional activity 

was measured using luciferase assay with or without LPS 

stimuli. The results showed that there were no significant 

differences in luciferase activity between A allele and C 

allele without stimulation of LPS (Figure 4). However, 

under the stimulation of LPS, the A allele of rs34166160 

showed more luciferase activity than the DNA segment 

containing C allele of rs34166160 (Figure 4). These 

results indicated that the A allele of rs34166160, which is 

shown to confer more risk to CAD, have a higher 

transcriptional activity compared with non-risk C allele 

under inflammatory stimuli, and may have allelic 

differences in the process of inflammation. 
 

We also investigated the expression level of C/EBP beta 

and ninjurin2 in HUVEC in the condition of LPS stimuli 

(1 ug/mL), and the results showed that both C/EBP beta 

and ninjurin2 expression were increased after LPS 

stimulation (Figure 5A). What is more, the increased 

expression of ninjurin2 induced by LPS stimulation can 

be blocked by knockdown of C/EBP beta (Figure 5B). 

These results indicated that rs34166160 plays an 

important role in LPS inducing endothelial cell activation 

through the binding of C/EBP beta transcription factor. 
 

DISCUSSION 
 

In the current study, we carried out a genetic 

association study to test the hypothesis that whether 

rs34166160 in NINJ2 confers risk to CAD. Our results 

demonstrated that the minor A allele of a rare variant, 

rs34166160, in the NINJ2 gene was conferring risk to 

CAD in both two independent populations (Table 2). 

The association of rs34166160 and CAD remained 

significant after adjustment of the covariates of 

traditional risk factors (Table 2). Moreover, we found 

that rs34166160 exhibits allelic differences in 

transcriptional activity through interacting with C/EBP 

beta or under stimulation of LPS. As far as we know, 

this is the first study that showed variant in NINJ2 
associated with the risk of CAD. Considering the 

previous significant association between rs34166160 

and stroke, our study demonstrated that rs34166160 in 

the NINJ2 gene may be a shared genetic risk factor for 

CAD and stroke. 

 

 
 

Figure 4. The risk allele A of rs34166160 has a higher transcriptional activity under the condition of LPS stimuli. Data from 

luciferase assays in HUVECs. The PGL-3-promoter luciferase vectors containing the 30 bp length genomic fragment overlapping rs34166160 
harboring risk A allele or wide type C allele were transfect into HUVECs for 24 h, and then LPS (1 ug/ml) stimulated for another 24 h. The 
measurement of luciferase activities was previously described. Three independent experiments were performed. Error bars represent 
standard deviation (SD). *P < 0.05.  
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Our association studies between the NINJ2 variant and 

CAD were performed in Chinese Han population, and 

whether the significant association can be replicated in 

other populations needs to be studied further. We 

searched the summary statistics of several large GWAS 

about CAD/MI, including CARDIoGRAMplusC4D 

Consortium and UK biobank, for the low allele 

frequency, rs34166160, is not part of the list of the 

imputation based on meta-GWAS results. Therefore, no 

data could be found for the association between 

rs34166160 and related traits. In 2010, we performed a 

GWAS for CAD in Chinese [19], we also tried to search 

for the association between rs34166160 and CAD in our 

previous GWAS. Genotypes of GWAS data were first 

pre-phased at chromosome levels by SHAPEIT20 and 

the untyped genotypes were imputed using a merged 

reference panel from 1000 Genomes Phase 3 data across 

all 2,504 samples as reference haplotype data by 

IMPUTE2 with 4 MB per chunk. The other parameters 

were default parameters in IMPUTE2. The results 

showed extremely low imputation quality of 

rs34166160 (Info = 0.04). So, we speculate that it is 

difficult to impute the genotype of rs34166160 

according to previously GWAS data. 

 

The expression of NINJ2 can be detected in cells 

directly involved in the inflammatory process of 

atherosclerosis, including vascular endothelial cells, 

monocytes, and macrophages [8, 24, 25]. NINJ2 was 

also found to be expressed on the cell surface and 

mediate cell adhesion, which is the critical step of 

inflammation [8]. Our studies showed that the 

mechanism of rs34166160 confers risk to CAD and 

stroke may contribute to the allelic difference of 

transcriptional activity under the condition of LPS 

stimuli or C/EBP beta overexpression. Considering that 

LPS stimuli can cause inflammation [26, 27], and 

C/EBP beta is one of the most important transcription 

factors in the inflammation process of atherosclerosis 

[28, 29], our study provides evidence that NINJ2 is 

involved in the pathology of atherosclerosis, and the 

risk allele A of rs34166160 has a higher sensitivity than 

C allele in condition of inflammatory stimuli. 

 

Our previous study demonstrated that ninjurin2 can 

interact with toll-like receptor 4, and activate the 

inflammation and atherosclerosis pathways through AP-

1, c-jun and NF-κB [8]. In the current study, we found 

that a functional rare variant in NINJ2 which is located 

in a C/EBP beta binding site increases the risk of CAD. 

C/EBP beta is a transcription factor belonging to the 

basic leucine zipper family, and was found to be 

expressed in multiple types of cells, including 

myelomonocytic cells, vascular endothelial cells, 

macrophages and adipocytes [30, 31]. C/EBP beta plays 

important roles in inflammation and regulates the 

 

 
 

Figure 5. Increased expression of ninjurin2 induced by LPS stimulation can be blocked by knockdown of C/EBP beta. (A) The 

expression of C/EBP beta and ninjurin2 in HUVEC in the condition of LPS stimuli. HUVEC cells were plated on 24-well plates for 24 h and 
followed by stimulation with or without LPS (1 ug/mL) for another 24 h. Total protein extracts were prepared and blotted with the 
antibodies specific for NINJ2 or C/EBP beta. Three independent experiments were performed. Error bars represent standard deviation (SD). 
(B) The increased expression of ninjurin2 induced by LPS stimulation can be blocked by knockdown of C/EBP beta. The si RNA targeted to 
C/EBP beta were transfect into HUVECs for 24 h, and then LPS (1 ug/ml) stimulated for another 24 h.  
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expression of a panel of genes such as TNF, IL-8, IL-1β, 

IL-12, IL-6, NF-κB and JNK [31–34]. C/EBP beta also 

exerts key roles in lipid metabolism and inflammation in 

both the liver and adipose tissue [35]. Rahman et al. found 

that the reconstitution of bone marrow from C/EBP β−/− 

mice to irradiated ApoE−/− mice can result in a decrease in 

the atherosclerotic lesion size [36]. These studies 

demonstrated that C/EBP beta plays important roles in the 

process of inflammation and atherosclerosis, and one of 

the possible mechanisms of C/EBP beta affects 

inflammation and atherosclerosis may contribute to NINJ2. 
 

In the current study, we used a LPS-stimulated endothelial 

cell activation or inflammation model to mimic the 

initiation of atherosclerosis. Several studies have suggested 

that infectious agents may initiate or promote the 

inflammatory process in atherosclerosis. In particular, it is 

believed that LPS from bacteria such as Chlamydia 

pneumonia [37–39], Helicobacter pylori [40, 41], 

Porphyromonas gingivalis [42–44] or gut microbiota may 

be triggering the secretion of inflammatory cytokines that 

leads to the recruitment of monocytes/macrophages to the 

lesions in the process of atherosclerosis or coronary artery 

disease . Elevated levels of LPS seem to present a risk 

factor for the development of atherosclerosis [45], whereas 

injection of LPS has been shown to accelerate formation of 

atherosclerotic lesions [46]. What is more, LPS binds with 

TLR4, and can induce the activation of TLR4-MyD88-

NF-κB signaling, followed by the release of 

atherosclerosis related inflammatory factors such as TNF-

α, IL-1β, IL-6, and MCP-1, resulting in the development 

and progression of atherosclerosis in mice models fed with 

lipids [47, 48]. Therefore, the current study also suggests 

that NINJ2 may participate in the process of endothelial 

cell activation or inflammation stimulated by infectious 

agents. 

 
In the Chinese population, the minor allele frequency of 

rs34166160 is extremely low (0.13–0.27%). If the 

power analysis assumes that the OR for SNP 

rs34166160 in CAD would be identical to the 

previously reported HR of 1.8 in stroke, then a 

limitation of this study may be that the statistical power 

of our genetic analysis may be insufficient in the two 

independent populations. Therefore, we cannot exclude 

the possibility that the significant association between 

rs34166160 and CAD may represent a false positive 

result due to the sample size. 

 

In conclusion, for the first time we found that SNP 

rs34166160 in the NINJ2 gene is associated with the 

risk of CAD. We also demonstrated rs34166160 

associated with the mRNA expression level of NINJ2. 

In addition, we found that the flanking region of 

rs34166160 can bind with the transcriptional factor 

C/EBP beta and the A allele have more transcription 

activity than the C allele. What is more, we found that 

the A allele has more transcription activity than the C 

allele under stimulation of LPS. Our results suggest that 

NINJ2 is a susceptibility gene for CAD for the first time 

and that the minor allele A of SNP rs34166160 

increases the risk of CAD by altering the binding 

activity of transcriptional factor C/EBP beta. 

 

MATERIALS AND METHODS 
 

Study subjects 

 

The samples involved in the current research were 

selected from the GeneID cohort [17, 19, 21]. All 

participants are of Han nationality according to their 

self-description. All the research about human subjects 

was approved by the ethics committee of the university 

(Huazhong University of Science and Technology, 

HUST). The study confirms the guidelines set forth by 

the Declaration of Helsinki, and all study subjects give 

written informed consent. 
 

Diagnosis of CAD and myocardial infarction (MI) was 

carried out by two independent expert cardiologists 

based on the results of coronary angiography. The 

criteria of myocardial infarction (MI) and CAD were 

according to the standard ACC/AHA guidelines [49], 

and as previous studies [50–53]. Patients with greater 

than 70% of luminal stenosis in at least one main vessel 

by coronary angiography, coronary artery bypass graft, 

percutaneous coronary intervention, and/or MI were 

diagnosed as CAD patients. The diagnosis of MI was 

based on typical chest pain of ≥30 min duration, 

characteristic electrocardiographical patterns of acute 

MI, and significant elevation of cardiac enzymes (such 

as CK-MB, lactate dehydrogenase) and troponin I or T. 

Patients that were identified by angiography with 

myocardial spasm and myocardial bridge were excluded 

from the study. Subjects with congenital heart disease, 

childhood hypertension, and type I diabetes mellitus 

were also excluded. Control subjects were general 

population controls and did not show any evidence of 

CAD or MI as indicated by their medical records or by 

electrocardiographic analysis. 

 

Basic data such as gender, age, diabetes mellitus, 

hypertension and lipid concentrations (total cholesterol, 

triglyceride, LDL cholesterol and HDL cholesterol) 

were collected from medical records. 

 

SNP genotyping 

 

Genotyping for SNP rs34166160 was carried out using 

the TaqMan allelic discrimination assay as previously 

described [54]. For each round of genotyping, 10 ng of 

genomic DNA was used in a total volume of 5 µl and 
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containing 1× TaqMan Genotyping Master Mix (Life 

Technologies) and 1× TaqMan SNP genotyping probe 

(Life Technologies, CA, USA). The PCR reaction and 

post-PCR endpoint plate reading was carried out using 

the Applied Biosystems 7900HT Fast Real-Time PCR 

System (Life Technologies, CA, USA) according to the 

manufacturer’s instructions. To ensure the quality of the 

experiment, appropriate negative controls were included 

in each round of genotyping. The genotyping results of 

TaqMan assay were verified by direct Sanger DNA 

sequencing of 48 subjects randomly selected. 

 

Real-time quantitative reverse transcription PCR 

analysis 

 

Real-Time Quantitative Reverse Transcription PCR 

(qRT-PCR) was used to determine the mRNA 

expression level of the NINJ2 among subjects with 

different genotypes of rs34166160. RNA was obtained 

from blood sample by Trizol (Life Technologies, CA, 

USA). Real-Time Quantitative Reverse Transcription 

PCR Analysis was used to determine the mRNA 

expression level of the NINJ2 gene among subjects with 

different genotypes of rs34166160. Quantitative real-

time PCR analysis was carried out according to the 

MIQE guidelines. Total RNA samples were extracted 

from human peripheral blood leukocytes using Trizol 

reagent (Life Technologies, CA, USA). Quantification 

of RNA samples was performed using a 

spectrophotometer (NanoDrop, Thermo Scientific, NH, 

USA). 2 µg of total RNA was used for reverse 

transcription with Superscript II reverse transcriptase 

(Life Technologies, CA, USA) and oligo (dT)18. A 

standard two steps real-time PCR assay was performed 

using an ABI 7500fast Genetic Analyzer (Life 

Technologies, CA, USA). The primers for NINJ2 were 

5′-ATGCGGCTGAAGGCGGTGCTG-3′ (forward) and 

5′-TGGCTGCGTTGTTGAGCTGGTTG-3′ (reverse). 

The primers for the β-actin reference gene (GeneBank 

ID: BC014861) are 5′-GGACTTCG 

AGCAGGAGATGG-3′ (forward) and 5′-GCACCG 

TGTTGGCGTAGAGG-3′ (reverse). Each PCR reaction 

was performed in a final volume of 10 µL reaction 

mixture containing 5 µL of 2X PCR master mixture 

with ROX (Roche Applied Science, IN), 2 µL of cDNA, 

0.4 µL of 10 pM primers, and 2.6 µL of ddH2O. Each 

reaction was performed in triplicate. The cycling 

conditions were 95°C for 10 minutes and 40 cycles of 

95°C for 15 seconds and 60°C elongation for 45 

seconds. After the PCR reaction, Cq values (threshold 

cycle) of a target gene (NINJ2) (Cq T) or reference 

gene β-actin (GeneBank ID: BC014861, Cq E) were 

computed using the RQ Manager program (version 1.3) 

and SDS (version 2.3). Reaction with a Cq of ≥40 or 

with the difference between Cq and mean Cq greater 

than 0.5 were excluded for further analysis. For each 

individual, the relative expression level ΔCq (Cq T-Cq 

E) of a target gene was normalized with the reference 

gene and then transformed into relative quantity using 

RQ formula (RQ = 2−ΔΔCq, ΔΔCq= individual’s ΔCq-

calibrator’s ΔCq). The calibrator was a mixed cDNA 

sample pooled from 10 randomly selected individuals. 

The RQ for the calibrator was normalized to 1. After 

outliers were excluded, a Kruskal-Wallis test 

(nonparametric analysis of variance) was used to 

compare the differences for mean RQ values of NINJ2 

between different genotypes of SNP rs34166160. 

 

Cell culture and treatment 

 

HUVEC were obtained from Wuhan Pricells (Wuhan, 

Hubei, China). Primary Umbilical Vein Endothelial 

Cells (HUVECs) were obtained from Wuhan Pricells 

(Wuhan, Hubei, China). The research was performed 

using 3 distinct cell batches. HUVECs were maintained 

in endothelial cell medium (ECM, ScienCell, CA, USA) 

containing Endothelial Cell Growth Supplement 

(ECGS, ScienCell, CA, USA), 20% FBS (Gibco, MD, 

USA), 100 mg/L heparin (Invitrogen, CA, USA), 1 mM 

Sodium Pyruvate and 1% penicillin/streptomycin 

(Invitrogen, CA, USA) and used at passage 3–6. Hela 

cells were cultured in DMEM (Gibco, MD, USA) 

containing 10% FBS, L-glutamine (2 mM), penicillin G 

(100 units/ml), streptomycin (10 mg/ml). All cells were 

grown in an incubator with a humidified atmosphere of 

5% CO2 at 37°C. Cell were plated in 24-well plates for 

24 h and accompanied by incubation with or without 

LPS (1 ug/mL) for another 24 h.  

 

Expression vector construction 

 

The predicted 1020 bp length C/EBP beta binding 

region flanking rs34166160 in the first intron of 

NINJ2 (Chr12:622,453-623,472, hg38) was generated 

by PCR and using human genomic DNA as a template. 

The primer sequences used for amplification are  

5′-GAGCTCGGGCTACCTAAAGAGAGGAAGA-3′ 

contained a Sac I restriction enzyme cutting site and  

5′-CTCGAGCTTCCCTGATTTTGGCTGGTAC-3′ 

contained a Xho I site. The 1020 bp length PCR products 

were digested with Sac I and Xho I, and sub-cloned into 

the pGL3-Promoter luciferase plasmid (Promega, 

Madison, WI, USA), resulting in the pGL3-promoter-

1020 bp-A or pGL3-promoter-1020 bp-C plasmid. The 

30 bp length fragments flanking rs34166160 was 

synthesized by Genewiz ltd (Suzhou, China). The DNA 

fragment (5′-CGGGGTACCTCTGTCCCCCTCCCC 

CACTGCTACCCGAGCCTCGAGCGG-3′ for C allele 

of rs34166160 and 5′-CGGGGTACCTCTGTCCCCC 

TCCCCAACTGCTACCCGAGCCTCGAGCGG-3′ for 

A allele of rs34166160) and their corresponding 

complement chains were annealed and then sub-cloned 
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into the pGL3-Promoter luciferase plasmid after 

digesting by Kpn I and Xho I. Human C/EBP beta ORF 

(NM_005194) was purchased from Origene (Rockville, 

MD, USA) and sub-cloned into pENTR vector (Thermo 

fisher, Pittsburgh, PA, USA). 

 

Luciferase reporter assay 

 

Hela cells co-transfected with 150 ng of either the 

pENTER control vector or pENTER- C/EBP beta and 50 

ng pGL3-promoter luciferase reporter plasmids contained 

C allele or A allele of rs34166160 in a 96-well plate [55]. 

The transfection efficiency was normalized by co-

transfecting of 4 ng pRL-TK plasmid. Cells were lysed 

using a passive lysis buffer after 48 hours of transfection 

(Promega, Madison, WI, USA). The dual-luciferase 

assay was analyzed using the dual-luciferase assay kit 

(Promega, Madison, WI, USA) using GloMax 

illuminometer (Promega, Madison, WI, USA). 

 

Western blot 

 

Western blot was performed as standard protocol [56]. 

The antibodies used for western blot analysis include an 

anti- C/EBP beta antibody (1:1500, Proteintech, Wuhan, 

China), an anti-alpha tubulin (1:5000, Merck Millipore, 

Darmstadt, Germany) and a goat polyclonal anti-NINJ2 

antibody (1:1200, R&D Systems, Minneapolis, MN, 

USA).  

 

Electrophoretic Mobility Shift Assay (EMSA) 

 

pENTER- C/EBP beta plasmid was transfected into 

HUVEC for 40 hours using Viafect™ reagent. EMSA 

probes were designed according to the predicted C/EBP 
beta binding site on SNP rs34166160. The sequence of 

wild type C allele probe (5′-AGCCTCTGTCCCCCT 

CCCCACTGCTACCCGA-3′) and the minor A allele 

probe (5′-AGCCTCTGTCCCCCTCCCAACTGCTA 

CCCGA-3′) was synthesized in Sangong Biotech and 

with a 5′-end-labeled biotin. NE-PER Nuclear and 

Cytoplasmic Extract kit was used to extract nuclear 

proteins (Thermo fisher, Pittsburgh, PA, USA). 2 μg of 

extracted nuclear protein was hybridized with WT and 

Mutation DNA probes, respectively. Protein-DNA 

complexes were analyzed on a 6% nondenaturing 

PAGE gel. Excessive unlabeled probes were used as 

competition for EMSA experiments. LightShift™ 

Chemiluminescent EMSA Kit was used for the EMSA 

assay (Thermo fisher, Pittsburgh, PA, USA). 

 

Statistical analysis 

 

For genetic association studies, statistical analysis was 

carried out as previously reported [17, 21]. Pearson’s 

2 × 2 contingency tables and Chi-square tests as 

implemented in PLINK version 1.08 were used to 

analyze the SNP allelic association study [57]. Risk 

factors including lipid concentrations, age, gender, 

hypertension and diabetes mellitus and lipids profiles 

were used to adjust the association using multivariate 

logistic regression analysis. PS:Power and Simple Size 

Calculation software was used to analyze the statistical 

power [58]. For western blot and other functional 

studies, results from at least three independent 

experiments are shown and presented as mean ± SD. 

Student’s t tests were used for data analysis between the 

two groups using GraphPad Prism 6 software. P < 0.05 

means that there is a significant difference between the 

data and is statistically significant (*means P < 0.05). 
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