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INTRODUCTION 
 

Aortic aneurysms are associated with aortic dissection 

and rupture. There is currently no effective treatment to 

prevent or cure aortic aneurysms. At present, both the 

pathogenesis and pathophysiology of ascending aortic 

aneurysms are not entirely clear. Vascular smooth 

muscle cells (VSMCs) have been recognized as the 

most important factor in the development of ascending 

aortic aneurysms. Aortic aneurysms can occur due to 

loss of VSMCs in the media layer of the aortic wall, 

leading to progressive aortic dilation [1–3]. We 

observed an interesting phenomenon in clinical work 

where the aneurysm or dissection remodeling varies 

from site to site, which may be due to differences in the 

mechanical stimuli to which different sites are exposed.  

 

Aortic walls are subjected to various mechanical stimuli 

from the bloodstream, such as shear and mechanical 

stretch. Stretch sensing is generally known as an 

integrin-mediated pathway, which is coupled to cell 

contractile activity, and thus shares many mechano-

transduction pathways with the rigidity sensing process 

in translating mechanical stimuli into intracellular 

biochemical signals [4–6]. The relationship between 

mechanical stretch and cell proliferation/apoptosis has 
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ABSTRACT 
 

Vascular smooth muscle cells (VSMCs) are stromal cells of the vascular wall and are continually exposed to 
mechanical signals. The loss of VSMCs is closely related to the occurrence of many vascular diseases, such as aortic 
aneurysms and aortic dissection. The proliferation and apoptosis of VSMCs are mechanically stimulated. Yes-
associated protein (YAP), one of the core components of the Hippo pathway, plays a key role in the response of 
VSMCs to mechanical signals. In this study, we tested the impact of different intensities of mechanical stretch on 
the proliferation and apoptosis of VSMCs, as well as YAP. We tested VSMCs’ proliferation and apoptosis and YAP 
reaction via immunocytochemistry, western blotting, CCK-8 and flow cytometric analysis. We found that 10% 
elongation could increase the phosphorylation of YAP and prevent it from entering the nucleus, as well as inhibit 
cell proliferation and promote apoptosis. However, 15% elongation reduced YAP phosphorylation and promoted 
its nuclear entry, thereby promoting cell proliferation and inhibiting apoptosis. Accordingly, YAP knockdown 
suppressed the phenotype of VMSCs induced by 15% elongation. Taken together, YAP regulates proliferation and 
apoptosis of VSMCs differently under different intensity of mechanical stretch. Mechanical stretch with 
appropriate intensity can promote the proliferation and inhibit apoptosis of VSMCs by activating YAP. 
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been extensively studied [7–11]. VMSCs experience 

mechanical stimuli during growth and differentiation 

and transduce these stimuli into biochemical signals that 

in turn regulate cell responses to the imposed forces. 

The effect of cyclic stretch is recognized as an 

important regulator of the development and pathological 

abnormalities of aortic walls. Under physiological 

conditions, the aorta undergoes approximately 10% 

circumferential stretch during systole. This number 

increases to approximately 20% under conditions of 

hypertension. The rate of apoptosis of VSMCs under 

20% circumferential stretch is higher than that under 

10% stimulation; how VSMCs change under 10–20% 

stretch remains uncertain [12]. 

 

The Hippo pathway plays an important role in the cell’s 

reaction to mechanical stretch [13–17]. It was first 

defined in Drosophila by genetic mosaic screening 

following identification of a loss-of-function mutation 

of Hippo that led to a strong overgrowth phenotype 

[18]. As the major downstream effector of the Hippo 

pathway, YAP/TAZ mediates major physiological 

functions therein. MST1/2, Sav1, LATS1/2, and Mob1 

constitute a kinase cascade that eventually 

phosphorylates YAP/TAZ and promotes its binding 

with 14-3-3 and cytoplasmic retention [19, 20]. 

YAP/TAZ has been identified as the sensor and 

mediator of mechanical cues arising according to the 

rigidity of the extracellular matrix, cell geometry, cell 

density, and the status of the actin cytoskeleton [14, 15, 

21, 22]. Among them, YAP, as an important factor in 

mechanical signal transduction, controls cell survival 

and proliferation by combining with DNA-binding 

transcription factors to induce gene expression (Hippo 

pathway in organ size control, tissue homeostasis, and 

cancer). YAP inhibits the expression of smooth muscle 

differentiation genes, and at the same time promotes 

smooth muscle proliferation and migration in vitro and 

in vivo, and plays a novel comprehensive role in smooth 

muscle phenotype regulation (The induction of yes-

associated protein expression after arterial injury is 

crucial for smooth muscle phenotypic modulation and 

neointima formation). Therefore, these evidences 

indicate that YAP is a key molecule in the regulation of 

VSMC phenotype. Rho-ROCK is the signaling pathway 

upstream of Hippo. The Rho-ROCK signaling pathway 

inhibits Hippo pathway activity [23, 24]. Rho-ROCK is 

affected by mechanical stress and regulates the 

proliferation of VSMCs. However, the influence of 

different intensities of mechanical stretch on the Hippo 

pathway, and the role of Rho-ROCK in this mechanism, 

remain unclear. 

 

In our study, we placed VSMCs under different 

intensities of mechanical stretch in vitro. We aim to find 

out that how the Hippo pathway and cell proliferation of 

VSMCs changes under mechanical stretch from 0% to 

15% elongation. Based on our study, we wish to 

achieve a better understanding of the relationship 

between different intensities of mechanical stretch and 

cell proliferation of VSMCs. 

 

MATERIALS AND METHODS 
 

VSMCs isolation and culture 

 

Sprague-Dawley rats (male, 200-250 g) were purchased 

from the animal experimental center of Academy of 

Military Medical Sciences of PLA (Beijing, China) and 

housed under the specific pathogen-free (SPF) 

conditions (temperature, 23 ± 2° C; relative humidity, 

65% ± 5%; 12h / 12h light / dark cycle, 07:00-19:00) 

with free access to food and water for 3 days. SD rats 

were anesthetized with isoflurane, and then VSMCs 

were isolated from thoracic aorta using the explanting 

technique [25]. and cultured in Dulbecco’s modified 

Eagle’s medium (DMEM; Gibco, Grand Island, NY, 

USA) containing 10% fetal bovine serum (FBS; Gibco, 

Grand Island, NY, USA), 100 U/mL penicillin, and 100 

μg/mL streptomycin at 37° C in a humidified 

atmosphere of 5% CO2. The medium was changed 

every 2 d, and cells were passaged by treatment with a 

0.05% trypsin-EDTA solution. The cells were used 

between passages 3 to 8. All animal experimental 

procedures were in accordance with the National 

Institutes of Health's Guide for the Care and Use of 

Laboratory Animals and were approved by the Animal 

Care and Use Committee of the Military Medical 

Sciences of PLA, as well as the Animal Laboratory 

Administration Center and Ethics Committee of the 

Military Medical Sciences of PLA. 

 

Cyclic stretch stress on VSMCs 

 

VSMCs were plated in 6-well plates (Flexcell 

International Corp., Hillsborough, NC, USA) coated by 

type I collagen (Solarbio, Beijing, China) at a 

concentration of 3 × 105 cells/mL. After 24 h 

attachment, the cells were synchronized by DMEM with 

10% FBS for another 24 h and then applied to cyclic 

stretch produced by FX-5000T Tension System 

(Flexcell International Corp., Hillsborough, NC, USA) 

with 10, 15, and 20% elongation at a frequency of 1 Hz 

(60 cycles/min), and the duration of cyclic stretching 

forces for 24 h. 

 

YAP siRNA 

 

Experimental 1 consisted of the following groups: 

VSMCs, VSMCs+YAP siRNA NC (TTCTCCGAACG 

TGTCACGT), VSMCs+YAP siRNA 1 (ACAGCAGGA 

GTTATTTCGG), VSMCs+YAP siRNA 2 (GACCTCT 
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TCTGGTCAGAGA), and VSMCs+YAP siRNA 3 

(ATCACAATGATCAGACAAC). Cells were inoculated 

in 6-well plates at 2 × 10 6 cells/well and cultured 

overnight. Each well was diluted to 250 μL of Opti-MEM 

I Reduced Serum Medium by adding 100 pmol of siRNA. 

Lipofectamine 2000 (5 μL; Life Technologies, Carlsbad, 

CA, USA) was added to 250 μL of Opti-MEM I Reduced 

Serum Medium and incubated for 5 min. Then, the siRNA 

solution was added to the Lipofectamine 2000 solution 

and incubated for 20 min. The culture medium in the cell 

culture plate was aspirated and 1.5 mL fresh medium was 

added. The siRNA solution was added to the samples and 

cultured in a 5% CO2 incubator at 37° C for 48 h. Western 

blotting was used to assess the results and VSMCs were 

reclassified according to the obtained results. 

 

Experimental 2 consisted of the following groups: 

VSMCs control+0% elongation, VSMCs YAP 

shRNA+0% elongation, VSMCs control+10% 

elongation, VSMCs YAP shRNA+10% elongation, 

VSMCs control+15% elongation, and VSMCs YAP 

shRNA+15% elongation. shRNA using the best one of 

the previous experiment which is siYAP1. VSMCs were 

cultured as described above. Cells were infected with 

the viruses at a multiplicity of infection of 50, and 

control groups were transfected with lentiviruses 

containing control sequences. 

 

Inhibition of the Rho/ROCK pathway 

 

Experimental 3 consisted of the following groups: 

VSMCs+0% elongation, VSMCs+0% 

elongation+Y27632, VSMCs+10% elongation, 

VSMCs+10% elongation+Y27632, VSMCs+15% 

elongation, and VSMCs+15% elongation+Y27632. 

VSMCs were cultured as described above. The stretching 

frequency was 1 Hz and the stretching times were set to 1 

h and 6 h. The final concentration of Y27632 (3μmol/L; 

T1870; TargetMol, Boston, MA, USA) treatment was 50 

μM (0.5% dimethyl sulfoxide concentration). 

 

Flow cytometric analysis and CCK-8 assay 

 

VSMCs from each group were stained with annexin V-

fluorescein isothiocyanate to determine the number of 

apoptotic cells. And another samples were fixed with 

75% ethanol and treated with RNase to analyze the cell 

cycle. Then, cell nuclei were stained with propidium 

iodide (Molecular Probes, Eugene, OR, USA), and 

VSMCs were analyzed using a FACSCalibur flow 

cytometer and Cell Quest software (Becton Dickinson, 

Franklin Lakes, NJ, USA). 

 

VSMCs were inoculated in 6-well culture plate. Cell 

counting kit-8 (CCK-8; DOJINDO, Kumamoto, Japan) 

solution was mixed with serum-free medium in a 1:10 

ratio (v/v). The mixture was added at 100 μL per well 

and incubated at 37° C and 5% CO2 for 1 h. Absorbance 

at 450 nm was measured using an enzyme marker. 

 

Immunocytochemistry analysis 

 

VSMCs from each group were fixed in 4% 

paraformaldehyde for 20 min, and permeabilized with 

0.2% Triton X-100 for 10 min at room temperature. 

Each sample was dripped with 3% BSA blocking 

solution and sealed at room temperature for 30 min. 

Then, samples were incubated with primary antibody to 

YAP (bs-3605R; Bioss, Los Angeles, CA, USA) and 

fluorescent CY3 goat anti-rabbit IgG secondary 

antibody (rhodamine-labeled, BA1036; Boster 

Biological Technology, Pleasanton, CA, USA). The 

nuclei were counterstained with 4’, 6-diamidino-2-

phenylindole (DAPI; 1:500). The samples were 

observed under the confocal laser scanning microscopy. 

 

Western blotting 

 

Treated VSMCs were harvested in lysis buffer using 

protease inhibitors, and total protein was extracted and 

quantified using a BCA protein concentration kit 

according to the manufacturer’s instructions. Proteins 

were separated by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and 

transferred to polyvinylidene fluoride (PVDF) 

membranes. The membranes were blocked with 5% 

BSA in Tris-buffered saline with Tween-20 (TBST) for 

2 h at room temperature, and incubated overnight at  

4° C with primary antibody (anti-YAP [bs-3605R; 

Bioss], anti-p-YAP [ab76252; Abcam, Cambridge, 

UK], anti-cyclin D1 (ccnd1) [ab134175; Abcam], anti-

Lats [ab243656; Abcam, Cambridge, UK], anti-p-Lats 

[bs-4082R; Bioss], anti-Rho [ab32046; Abcam, 

Cambridge, UK], anti-ROCK [ab45171; Abcam, 

Cambridge, UK], and anti-β-actin [bs-0061R; Bioss]). 

The membranes were incubated with IRDye 800CW 

goat anti-rabbit IgG (H+L) (926-32211; Licor, Lincoln, 

NB, USA) at room temperature for 1 h. Bands were 

detected using the chemiluminescent imaging system. 

 

Statistical analysis 

 

One-way analysis of variance was performed in SPSS 

software (ver. 19.0; SPSS Inc., Chicago, IL, USA) to 

evaluate group differences. Data are expressed as means 

± standard deviation, and P values < 0.05 were 

considered to indicate statistical significance. 

 

Availability of data and materials 

 

All data generated or analyzed during this study are 

included in this published article. 
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RESULTS 
 

Mechanical stretch intensity influences the 

proliferation and apoptosis of VSMCs  

 

To determine the changes in proliferation and apoptosis 

of VSMCs under different intensities of mechanical 

stretch, we applied 0, 10, 15, and 20% elongation forces 

to VSMCs (Figure 1). We used the CCK-8 assay to 

assess cell proliferation and flow cytometric analysis to 

detect apoptosis and analyze the cell cycle. The 10% 

and 20% elongation forces increased the rate of 

apoptosis and downregulated VSMCs proliferation 

(Figure 1). Meanwhile, 15% elongation produced the 

opposite results, i.e., decreased the rate of apoptosis and 

upregulated VSMCs proliferation (Figure 1). 10% and 

20% of the stretch-induced S phase cells reduce might 

inhibit cell proliferation, while 15% stress-induced S 

phase cells increase might promote cell proliferation 

(Figure 1). 

 

Effects of different intensities of mechanical stress 

on YAP 

 

To test whether YAP was involved in the effects of 

mechanical stress on VSMCs, we first performed 

immunofluorescence staining to determine the 

intracellular localization of YAP. YAP was both in the 

nucleus and the cytoplasm under 0% elongation (Figure 

2A–2C). YAP was primarily cytoplasmic under 10% 

 

 
 

Figure 1. Mechanical stretch intensity influences the proliferation and apoptosis of VSMCs. (A) Apoptosis of VSMCs was detected 

by flow cytometry. (B) The cell cycle of VSMCs was detected by flow cytometry. (C) Quantitative analysis of apoptosis in VSMCs. (D) 
Quantitative analysis of the cell cycle in VSMCs. (E) The proliferation of VSMCs was detected by Cell Counting Kit 8 (CCK-8). Values are 
expressed as means±SD. *P < 0.05, **P < 0.01, compared with 0% elongation group. 
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elongation conditions, whereas YAP was primarily 

nuclear with 15% elongation (Figure 2A–2C). 

Intracellular localization of YAP was linked to YAP 

phosphorylation, so we determined the level of YAP 

phosphorylation in each group. YAP phosphorylation was 

upregulated under 10% elongation, while phosphorylation 

of YAP remained low under both 0% and 15% elongation 

and being the lowest under 15% elongation (Figure 2D). 

Because nuclear localization of YAP was linked to the 

expression of ccnd1, we also assessed the protein levels of 

ccnd1 in each group at the same time. The protein levels 

of ccnd1 varied according to the phosphorylation level of 

YAP. Compared with 0% elongation, expression of ccnd1 

decreased with 10%, and increased with 15% elongation 

 

 
 

Figure 2. Effects of different intensities of mechanical stress on YAP. (A) The YAP localization of VSMCs was detected by 
immunocytochemistry. (B, C) Quantification of nuclear YAP amount in VSMCs. (D) The levels of phosphorylated YAP and cyclin D1 (ccnd1) in 
VSMCs were detected by western blotting. Values are expressed as means±SD. **P < 0.01, compared with 0% elongation group. 
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(Figure 2D). Next, we tested the expression of key protein 

molecules in the Rho-ROCK signaling pathway. 

Similarly, compared with 0% elongation, expression of 

Rho and ROCK decreased with 10%, and increased with 

15% elongation (Figure 2D). 

 

Knockdown of YAP impairs proliferation and 

apoptosis of VSMCs under different intensities of 

mechanical stretch 

 

To determine the effects of the Hippo pathway in 

VSMCs, we knocked down YAP by siRNA. We tested 

the efficiency of different YAP-targeting siRNAs using 

western blotting to generate optimal knockdown of YAP. 

Our results showed that YAP siRNA1 

(ACAGCAGGAGTTATTTCGG) resulted in the greatest 

knockdown of YAP (Figure 3A). To test the effects of 

YAP knockdown on VSMCs proliferation, apoptosis, and 

the cell cycle under different intensities of mechanical 

stimulation, we performed CCK-8 assays and flow 

cytometry. The CCK-8 assays indicated that cell 

proliferation was inhibited following YAP knockdown in 

each group (Figure 3F). Compared with 0% elongation, 

VSMCs proliferation was decreased in the absence of 

YAP with 10% elongation, but increased with 15% 

elongation (Figure 3F). Following YAP knockdown, 

VSMCs showed a similar rate of proliferation under the 

different mechanical stimulations, but with smaller 

amplitudes (Figure 3F). Flow cytometry analysis 

demonstrated that apoptosis of VSMCs was increased 

following YAP knockdown under all stretch intensities 

(Figure 3B, 3C). The rate of apoptosis of VSMCs was 

significantly increased following YAP knockdown under 

10% elongation (Figure 3B, 3C). Moreover, flow 

cytometry revealed that YAP knockdown kept more 

VSMCs in the G0/G1 phase under the same intensity of 

 

 
 

Figure 3. Knockdown of YAP impairs proliferation and apoptosis of VSMCs under different intensities of mechanical stretch. 

(A) The level of YAP expression in VSMCs transfected with YAP small interfering RNA (siRNA). (B) Apoptosis of VSMCs was detected by flow 
cytometry. (C) Quantitative analysis of apoptosis in VSMCs. (D) The cell cycle of VSMCs was detected by flow cytometry. (E) Quantitative 
analysis of the cell cycle in VSMCs. (F) The proliferation of VSMCs was detected by CCK-8. Values are expressed as means±SD. **P < 0.01, 
compared with 0% elongation+siRNA(-) group; ##P < 0.01, compared with 10% elongation+siRNA(-) group; ^^P < 0.01, compared with 20% 
elongation+siRNA(-) group; @@P < 0.01, compared with 0% elongation+siRNA(+) group. 



 

www.aging-us.com 292 AGING 

stretch, indicating that more VSMCs were in a state of 

dormancy (Figure 3D, 3E). Compared with the 0% 

control group, G0/G1 phase cells in the 10% and 15% 

control group were significantly increased and decreased, 

respectively (Figure 3D, 3E). A similar trend was 

apparent in the YAP shRNA groups (Figure 3D, 3E). 

 

Inhibition of the Rho-ROCK pathway affects the 

Hippo pathway under different intensities of stretch 

 

To better understand the role of the Rho-ROCK-Hippo 

pathway in the effects of mechanical stretch on YAP, 

we inhibited the Rho-ROCK pathway using Y27632. 

We performed immunocytochemistry staining to 

determine the intracellular localization of YAP. The 

results showed that more YAP stayed in the cytoplasm 

under 0% elongation following inhibition of the Rho-

ROCK pathway (group 2) compared with 0% 

elongation (group 1) (Figure 4A, 4B). Y27632 

treatment combined with 10% elongation (group 4) 

caused a greater amount of YAP to remain in the 

cytoplasm compared with 10% elongation in the 

absence of Y27632 (group 3) (Figure 4A, 4B). The 

nuclear proportion of YAP following 15% elongation 

with Y27623 treatment (group 6) was higher than that 

in groups 2–4 (Figure 4A, 4B). The nuclear proportion 

in group 6 was lower than that in groups 1 and 5 (Figure 

4A, 4B). We then performed western blotting to assess 

the phosphorylation of YAP and Lats1, as well as the 

protein levels of ccnd1, Rho, and ROCK in the different 

groups. The proportion of phosphorylated YAP and 

phosphorylated Lats1 increased under each stretch 

intensity following inhibition of the Rho-ROCK 

pathway, while the levels of ccnd1, Rho, and ROCK 

decreased, suggesting that blockage of the Rho-ROCK 

pathway partially reduces the effect of different stretch 

intensities on YAP (Figure 4C). 

 

DISCUSSION 
 

One emerging concept is that changes in the VSMCs 

phenotype in response to mechanical forces are 

important in vascular diseases, such as hypertension, 

atherosclerosis, aortic aneurysms, and age-dependent 

arterial stiffening [21, 26, 27], in which the vascular 

wall is exposed to chronically elevated levels of cyclic 

stretch. In particular, the production of aortic aneurysms 

and aortic vascular VSMCs reduction are closely 

related. Different parts of the aorta are subject to 

different pressures, and the pathogenesis of aortic 

aneurysms may vary by location. Our study 

demonstrated that different intensities of stretch 

differently affect the proliferation and apoptosis of 

VSMCs. 10% and 20% of the stress-induced S phase 

cells reduce, may inhibit cell proliferation, 15% stress-

stimulated S phase cells relative increase, may promote 

cell proliferation (Figure 5). However, we believe that 

VSMCs will not continue to grow, or may even break 

up, if more than 20% elongation force is applied. This 

also confirmed the effect of the difference of 10% 

physiological elongation and 15% stress elongation on 

the proliferation and apoptosis of VSMCs. Therefore, 

we believe that applying more tension to VSMCs is not 

necessary. In this study we sued 10% and 15% 

elongation forces, which we believe are more 

representative experimental conditions.  

 

Studies have found that mechanical stimulation can 

inhibit the Hippo pathway, increase nuclear levels of 

YAP, promote cell proliferation, and inhibit apoptosis. 

[16, 28–31] YAP is the major downstream effector of 

the Hippo pathway which mediates major physiological 

functions. YAP phosphorylation results in cytoplasmic 

retention, which inhibits SMC proliferation and 

promotes apoptosis. [32, 33] To the best of our 

knowledge, however, this is the first study to show that 

different intensities of mechanical stretch can 

differentially influence the proliferation and apoptosis 

of VSMCs through the Hippo pathway. However, our 

study found that different intensities of mechanical 

stimulation had different effects on VSMCs’ 

proliferation and apoptosis, as well as the Hippo 

pathway. Stimulation with 10% elongation may activate 

the Hippo pathway, increasing phosphorylation of YAP 

and resulting in translocation of YAP into the 

cytoplasm, where it binds to the cytosolic protein 14-3-

3 thereby promoting YAP degradation. These reports 

are consistent with our results. Our results revealed the 

intracellular localization of YAP under different stretch 

forces: 10% elongation for 6 h induced YAP 

cytoplasmic retention, while 15% elongation for 6 h 

promoted YAP entry into the nucleus. Mechanical 

stretching forces of 10% and 15% for 6 h upregulated 

and downregulated the phosphorylation of YAP, 

respectively. According to the former studies [34, 35], 

YAP in the nucleus, as well as the binding of YAP to 

the transcription factor TEAD, were decreased, leading 

to decreased expression of the target gene ccnd1 and 

inhibition of cell proliferation. When the stretching 

force was increased to 15%, the Hippo pathway was 

inhibited, YAP phosphorylation was reduced, more 

YAP remained in the nucleus, and the transcription 

factor TEAD induced expression of its downstream 

target gene ccnd1 to promote proliferation [36–38]. 

Thus, 10% and 15% stimulation can affect the 

proliferation of arterial SMCs through the Hippo 

pathway. The results demonstrate that 10% mechanical 

stimulation promotes cell proliferation and inhibits 

apoptosis, while 15% mechanical stimulation had the 

opposite effect. This trend is consistent with previous 

results on the Hippo pathway [36–38]. Previous studies 

have shown that YAP/TAZ expression in human 
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Figure 4. Inhibition of the Rho-ROCK pathway affects the Hippo pathway under different intensities of stretch. (A) The YAP 
localization of VSMCs was detected by immunocytochemistry. (B) Quantification of nuclear YAP amount in VSMCs. (C) The levels of 
phosphorylated YAP, phosphorylated Lats and ccnd1 in VSMCs were detected by western blotting. Values are expressed as means±SD. **P < 
0.01, compared with 0% elongation+siRNA(-) group; ##P < 0.01, compared with 10% elongation+siRNA(-) group; ^^P < 0.01, compared with 
20% elongation+siRNA(-) group; @@P < 0.01, compared with 0% elongation+siRNA(+) group. 
 

 
 

Figure 5. The effects of 10% and 15% elongation stretch on the proliferation and apoptosis of VSMCs. 
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trabecular meshwork cells also varies by substrate 

stiffness [39, 40]. The results of our study are consistent 

with previous studies investigating the effects of 

extracellular matrix on cells [41, 42]. After knocking 

down the expression of YAP, VSMCs showed the same 

trends in cell proliferation, apoptosis, and the cell cycle 

following stimulation with different intensities of 

stretch compared with the controls. These results 

indicated that different intensities of stretch stimulation 

could still regulate VSMCs proliferation and apoptosis 

following inhibition or activation of the Hippo pathway.  

 

In addition, we tested the activity of the Rho-ROCK 

pathway and found that 10% elongation stimulated the 

expression of related proteins to decrease, while 15% 

elongation stimulated the expression of related proteins 

to increase. After blocking the Rho-ROCK pathway, the 

effects of different intensities of stretch on YAP were 

weakened and phosphorylated YAP was decreased in 

each group. Overall, inhibition of the Rho-ROCK 

pathway combined with 10% mechanical stress led to 

activation of the Hippo pathway, which in turn reduced 

nuclear localization of YAP. YAP failed to bind to 

TEAD; this led to a decrease in ccnd1 expression, 

inhibition of VSMCs proliferation, and promotion of 

apoptosis. When the mechanical stress was increased to 

15%, we observed the opposite effects.  

 

Through our experiments, we found that the mechanism 

underlying the effects of mechanical stress on VSMCs 

is as follows: after being stimulated by physiological 

10% elongation stretch, VSMCs are inhibited in various 

ways. Inhibition of Rho-ROCK leads to a decrease in 

LATS1/2 levels, which in turn leads to an increase in 

the phosphorylation of YAP. Phosphorylated YAP 

cannot enter the nucleus nor bind to TEAD. On the 

other hand, our ongoing experiment shows that 10% 

elongation stretch may downregulates the expression of 

miR130a, which increases the amount of VGLL4. In the 

nucleus, VGLL4 may competes with YAP for the 

opportunity to bind TEAD. As a result of these two 

mechanisms, 10% elongation reduced ccnd1, resulting 

in decreased VSMCs proliferation and increased 

apoptosis, while a stimulus that is lower or higher than 

physiological elongation resulted in opposing effects, 

eventually promoting the proliferation of VSMCs and 

reducing apoptosis. 

 

On conclusion, our study demonstrates the possibility 

of preventing or treating diseases such as aortic 

aneurysms by controlling blood pressure. The Rho-

ROCK pathway can be activated by mildly adjusting 

the blood pressure. Activation of the Rho-ROCK 

pathway, in turn, inhibits the Hippo pathway and 

ultimately promotes VSMCs proliferation and inhibits 

apoptosis. Our findings may provide insight into the 

pathogenesis prognosis of these diseases, as well as 

into therapeutic interventions. 
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