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INTRODUCTION 
 

Bladder cancer (BC), a type of cancer arising from the 

urinary bladder tissues, is one of the most common 

malignancies in the urinary system. BC may develop at 

any age, and the risk generally increases with age. The 

prevalence and mortality rate of BC are higher for 

males than females, ranking the top ten among all 

malignancies [1–3]. Other well-defined risk factors of 

BC include tobacco use, family history of cancer, 

exposure of toxic chemicals, et al. [4]. The majority of 

BC originates from epithelial cells, and the pathological 

type bladder urothelial carcinoma (BUC) accounts for 

nearly 90% of all BC cases [5]. Treatment strategy and 

overall prognosis of BUC are strongly related to disease 
stage. For patients with early stage BUC, the general 5-

year survival rate can reach more than 50%; but for 

patients with distant metastasis, the probability may be 
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ABSTRACT 
 

Intratumoral immune cells were reported to be associated with prognosis of bladder urothelial carcinoma 
(BUC). However, the role of immune cells related genes in BUC prognosis is less well defined. In the study, we 
analyzed data retrieved from the Cancer Genome Atlas database and found higher neutrophils and lower T cells 
infiltration in BUC tumor tissues were significantly correlated with patients’ worse prognosis. Additionally, the 
expression levels of 164 genes were significantly correlated with T cells and neutrophils proportions. A Cox 
proportional-hazards model integrating 6 genes expression (EMP1, RASGRP4, HSPA1L, AHNAK, SLC1A6, and 
PRSS8) was identified. The 6-gene signature outperformed other clinical factors in risk prediction and was an 
independent prognostic factor for BUC. The findings were further conformed in three Gene Expression Omnibus 
datasets (n=331) and Jiangsu Province Hospital cohort (n = 46). Gene set enrichment analysis revealed that the 
model was highly involved in some immune-related pathways. A comprehensive nomogram combining the 
model and other clinical parameters was finally constructed to facilitate clinical application. In conclusion, a T 
cell and neutrophil-associated 6-gene prognostic model was identified for the survival prediction of BUC 
patients. 
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less than 10% [1]. At present, there is still a lack of 

potent or valid survival prediction models for BUC 

except several classical risk factors. Identification of a 

novel and comprehensive prognostic signature for BUC 

is of great significance for effectively distinguishing 

high-risk patients and facilitating individualized 

treatment to improve clinical outcomes.  

 

Growing evidence has revealed the multifaceted role of 

immune-regulatory mechanisms in cancer development, 

progression, and recurrence, which enables the 

emergence of immune-related tools guiding cancer 

diagnosis, treatment, prevention, and prognosis [6]. The 

effects of immune system on cancer development are 

quite complex, involving the balance between tumor-

promoting and tumor-suppressing immune responses 

[7]. Nowadays, the immune landscape of various cancer 

types has been gradually uncovered, giving abundant 

information on the distribution of immune cell 

populations and immune effector molecules within 

tumor microenvironment (TME) [8]. Tumor-infiltrating 

immune cells, such as T cells, macrophages, and 

neutrophils, are critical elements in TME and have 

shown close association with the clinical outcomes of 

various cancers [9]. However, knowledge about the 

immunology of BC is still insufficient to provide a 

foundation for clinical application. Technologies such 

as single-cell sequencing and high-throughput flow 

cytometry are still too costly to be widely used, which 

hampers the deep understanding about the regulatory 

roles of tumor immunity.  

 

 With the emergence of high-throughput data and data 

processing algorithms, the prediction of multi-

dimensional information about cancer using single-layer 

data has become possible. The popular algorithms 

‘CIBERSORT’ [10] and ‘ESTIMATE’ [11] are two 

representative examples, which enable the estimation of 

immune cell proportions and non-tumor components in 

TME based on gene expression profiles. Since the 

Cancer Genome Atlas (TCGA) and Gene Expression 

Omnibus (GEO) public databases can provide an 

abundant source of tumor sequencing data, applying 

these algorithms in multiple databases can help draw 

and verify the outlines of BC immunology. According 

to our primary analysis in TCGA database, the 

proportions of T cells and neutrophils are two potential 

prognostic factors for BUC. By selecting in T cell and 

neutrophil-associated genes in BUC, we suspected that 

a novel immune cell-correlated prognostic signature 

could be identified to facilitate the prediction and 

understanding of BUC prognosis. In this study, the 

Cancer Genome Atlas Urothelial Bladder Carcinoma 
(TCGA-BLCA) dataset was analyzed for model 

construction; three GEO datasets (GSE13507, 

GSE31684, and GSE48276) and a cohort of 46 BUC 

patients recruited from the Jiangsu Province Hospital 

(JSPH) were further analyzed for external validation. 

We aim to propose a potent prognostic model based on 

tumor immune cell proportions in BUC. Clinical- and 

immune-correlation analyses were also performed to 

explore the potential function of this novel signature. 

 

RESULTS 
 

Study design and datasets 

 

As the flow chart shows (Figure 1), the samples of the 

TCGA-BLCA dataset were randomly separated into the 

training (n=197) and testing (n=196) sets for the 

construction and verification of prognostic model, 

respectively. The clinicopathological features of patients 

in the TCGA-BLCA dataset are listed in Table 1. Chi-

squared test revealed that several potential confounding 

factors such as age, gender, tumor-node-metastasis 

(TNM) stage, tumor size, lymph node metastasis, and 

distant metastasis were all evenly distributed in the 

training and testing sets with P > 0.05. For the external 

validation of the identified model, a dataset combining 

three GEO datasets (GSE13507, GSE31684, and 

GSE48276) and a cohort containing 46 BUC patients 

recruited from JSPH were further analyzed. The 

clinicopathological features of patients in the two 

external validation sets are shown in Table 2. The study 

was approved by the Institutional Ethical Committee of 

JSPH (ID: 2016-SRFA-148) and written informed 

consent had been obtained from each participant. 

 

Univariate Cox regression analysis in the TCGA-BLCA 

dataset revealed that the proportion of tumor-infiltrating 

T cells in TME was a favorable prognostic factor for 

BUC (hazard ratio [HR]: 0.975, 95% confidence 

interval [CI]: 0.963-0.988, P < 0.001) while neutrophils 

proportion was an unfavorable prognostic factor (HR: 

1.082, 95% CI: 1.016-1.151, P = 0.013). As shown in 

Supplementary Table 2, a total of 164 genes whose 

expression levels were significantly correlated with both 

T cells and neutrophils proportions were defined as 

candidate genes for model construction (P < 0.05; 

spearman's rank correlation analysis).  

 

Identification of a T cell and neutrophil-associated 

prognostic model 

 

Among the 164 candidate genes, 10 genes [Epithelial 

membrane protein 1 (EMP1), Neuroblast differentiation-

associated protein (AHNAK), Solute carrier family 1 

member 6 (SLC1A6), Mast cell-expressed membrane 

protein 1 (MCEMP1), Ras guanyl-releasing protein 4 

(RASGRP4), Family with sequence similarity 180 

member A (FAM180A), Serine protease 8 (PRSS8), Six 

transmembrane epithelial antigen of prostate 4 
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(STEAP4), Heat shock protein family A member 1 like 

(HSPA1L), and ADAM metallopeptidase with 

thrombospondin type 1 motif 16 (ADAMTS16)] were 

remarkably correlated with the prognosis of BUC 

patients in the TCGA training set according to the results 

of univariate Cox regression analysis (P < 0.01; 

Supplementary Table 3). Lasso regression analysis was 

further conducted to reduce redundancy (Supplementary 

Figure 1). Stepwise multivariate Cox regression analysis 

further identified a 6-gene model with the maximum 

prognostic value which included EMP1, RASGRP4, 

HSPA1L, AHNAK, SLC1A6, and PRSS8 (Figure 2A). 

According to the constructed Cox proportional-hazards 

model, risk score of a BUC patient could be calculated by 

the formula: 0.194173005532207 * EMP1 expression + 

0.300051365964018 * RASGRP4 expression - 

0.25824698561501 * HSPA1L expression  

+ 0.426348983855879 * AHNAK expression + 

0.29902852359222 * SLC1A6 expression + 

0.29565935174874 * PRSS8 expression. Multivariate 

Cox regression analysis revealed that except HSPA1L, 

the other 5 genes were all independent unfavorable 

prognostic factors for BUC patients (HR > 1; P < 0.01; 

Figure 2B).  

 

In the TCGA training set, risk score of each patient was 

calculated. The median value of the risk scores  

(-0.186984284651394) was regarded as the cutoff value 

to distinguish high-risk and low-risk patients. Kaplan-

Meier survival analysis revealed that in the training set, 

patients with higher risk scores had significant worse 

overall survival (OS) than those with lower risk scores 

 

 
 

Figure 1. The flow chart of study design. The T cell and neutrophils-associated genes were identified by Spearman correlation analysis 
using the data of TCGA-BLCA dataset. The total 393 samples of the TCGA-BLCA dataset were then randomly divided into the training and 
testing sets for the construction and validation of prognostic model. The clinical- and immune-correlation of the identified model was further 
explored in the whole TCGA-BLCA dataset. Two independent sets, including an integrated GEO dataset and a cohort recruited from the 
Jiangsu Province Hospital, were further analyzed for the external validation of the model. 
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Table 1. Demographic and clinical characteristics of TCGA-BLCA patients;  
(P-value: the result of Chi-squared test). 

 Training set Testing set Total P-value 

Number 197 196 393  

Age    0.575 

  <70 103 108 211  

  ≥70 94 88 182  

Gender    0.262 

  Male 141 150 291  

  Female 56 46 102  

TNM Stage    0.986 

  I 1 1 2  

  II 60 63 123  

  III 69 67 136  

  IV 66 64 130  

  Unknown 1 1 2  

T    0.101 

  T0 1 0 1  

  T1 2 1 3  

  T2 53 60 113  

  T3 101 87 188  

  T4 21 36 57  

  Unknown 19 12 31  

N    0.353 

  N0 111 116 227  

  N1 24 20 44  

  N2 39 36 75  

  N3 1 6 7  

  Unknown 22 18 40  

M    0.135 

  M0 84 103 187  

  M1 6 4 10  

  Unknown 107 89 196  

T, tumor; N, nodes; M, metastasis. 

 

(P < 0.001; Figure 3A). Generally, as the risk score 

increased, patients did have shorter survival time and 

higher mortality rate (Figure 3B). The multiple 

receiver operating characteristic (ROC) curves further 

indicated that compared with other clinical parameters, 

the estimated risk score [Area under the Curve (AUC) 

= 0.766] had higher prognostic value for the survival 

prediction of BUC patients (Figure 3C). In the TCGA 

testing set, the identified model proved to have stable 

prognostic performance for BUC. In this cohort, OS of 

the estimated high-risk patients was significantly 

worse than the estimated low-risk patients (Figure 3D, 

3E). Moreover, risk score (AUC = 0.711) was still 
superior to other clinical factors for survival prediction 

in BUC (Figure 3F). Predictive value of the identified 

6-gene model remained high when the data of the 

training and testing sets were combined 

(Supplementary Figure 2 and Table 3). In addition, 

expression levels of the 6 genes in tumor tissues 

became generally higher as risk scores increased.  

 

Construction of a comprehensive nomogram 

 

Based on the TCGA-BLCA dataset, a nomogram 

combining risk score and other clinical parameters 

including age, gender, and TNM stage was constructed to 

facilitate survival probability prediction for BUC patients 

(Figure 4A). Calibration curve analysis confirmed that the 

theoretical 3-year and 5-year cancer specific survival rates 
were in good agreement with the actual survival rates 

(Figure 4B, 4C), which demonstrated the high 

effectiveness of the identified signature.  
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Table 2. Demographic and clinical characteristics of subjects in the external 
validation set.  

 GSE13507 GSE31684 GSE48276 Total JSPH cohort 

Number 165 93 73 331 46 

Age      

  <70 106 52 52 210 19 

  ≥70 59 41 21 121 27 

Gender      

  Male 135 68 59 262 36 

  Female 30 25 14 69 10 

TNM Stage      

  I 80 10 3 93 17 

  II 26 17 6 49 13 

  III 25 42 56 123 9 

  IV 10 19 2 31 2 

  Unknown 24 5 6 35 5 

JSPH, Jiangsu Province hospital.  

 

Clinical- and immune-correlation analysis 

 

Subgroup analyses and Spearman's rank correlation 

analyses were performed in the TCGA-BLCA dataset 

to explore the association between the identified 

signature and clinical parameters as well as tumor 

immunity. As shown in Figure 5, higher risk score 

was associated with the condition of patient’s elder 

age (Figure 5A), later TNM stage (Figure 5B), higher 

invasion depth (Figure 5C), and more lymph node 

metastasis (Figure 5D). For each tumor sample, the 

immune score and stromal score were calculated 

respectively using the ESTIMATE algorithm to 

quantify the proportions of immune and stromal cells 

in TME. Estimated risk scores were in positive 

correlation with the contents of both immune cells (r 

= 0.298, P < 0.001) and stromal cells (r = 0.416, P < 

0.001) in BUC tumor tissues (Figure 5E, 5F). 

Moreover, higher risk score was significantly 

correlated with less T cells (r = -0.321, P < 0.001) and 

 

 
 

Figure 2. (A) Coefficients of the 6 covariates included in the Cox’s proportional hazards regression model. The table listed all the 10 genes 

with prognostic prediction value for bladder cancer according to univariate Cox regression analysis (P < 0.01) in the TCGA-BLCA dataset. Lasso 
regression analysis further selected the combination of 8 genes which were annotated in bold. Among the 8 genes, a model integrated 6 
genes were ultimately constructed using multivariate Cox regression analysis. (B) The forest plot showing the prognostic value of the 6 genes. 
Multivariate Cox regression analysis considering gene expression levels as well as several clinicopathologic features was conducted to see if a 
gene was an independent prognostic factor for BUC. 
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more neutrophils (r = 0.345, P < 0.001) infiltration in 

TME (Figure 5G, 5H). 

 

Expression levels of the 6 key genes were also 

compared between tumor tissues and adjacent normal 

tissues in TCGA-BLCA dataset. The mRNA 

expression levels of AHNAK, EMP1, RASGRP4, and 

HSPA1L were significantly down-regulated in BUC 

tumor tissues compared with normal tissues while 

SLC1A6 and PRSS8 were significantly up-regulated 

(P < 0.05; Supplementary Figure 3). Moreover, gene 

expression levels were further compared between  

BUC patients aged < 70 and ≥ 70 years. Only  

HSPA1L showed significantly lower expression in 

tumor tissues in elder BUC patients compared  

with the younger counterparts (P = 0.021; 

Supplementary Figure 4); there were no significant 

expressing differences for the other 5 genes. The 

typical immunostaining graphs of these genes in  

BUC tumor tissues were provided by the human 

protein atlas (HPA) database (Supplementary  

Figure 5).  

Functional exploration by gene set enrichment 

analysis (GSEA) 

 

In the TCGA-BLCA dataset, the differential pathways 

and biological processes enriched in the high-risk and 

low-risk groups were listed in Supplementary  

Table 4.1, 4.2 (false discovery rate [FDR] < 0.05). A 

number of immune-related pathways (i.e., ‘cytokine 

secretion’, ‘interleukin-6 production’, ‘leukocyte 

migration’, ‘cytokine-cytokine receptor interaction’) 

were identified. Figure 6 lists some of the significant 

immune-related pathways involved in the high-risk 

groups compared with the low-risk groups. The 

results further demonstrated the close relationship 

between the identified signature and the immune 

status of BUC.  

 

External validation in GEO datasets 

 

In the combined GSE13507, GSE31684, and 

GSE48276 dataset, risk scores of the 331 BUC 

patients were calculated using the same formula, and 

 

 
 

Figure 3. The prognostic value of the identified model in the TCGA training (A–C) and testing (D–F) sets. (A, D) Comparison of the overall 

survival curves between the high-risk and low-risk patients. (B, E) The distribution of survival status of patients with increasing risk scores; the 
red and blue dots represented being dead and alive, respectively. (C, F) The receiver operating characteristic (ROC) curves evaluating the 
prognostic values of several factors including the calculated risk score, age, gender, and disease stage. 
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Table 3. Multivariate cox regression analysis combining clinical characteristics and risk score. 

Variables 
TCGA training set TCGA testing set Combined 

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value 

Age 1.026 (1.001-1.051) 0.039 1.028 (1.004-1.053) 0.022 1.030 (1.012-1.048) 0.001 

Gender 1.419 (0.869-2.317) 0.162 0.909 (0.536-1.542) 0.723 1.075 (0.752-1.538) 0.692 

TNM Stage 2.103 (1.463-3.023) <0.001 1.382 (1.042-1.834) 0.025 1.610 (1.294-2.002) <0.001 

Risk Score 2.309 (1.728-3.085) <0.001 1.690 (1.334-2.142) <0.001 1.886 (1.585-2.244) <0.001 

HR, hazard ratio; CI, confidence interval. 

 

patients were divided into high- and low-risk groups 

based on the established cutoff value. OS of the 

predicted high-risk group was significant worse than 

that of the low-risk group (Figure 7A, 7B). Consistent 

with the TCGA-BLCA dataset, patients’ risk score 

had significantly negative correlation with T cells 

proportions in TME; while for neutrophils, the 

relationship was reversely positive (Figure 7C, 7D). It 

was further confirmed that tumor-infiltrating 

neutrophils and T cells might be unfavorable and 

favorable prognostic factors, respectively, on the 

long-term survival of BUC patients. For BUC, the 

identified T cell and neutrophil-associated 6-gene 

signature had potent prognostic value.  

 

 
 

Figure 4. (A) A comprehensive nomogram integrating the estimated risk score and other clinicopathologic features for the survival 
prediction of bladder cancer patients using the data of TCGA-BLCA dataset. (B, C) The calibration curves comparing the predicted and actual 
3-year and 5-year cancer specific survival (CSS) rates. 
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Figure 5. Clinical (A–D) and immune (E–H) correlation analysis of the identified model in the TCGA-BLCA dataset. (A–D) The boxplots 
showing the change of risk scores among patients with varied clinical characteristics including age (A), TNM stage (B), tumor size (C), and 
lymph node metastasis (D); horizontal lines: mean, interquartile range (Q25, Q75), and 95% confidence interval. (E-F) Spearman correlation 
analyses revealed that the estimated risk score was significantly correlated with the immune and stromal constituent proportion in tumor 
microenvironment. (G, H) The estimated score has significant negative correlation with T cell proportion and positive correlation with 
neutrophils proportion. 
 

 
 

Figure 6. Gene set enrichment analysis (GSEA) comparing the significantly differential pathways involved by the high-risk 
and low-risk patients. (A) The results of Gene Ontology (GO) biological processes analysis; (B) the results of Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway analysis. 
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Prognostic role of the 6 key genes in JSPH cohort 

 

Expression levels of the 6 genes in 46 BUC tumor 

tissues were analyzed by quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) in 

the JSPH cohort. After z-score normalization of gene 

expression levels, risk scores of BUC patients in the 

JSPH cohort were calculated according to the 

identified model. As shown in Figure 8A, in the JSPH 

cohort, patients with higher risk scores had significant 

worse OS than low-risk patients (P < 0.05; Kaplan-

Meier survival analysis). For each of the 6 genes, BUC 

patients were divided into high- and low-expression 

groups according to median expression values, and the 

OS rates of the two subgroups were further compared 

by Kaplan-Meier survival analysis. As shown in 

Figure 8B, patients with higher AHANK, EMP1, 

SLC1A6, and RASGRP4 expression had significant 

worse OS than the corresponding low-expression 

group with P < 0.05. 

 

DISCUSSION 
 

In this study, the proportions of tumor-infiltrating 

immune cells in BUC were calculated using the 

‘CIBERSORT’ algorithm based on the data of TCGA-

BLCA project. Cox regression analysis revealed that the 

numbers of intratumoral T cells and neutrophils were 

favorable and unfavorable prognostic factors for BUC, 

respectively. Therefore, we proposed a novel prognostic

 

 
 

Figure 7. External validation in the combined GSE13507, GSE31684, and GSE48276 datasets (n = 331). (A) Kaplan-Meier survival 
analysis comparing the overall survival status between the high-risk and low-risk patients. (B) Distribution plot of the risk score and survival 
status of each patients. (C, D) The correlation between the estimated risk score and the proportion of T cells and neutrophils in tumor 
microenvironment. 



www.aging-us.com 25505 AGING 

model integrating T cell and neutrophil-associated 

genes to help stratify the risk of BUC patients.  

 

T cells are composed of different subtypes with 

complicated phenotypes and functions, and tumor-

infiltrating T cells play an extremely important role in the 

immune response system. The prognostic value of T cell 

subtypes infiltration in BUC has been revealed by several 

previous studies, but the exact function of a specific 

subtype can be inconsistent between studies. For 

example, the multiple states of intratumoral CD4+ T cells 

and regulatory T cells were discovered by David et al. 
[12]. Some studies showed that higher infiltration of 

CD8+ T cells was associated with better clinical 

outcomes in BC [13–15], but some studies came to the 

opposite conclusion [16]. In this study, we found that the 

total T-cell count infiltrating in tumor tissues instead of a 

specific cell sub-population was significantly correlated 

with the better prognosis of BUC patients. Neutrophils, 

key members of white blood cells, are an essential part of 

the innate immune response [17]. In BC, intratumoral 

neutrophils were found to show tumorigenic activity, and 

 

 
 

Figure 8. External validation in the Jiangsu Province Hospital cohort (n = 46). (A) Kaplan-Meier survival analysis comparing the 
prognosis between high-risk and low-risk patients. (B) According to the median expression level of each gene in tumor tissue samples, 
patients were divided into high- and low-expression groups and the survival status of the two subgroups was compared by Kaplan-Meier 
survival analysis. 
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the proportion of neutrophils in blood circulation and 

tumor tissues was found much higher than the normal 

controls [8, 18]. A lot of cohort studies have 

demonstrated that higher neutrophil-to-lymphocyte ratio 

could predict the worse prognosis of BC patients, 

confirming the tumor-promoting role of neutrophils in 

BC together with the present study [19–21]. 

 

Appropriate disease biomarkers should be simple, 

stable, and cheap. Though the counts of intratumoral T 

cells and neutrophils could act as prognostic markers for 

BC, detecting technology can be quite complicated and 

expensive [22]. Instead, comprehensive biomarkers 

integrating expression levels of several genes can be 

more informative and easier to be quantified. In this 

study, a total of 164 genes significantly correlated with 

both T cells and neutrophils proportions were screened 

out as the candidate genes for model construction. 

 

In this study, the T cell and neutrophil-associated Cox 

proportional-hazards model was constructed and 

verified based on the data of the TCGA-BLCA dataset, 

one of the biggest datasets recording the most 

comprehensive information of BUC samples. Stepwise 

multivariate Cox regression analysis identified a 6-gene 

signature integrating the expression levels of EMP1, 

RASGRP4, HSPA1L, AHNAK, SLC1A6, and PRSS8 

to predict the clinical outcomes of BUC patients. The 

risk score of a patient could be calculated using the 

specific coefficients of these 6 genes. Optimal cutoff 

value was also specified to divide patients into high-risk 

and low-risk groups. Survival analysis revealed that the 

estimated high-risk patients had a significant worse 

prognosis than the low-risk patients. The model proved 

to be a prognostic factor for BUC independent of other 

potential risk factors including TNM stage, gender, and 

age. Moreover, the model was also superior to other 

clinical parameters in predictive performance with 

higher AUC values. The prognostic value of the 

identified signature was then successfully verified in an 

external validation set combining three GEO datasets 

(GSE13507, GSE31684, and GSE48276) and the JSPH 

cohort. To improve the clinical utility of the biomarker, 

a nomogram combining risk score and other clinical 

parameters was finally constructed to predict the risk 

probability of a new case. The survival rate estimated 

by the nomogram was in the high consistence with the 

actual rate.  

 

The clinical- and immune-correlation of the identified 

signature was further analyzed. Briefly, the theoretical 

risk score was higher in BUC patients with advanced 

diseases, which was consistent with the actual state. 
Unsurprisingly, the identified marker also showed close 

correlation with intratumoral T cell and neutrophil 

proportions, and the relationship was further confirmed 

in the combined GEO dataset. GSEA revealed that 

immune-related pathways were highly involved in this 

risk score system, demonstrating the critical role of 

immune regulation in the development and progress of 

BUC. These results altogether showed the clinical 

utility and functional implications of the identified 6-

gene Cox proportional-hazards model.  

 

The prognostic roles of the 6 key genes were further 

verified in an additional JSPH cohort containing 46 

BUC patients. Multivariate Cox regression analysis in 

the TCGA-BLCA dataset revealed that the expression 

levels of EMP1, RASGRP4, AHNAK, SLC1A6, and 

PRSS8 in tumor tissues were independent predictors for 

the unfavorable prognosis of BUC patients. In the JSPH 

cohort, BUC patients with higher EMP1, RASGRP4, 

AHNAK and SLC1A6 expression also had significant 

worse OS. EMP1 has been found to be a tumor 

promoter gene in pediatric leukemia, non-small cell 

lung cancer, and glioma [23–25]. As a target of c-myc, 

EMP1 plays an important role in promoting cell 

proliferation [26]. However, contradictory findings 

existed among previous studies as for the function of 

EMP1 in BC, which might be caused by differences in 

study populations or methods [27–29]. The correlation 

between EMP1 and immune cell (i.e., neutrophil, 

regulatory T cell) infiltration in BC tumor tissues has 

also been discovered by previous studies, but the exact 

role of EMP1 in BC tumor immunity is still unclear 

[28]. The neuroblast differentiation-associated protein 

AHNAK can promote tumor metastasis by inducing 

TGFβ-mediated epithelial-mesenchymal transition [30]. 

RASGRP4 is a type of Ras activator which is involved 

in many key biological pathways [31]. HSPA1L is one 

of the most recognized cancer-related chaperones, 

modulating multiple biological processes in various 

cancers [32]. PRSS8 was typically regarded as a tumor 

suppressor in some cancer types including 

hepatocellular carcinoma and colorectal cancer [33, 34]. 

The association between the 6 key genes and BC tumor 

biology or immunity has been rarely studied and still 

requires deep mechanism research. 

 

The main purpose of the present study was to establish a 

T cell and neutrophil-associated prognostic model for 

BUC. Through multiple verification in the training, 

testing, and external validation sets, a 6-gene model 

with high prognostic value was identified. However, 

some limitations of this study cannot be ignored. For 

example, although the accuracy of ‘CIBERSORT’ 

algorithm had been strictly validated by the developer, 

the proportion of intratumoral immune cell used in this 

study was still a theoretical value. The exact regulating 
role of these key genes in the immune system of BC is 

also largely unclear. Moreover, prospective study is still 

required to testify the clinical utility of the identified 
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biomarker. Despite these objective limitations, the 

identified 6-gene model has shown great potential in 

predicting the prognosis of BC patients, which might 

help the early discrimination of high-risk BC cases and 

promote more individualized treatment for better 

clinical outcomes in the future. 

 

MATERIALS AND METHODS 
 

Data source and processing methods 

 

The survival time and clinicopathologic information of 

all the patients with primary BUC was downloaded 

from TCGA-BLCA project. Subjects with follow-up 

period less than 30 days were excluded. All the 393 

samples in the TCGA-BLCA dataset were randomly 

divided into the training and testing sets following the 

principle that clinicopathologic features including age, 

gender, and TNM stage were evenly distributed in the 

two groups to avoid potential confounding effects. 

Tumor transcriptome profiling data including raw 

counts and Fragments Per Kilobase of transcript  

per Million (FPKM)-normalized RNA-seq data  

were obtained using the gdc-client tool 

(https://portal.gdc.cancer.gov/). The human reference 

genome assembly GRCh38 was used to annotate 

protein-encoding genes. The transcriptome expression 

profiles of 18,321 protein-coding genes were 

normalized using ‘limma’ R package [35] and 

integrated into a matrix for future analysis.  
 

GSE13507, GSE31684, and GSE48276 datasets with 

complete gene expression information and overall 

survival time of BUC patients were downloaded from 

GEO (https://www.ncbi.nlm.nih.gov/) for external 

validation. The corresponding platform files (GPL6102, 

GPL570, and GPL14951) of each array were further 

downloaded for the annotation of gene symbols. In 

total, 331 BUC patients from the three datasets with 

follow-up time more than 1 month were combined to 

enlarge the sample size. The ‘sva’ [36] and ‘limma’ [35] 

R packages were used to remove batch effect and 

normalize expressing data, respectively. The gene 

expression profiles and survival information of the three 

datasets were thus combined into one matrix for further 

analysis. The z-score normalization method was used to 

compare the different data types of RNA-seq and 

microarray.  

 

Proportion calculation of tumor-infiltrating immune 

cells 
 

The ‘CIBERSORT’ algorithm was applied to calculate 
the proportions of tumor-infiltrating leukocytes in BUC 

tumor tissues [10]. According to the developers’ 

instruction, the ‘CIBERSORT’ analytical tool 

(https://cibersort.stanford.edu/) could accurately 

quantify cell fractions by the deconvolution of bulk 

tumor gene expression profiles rather than depend on 

traditional cell enumeration methods such as flow 

cytometry and immunohistochemistry. The signature 

file ‘LM22’ consisting of characteristic genes that 

specifically distinguish 22 mature immune cells was 

downloaded for reference. The normalized gene 

expression matrix of the TCGA-BLCA dataset and the 

combined GEO dataset was separately uploaded to the 

online application to generate the corresponding 

leukocyte proportion matrix. For each sample, a 

deconvolution P-value was calculated to quantify 

deconvolution confidence. Only samples with P-value < 

0.05 were considered for further analysis. In addition, 

the fraction of immune and stromal cells in tumor 

tissues was further estimated using the ‘ESTIMATE’ 

algorithm following the author’s instruction [11]. The 

calculated ‘Immune score’ and ‘Stromal score’ 

represented the relative proportions of tumor-infiltrating 

immune and stromal cells, respectively.  

 

Selection of candidate genes 

 

The proportion of overall tumor-infiltrating T cells in 

each BUC sample was calculated by adding together the 

percentages of ‘CD8+ T cells’, ‘naïve CD4+ T cells’, 

‘resting memory CD4+ T cells’, ‘activated memory 

CD4+ T cells’, ‘follicular helper T cells’, ‘regulatory T 

cells (Tregs)’, and ‘gamma delta T cells’ according to 

the results of CIBERSORT deconvolution. Univariate 

Cox regression analysis indicated that the proportions of 

T cells and neutrophils in BUC tumor tissues were 

significantly associated with the OS of patients in the 

TCGA-BLCA dataset (P < 0.05), which gave rise to 

the possibility of identifying a T cell and neutrophil-

associated prognostic signature for BUC. Therefore, 

candidate genes for model construction were screened 

out following the three main criteria: (i) gene 

expression levels were significantly correlated with the 

proportions of T cells and neutrophils in tumor tissues 

(P < 0.05, spearman's rank correlation analysis); (ii) 

the average read count of the gene was more than 10 to 

ensure adequate abundance for detection; (iii) the gene 

was significantly associated with the prognosis of 

BUC patients (P < 0.01, univariate Cox regression 

analysis). 

 

Construction of a cox proportional-hazards model 

and nomogram 

 

The TCGA-BLCA training set was analyzed for the 

construction of prognostic model. In order to minimize 
overfitting, Lasso regression analysis was firstly 

performed for variable selection using the ‘glmnet’ R 

package [37]. Stepwise multivariable regression 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/
https://cibersort.stanford.edu/
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analysis was then conducted to determine the covariates 

in the Cox proportional-hazards model. The risk score 

of each patient in the training, testing, and external 

validation sets was calculated separately according to 

the coefficients estimated by the model. The median of 

the risk scores in the training set was regarded as the 

cutoff value to determine high-risk and low-risk 

patients. In addition, a nomogram combining the 

estimated risk score and several clinical parameters was 

further constructed in the TCGA-BLCA dataset to 

facilitate prognostic prediction of BUC patients.  

 

Functional enrichment analysis 

 

GSEA was performed to explore the underlying 

function of the identified signature. The transcriptome 

profiling data was compared between high-risk and 

low-risk patients in the TCGA-BLCA dataset. The 

classical gene sets of Kyoto Encyclopedia of Genes and 

Genomes pathways and Gene Ontology project were 

analyzed to decipher the phenotypic differences 

between the two groups. For each analytical process, 

enrichment score (ES) and significance of ES were 

estimated, and normalized enrichment score and FDR 

were further calculated to examine the results of 

functional enrichment analyses. An FDR cutoff value of 

5% was considered in this test. 

 

QRT-PCR verification in tissue samples 

 

Paraffin-embedded tissue specimens were collected 

from a total of 46 BUC patients who underwent 

operations. With the approval of the Institutional Ethical 

Committee (ID: 2016-SRFA-148), these patients were 

recruited from JSPH during 2011 and 2017 according to 

agreement principle. Patients were actively followed for 

survival information. Total RNA was extracted from 

tissue specimens using RecoverAll™ Total Nucleic 

Acid Isolation Kit (Ambion, Austin, TX, USA). 

Reverse transcription and qRT-PCR reactions were 

performed using PrimeScript™ RT reagent Kit (Takara, 

Kyoto, Japan) and SYBR® Premix Ex Taq II (Tli 

RNaseH Plus) (Takara, Kyoto, Japan) following the 

manufacturer’s protocols, respectively. The sequences 

of PCR premiers used in this study were listed in 

Supplementary Table 1. GAPDH was considered as a 

reference gene for normalization, and the 2-∆∆Ct method 

was used to analyze the relative expression of target 

genes [38]. Kaplan-Meier survival analysis was 

conducted to assess the association between gene 

expression levels and BUC prognosis.  
 

Statistical methods 
 

Chi-squared test was performed to determine whether 

the distribution of clinicopathologic characteristics was 

balanced between the TCGA training and testing sets. 

The clinical outcomes between patients with high and 

low risk scores were compared by Kaplan-Meier 

survival analysis. ROC curve analyses were conducted 

to assess the discriminating capability of the identified 

markers and make comparison with other 

clinicopathologic parameters. Calibration curve analysis 

was further considered to measure the predictive 

performance of the model. Multivariate Cox regression 

analysis was conducted to identify independent 

prognostic factors. Risk scores were compared between 

different subgroups using Mann-Whitney U test or 

Kruskal-Wallis H test. The correlation between risk 

score and immune cell fraction was assessed by 

Spearman's rank correlation analysis. R3.6.5 

(https://www.r-project.org) and SPSS 25.0 (SPSS Inc., 

Chicago, IL, USA) software were applied for data 

analysis and graphing. A two-tailed P-value less than 

0.05 was statistically significant. 

 

Data availability 

 

The data used to support the findings of this study are 

included within the article. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Lasso regression analysis screened out 8 genes without redundancy. Lasso coefficient profiles of the T 

cell and neutrophil-associated genes (A). A coefficient profile plot against the log (lambda) sequence was generated to select the optimal 
parameter (lambda) in the Lasso model (B). 
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Supplementary Figure 2. The prognostic performance of the identified model in the whole TCGA-BLCA dataset. (A) 

Comparison of the overall survival between the estimated high-risk and low-risk patients. (B) The survival receiver operating characteristic 
(ROC) curves comparing prognostic value of the model and other clinical factors. (C–E) The change of patients’ survival status (red dot 
represents dead case) and gene expression levels when risk score increased. 
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Supplementary Figure 3. Expression levels of the 6 key genes in BUC tumor tissues and adjacent normal tissues in the TCGA-
BLCA dataset. (A) AHNAK; (B) EMP1; (C) SLC1A6; (D) RASGRP4; (E) PRSS8; (F) HSPA1L. Unpaired (left) and paired (right) nonparametric tests 

were performed for comparison. *** P < 0.001, ** P < 0.01, * P < 0.05. 
  



www.aging-us.com 25515 AGING 

 
 

 

Supplementary Figure 4. Expression levels of the 6 key genes in different age groups. Mann-Whitney test was performed. 
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Supplementary Figure 5. Typical immunostaining graphs of the identified key genes in BUC tumor tissues provided in the 
human protein atlas database. (A) AHNAK; (B) SLC1A6; (C) PRSS8; (D) HSPA1L. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–4.1, 4.2. 

 

Supplementary Table 1. The sequences of primers used in this study. 

Gene Forward premier (5' to 3') Reverse premier (5' to 3') 

EMP1 GTGTTCCAGCTCTTCACCATGG GGAATAGCCGTGGTGATACTGC 

RASGRP4 GCACAGGTGCTGGACAAGTTCA GTCCTTGAGTCTGGAGATGGCA 

HSPA1L AGCGGCTGCTTCAGGACTACTT CCATCAGGATGGCTGCTTGTAC 

AHNAK CGTGAAGTCTTCAGCTCCTGCA GAGGTCTCCTTCCACTCCATCT 

SLC1A6 AACACAAGGGCAGAGTCCTCAG CCAGCAATCAGGAACAGGATGC 

PRSS8 CAGCATCACCTATGAAGGCGTC TCCTCGGAGTAGGAGTCTAGCT 

GAPDH  GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA 

 

Supplementary Table 2. Identification of candidate 164 genes. 

 

Supplementary Table 3. Results of univariate Cox regression analysis in the TCGA training set. 

 

Supplementary Table 4.1. Significant pathways enriched in high-risk bladder cancer patients of the TCGA-BLCA 
cohort. 

 

Supplementary Table 4.2. Significant pathways enriched in low-risk bladder cancer patients of the TCGA-BLCA 
cohort. 


