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INTRODUCTION 
 

Renal cell carcinoma (RCC) has been known to be 

among the most fatal cancers in the urinary system 

[1]. RCC consists of three major histological 

subtypes, including chromophobe RCC, papillary 

RCC, and clear cell renal cell carcinoma (ccRCC). 

ccRCC is reported to be responsible for ~ 80% of total 

RCC incidence [2, 3]. Surgical resection is the 

principal treatment strategy, as ccRCC patients are 

insensitive to chemotherapy and radiotherapy. 

However, a third of the patients who undergo surgery 

have a recurrence, further leading to poor prognosis 

and high mortality [4]. Although in recent years, 
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ABSTRACT 
 

Clear cell renal cell carcinoma (ccRCC) is a fatal cancer of the urinary system. Long non-coding RNAs (lncRNAs) 
act as competitive endogenous RNAs (ceRNAs) involving the ccRCC progression. However, the relationship 
between the ceRNA network and immune signature is largely unknown. In this study, the ccRCC-related gene 
expression profiles retrieved from the TCGA database were used first to identify the differentially expressed 
genes through differential gene expression analysis and weighted gene co-expression network analysis. The 
interaction among differentially expressed lncRNAs, miRNAs, and mRNAs were matched using public databases. 
As a result, a ceRNA network was developed that contained 144 lncRNAs, 23 miRNAs, as well as 62 mRNAs. 
Four of 144 lncRNAs including LINC00943, SRD5A3-AS1, LINC02345, and U62317.3 were identified through 
LASSO regression and Cox regression analyses, and were used to create a prognostic risk model. Then, the 
ccRCC samples were divided into the high- and low-risk groups depending on their risk scores. ROC curves, 
Kaplan-Meier survival analysis, and the survival risk plots indicated that the predictive performance of our 
developed risk model was accurate. Moreover, the CIBERSORT algorithm was used to measure the infiltration 
levels of immune cells in the ccRCC samples. The further genomic analysis illustrated a positive correlation 
between most immune checkpoint blockade-related genes and the risk score. In conclusion, the present 
findings effectually contribute to the comprehensive understanding of the ccRCC pathogenesis, and may offer a 
reference for developing novel therapeutic and prognostic biomarkers. 
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several targeted therapeutics such as sorafenib, 

sunitinib, and everolimus have successfully obtained 

approval for the clinical application in ccRCC 

treatment, their treatment effects are variable and the 

patients’ conditions usually deteriorate, which 

necessitates further investigation for identifying  

new therapeutic agents as well as prognostic  

biomarkers [5, 6]. 

 

Long non-coding RNAs (lncRNAs) are non-coding 

RNAs (ncRNAs) with a length of >200 nucleotides, 

and exert fundamental contributions to a variety of 

biological processes, such as chromatin organization, 

transcriptional regulation, and posttranscriptional 

modification [7]. The highly conserved small ncRNAs 

known as microRNAs (miRNAs) have the length of 

20-25 nucleotides [8]. The competitive endogenous 

RNA (ceRNA) concept describes the function of 

lncRNAs, messenger RNAs (mRNAs), and other RNA 

transcript types as natural miRNA “sponges” that 

suppress miRNA functions via miRNA response 

elements (MREs) [9]. lncRNAs can reduce the affinity 

between miRNAs and mRNAs by competing for 

miRNA binding, causing aberrant expressions of 

mRNAs. Several studies have validated the ceRNA 

hypothesis, and it is widely recognized as tightly 

associated with the initiation and progression of 

various cancers [10, 11].  

 

As an intricate and complex ecosystem, the tumor 

microenvironment (TME) comprises a variety of 

innate and adaptive immune cells along with the 

cancer cells and the surrounding stroma [12, 13]. The 

infiltration of immune cells contributes to various 

aspects of tumor progression and is closely related to 

clinical outcomes [14]. For instance, the infiltration of 

CD8+ T cells indicates a better prognosis and response 

to immunotherapy in many cancers [15]. However, 

persistent antigen exposure reduces the propagation 

and cytotoxicity of CD8+ T cells, leading to an 

‘exhaustion’ phenotype. The exhausted state is 

accompanied by the enhanced expression levels of 

immune checkpoint blockade (ICB)-related genes, 

including PD-1, TIM3, and CTLA4. Blockade of these 

molecules can rescue the exhaustion phenotype [16]. 

Macrophages are a major component of immune cell 

types in TME. They can be activated and polarized 

into two diverse subtypes, the M1 and M2 

macrophages, through differential stimulation by 

cytokines and chemokines [17]. M1 macrophages are 

characterized by their ability to release abundant 

proinflammatory cytokines, efficient antigen 

presentation, and tumoricidal activity [18]. On the 

contrary, M2 macrophages inhibit inflammatory 

responses and create an immunosuppressive 

microenvironment for tumor growth, metastasis, and 

angiogenesis [19]. Taken together, a better 

understanding of infiltration of the immune cells is a 

substantial step toward the diagnosis and treatment of 

ccRCC. 

 

In the present study, the gene expression profiles were 

retrieved from The Cancer Genome Atlas (TCGA) 

database. The obtained data were then evaluated by 

differential gene expression analysis as well as 

weighted gene co-expression network analysis 

(WGCNA). Then, public databases were applied for 

examining the interactions among lncRNAs, miRNAs, 

and mRNAs, and constructing a ceRNA network. The 

genes within the ceRNA network were then analyzed by 

gene ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway analyses, and the 

potential pathogenesis mechanisms of ccRCC were 

identified. Consequently, four lncRNAs were utilized to 

create a prognostic risk model with a validated good 

predictive accuracy. The ccRCC samples were graded 

into the high- and low-risk groups. The high-risk group-

related genes were identified, and underwent functional 

enrichment analysis. Finally, the infiltration levels of 

immune cells and the expression levels of ICB-related 

genes were measured, and compared in different risk 

groups. In summary, our study is envisaged to produce 

novel insights about the carcinogenesis mechanisms of 

ccRCC, and provide a reliable reference for developing 

therapeutic targets for it. 

 

RESULTS 
 

Differential gene expression analysis 

 

In order to detect the differentially expressed 

lncRNAs, miRNAs, and mRNAs, the TCGA database 

was searched for the RNA sequencing data of ccRCC 

samples. A total of 2653 differentially expressed 

lncRNAs (2040 up-regulated and 613 down-

regulated), 316 differentially expressed miRNAs (202 

up-regulated and 114 down-regulated), and 4971 

differentially expressed mRNAs (3055 up-regulated 

and 1916 down-regulated) were identified using the 

set threshold of |log2FC (fold change)| > 1 and false 

discovery rate (FDR) < 0.05. The Volcano plots and 

heatmaps were performed to visualize and compare 

the distribution of the differentially expressed 

lncRNAs/mRNAs (Figure 1A, 1C) and differentially 

expressed miRNAs (Figure 1B, 1D) between ccRCC 

and normal renal samples. 

 

Construction of the weighted gene co-expression 

network for lncRNAs and mRNAs 

 

Functional gene clusters in ccRCC samples were 

determined using the WGCNA package. With a soft-
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threshold β set at 11, a scale-free network was 

obtained with the scale-free R2 = 0.86 (Figure 2A, 

2B). Then, 12 modules were detected after merging 

the highly similar co-expression modules (Figure 2C). 

Among them, the highest positive correlation with 

ccRCC samples belonged to the pink module, with the 

module membership (MM) and gene significance 

(GS) correlation of 0.66 (Figure 2D, 2E). Finally, 359 

lncRNAs and 1499 mRNAs were extracted from the 

pink module for further analysis. 

 

Construction of the weighted gene co-expression 

network for miRNAs 

 

The weighted co-expression network was developed for 

the miRNAs using the same method as described for 

 

 
 

Figure 1. Differential gene expression analysis for ccRCC. (A, B) Volcano plot of the differentially expressed lncRNAs/mRNAs, and 
miRNAs. (C, D) The heatmap of the top 300 differentially expressed lncRNAs/mRNAs, and miRNAs. 
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lncRNAs and mRNAs. The β values were optimized, 

and β = 4 (R2 = 0.86) was chosen as the optimum 

(Figure 3A, 3B). A total of 611 miRNAs were clustered 

into 13 modules (Figure 3C). Among these identified 

modules, the turquoise module, containing 83 miRNAs, 

was substantially related to ccRCC samples (Figure 

3D). Additionally, a high GS-MM correlation (0.93) 

was identified in the turquoise module (Figure 3E). 

 

Construction of the ceRNA network 

 

We constructed the ceRNA network to investigate the 

regulatory mechanisms underlying lncRNAs in ccRCC. 

First, a total of 279 overlapping lncRNAs, 47 

overlapping miRNAs, and 1040 overlapping mRNAs 

were identified through the intersection of differential 

gene expression analysis and WGCNA (Figure 4A, 4B). 

Then, the interactions between 1040 lncRNAs and 279 

miRNAs were investigated using LncBase v.2 database. 

As a result, 457 interacting pairs of lncRNAs and 

miRNAs were identified, consisting of 173 lncRNAs 

and 45 miRNAs. Next, the three databases of 

TargetScan, miRDB, and miRTarBase were applied to 

assess mRNAs targeted by the 279 identified miRNAs 

in the previous stage. 73 interacting pairs of miRNAs 

and mRNAs were obtained, consisting of 23 miRNAs 

and 62 mRNAs. Finally, the above findings were 

applied to construct a lncRNAs-based ceRNA network. 

The ceRNA network is comprised of 144 lncRNAs, 23 

miRNAs, and 62 mRNAs (Figure 4C). 

 

 
 

Figure 2. Identification of co-expression modules for lncRNAs/mRNAs based on WGCNA. (A, B) The scale-free fit index and the 

mean connectivity for various soft-thresholding powers (β) were optimized. (C) Cluster dendrogram of lncRNAs/mRNAs based on the 1-TOM. 
(D) Heatmap of the correlation between module eigengenes and sample types. (E) Scatter plot of module eigengenes for ccRCC samples in 
the pink module. 
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Functional enrichment analysis for mRNAs in the 

ceRNA network 

 

GO and KEGG analyses were applied by utilizing 

STRING database for better comprehension of the 

potential biological functions and roles of the extracted 

mRNAs in the ceRNA network. In this regard, the 

terms “binding”, “protein binding”, “sequence-specific 

DNA binding”, and “RNA polymerase II transcription 

regulatory region sequence-specific DNA binding” 

were identified as significant under molecular function 

(MF). In addition, the mRNAs were mainly enriched 

in “core-binding factor complex”, “plasma 

membrane”, “external side of plasma membrane”, and 

“cell surface” in terms of cellular component (CC). 

Finally, the mRNAs related to biological process (BP) 

were most relevant in immune-related pathways, 

including “immune system process”, “regulation of 

immune system process”, “positive regulation of 

immune system process”, and “immune response” 

terms (Figure 5A). According to the KEGG pathway 

analysis, mRNAs became significantly enriched in 

“pathways in cancer”, “necroptosis”, “transcriptional 

misregulation in cancer”, “cytokine-cytokine receptor 

interaction”, and “chemokine signaling pathway” 

(Figure 5B). 

 

Development of a prognostic risk model by lncRNAs 

in the ceRNA network 

 

At first, ccRCC samples were classified in random 

groups for the training (n = 257) and the testing (n = 256) 

 

 
 

Figure 3. Identification of co-expression modules for miRNAs by WGCNA. (A, B) The scale-free fit index and the mean 
connectivity for various soft-thresholding powers (β) were optimized. (C) Cluster dendrogram of miRNAs based on the 1-TOM. (D) 
Heatmap of the correlation between module eigengenes and sample types. (E) Scatter plot of module eigengenes for ccRCC samples in 
the turquoise module. 
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Figure 4. Construction of the ceRNA network in ccRCC. (A) Overlapping mRNAs and lncRNAs between differential gene expression 

analysis and WGCNA. (B) Overlapping miRNAs between differential gene expression analysis and WGCNA. (C) The ceRNA network was 
comprised of 144 lncRNAs, 23 miRNAs, and 62 mRNAs; red nodes represent up-regulation, and blue nodes represent down-regulation; 
diamond nodes represent lncRNAs, triangle nodes represent miRNAs, and ellipse nodes represent mRNAs. 
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cohorts. Then, we developed the prognostic risk model 

using the training cohort. A total of 144 lncRNAs in the 

ceRNA network were evaluated via the univariate Cox 

regression analysis. With the threshold of p < 0.001, 16 

lncRNAs were selected for further least absolute 

shrinkage and selection operator (LASSO) regression 

analysis. Eight lncRNAs were identified using 

lambda.min value (Figure 6A–6C), and then were 

integrated into the multivariate Cox regression analysis. 

Four lncRNAs with strong prognostic values were 

identified in total: LINC00943, SRD5A3-AS1, 

LINC02345, and U62317.3 (Figure 6D). Using these 

four lncRNAs, a prognostic risk model was developed 

with the calculated risk score = (0.122 * LINC00943 

expression level) + (0.422 * SRD5A3-AS1 expression 

level) + (0.282 * LINC02345 expression level) + (0.247 

* U62317.3 expression level). 

 

Evaluation of the prognostic signature in the 

training cohort 

 

For this purpose, each ccRCC sample was evaluated 

in terms of the risk score. The training cohort samples 

were categorized into the high- (n = 128) and low-risk 

(n = 129) groups using the median risk score = 4.575. 

Kaplan-Meier survival analysis revealed a 

significantly higher overall survival (OS) in the low-

risk group compared to the high-risk one (Figure 7A). 

The predictive capacity of this prognostic risk model 

and clinical parameters were evaluated using the 

receiver operator characteristic (ROC) curves. The 

area under the curves (AUCs) of risk scores for 1-

year, 5-year, and 10-year survival were 0.760, 0.736, 

and 0.842, respectively (Figure 7B). Risk score, age, 

gender, grade, and stage AUCs at 5 years were 0.726, 

0.509, 0.519, 0.669, 0.728, respectively (Figure 7C). 

The survival risk plot showed a poorer prognosis in 

the high-risk group. In other words, prognosis 

deteriorated with an increased risk score (Figure 7D, 

7E). Both the principal component analysis (PCA) and 

t-distributed stochastic neighbor embedding (t-SNE) 

test showed samples from different risk groups were 

distributed in different sections (Figure 7F, 7G). 

 

Evaluation of the prognostic signature in the testing 

cohort 

 

Using the median risk score of the training cohort, the 

ccRCC samples in the testing cohort could be 

categorized as the high- (n = 142) and low-risk (n = 

114) groups. Consistent with the previous results, the 

prognosis in low-risk samples was better than that of 

the high-risk samples (Figure 8A). The AUCs of risk 

scores for 1-year, 5-year, and 10-year survival were 

0.701, 0.742, and 0.774, respectively (Figure 8B). The 

predictive performance of the present risk score was 

more precise than clinical parameters and even  

other previous models [20–23] (Figure 8C,  

Supplementary Figure 1). The survival risk plot 

confirmed a more favorable prognosis in the low-risk 

group compared to the high-risk one (Figure 8D, 8E). 

The PCA and t-SNE analyses distributed the groups 

with distinct risk scores into two different categories 

(Figure 8F, 8G). 

 

Validation of independent prognostic factors 

 

To discover if the risk score acts as an independent 

prognostic clinical parameter, the univariate and 

multivariate Cox regression analyses were performed. 

 

 
 

Figure 5. Gene functional enrichment analysis of mRNAs in the ceRNA network. (A) Overrepresented GO terms for MF, CC, and BP. 

(B) The top 10 functionally enriched pathways were identified by KEGG analysis. 
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The results confirmed that the risk score and the stage 

as genuine independent prognostic OS predictors in 

both training cohort (Figure 9A, 9B) and testing cohort 

(Figure 9C, 9D). 

 

Identification of the genes related to the high-risk 

group 

 

WGCNA was applied to identify the genes related to 

the high-risk group. For this purpose, a soft-threshold  

β = 7 (R2 = 0.86) was opted for developing a scale-free 

network (Figure 10A, 10B). Accordingly, 16 modules 

were identified to have a positive correlation with the 

high-risk group, among which the magenta module had 

the highest correlation value (Figure 10C, 10D). The 

correlation between MM and GS was 0.63 (Figure 10E). 

Finally, 1390 mRNAs in the magenta module were 

selected for functional enrichment analysis. 

Functional enrichment exploration of the high-risk 

group related genes 

 

To disclose the functions and pathways involved in 

samples of the high-risk group, GO and KEGG pathway 

enrichment analyses were applied on genes that were 

previously indicated to have the highest association 

with the high risk of ccRCC. BP terms included 

“immune system process”, “immune response”, and 

“regulation of immune system process” (Figure 11A). 

The genes related to CC were enriched in “plasma 

membrane”, “cell periphery”, and “side of membrane” 

(Figure 11B). In MF, the genes were involved in 

“immune receptor activity”, “signaling receptor 

activity”, and “transmembrane signaling receptor 

activity” (Figure 11C). Pathway analysis with KEGG 

illustrated that genes in “cytokine-cytokine receptor 

interaction”, “chemokine signaling pathway”, and 

 

 
 

Figure 6. Construction of the prognostic risk model. (A) The results of the univariate Cox regression analysis of lncRNAs with p < 0.001. 

(B, C) Lambda.min value = 8 was calculated using LASSO regression. (D) The results of multivariable Cox regression analysis. 
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“natural killer cell-mediated cytotoxicity” were 

significantly enriched (Figure 11D). 

 

Identification of immune cell infiltration in ccRCC 

for different risk scores 

 

The association between the infiltration levels of 

immune cells and the risk score was investigated  

by measuring the abundance of 22 different types  

of immune cells in ccRCC samples using the 

CIBERSORT algorithm (Figure 12A). The differential 

distribution of immune cell types between the  

groups with high and low risks of ccRCC was also 

examined. The results indicated a significantly greater 

proportion of infiltration of plasma cells, CD4 

memory-activated T cells, and regulatory T cells 

 

 
 

Figure 7. The predictive ability of the prognostic risk model in the training cohort. (A) The OS in the high- and low-risk groups. (B) 
ROC curves based on the prognostic risk model for predicting the 1-, 5-, and 10-year OS. (C) ROC curves based on the prognostic risk model 
and clinical parameters for predicting the 5-year OS. (D) Distribution of the risk score. (E) Correlation between the survival status and the risk 
score. (F) PCA for the high- and low-risk groups. (G) t-SNE analysis for the high- and low-risk groups. 
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Figure 8. The predictive ability of the prognostic risk model in the testing cohort. (A) The OS in the high- and low-risk groups. (B) 

ROC curves based on the prognostic risk model for predicting the 1-, 5-, and 10-year OS. (C) ROC curves based on the prognostic risk model 
and clinical parameters for predicting the 5-year OS. (D) Distribution of the risk score. (E) Correlation between the survival status and the risk 
score. (F) PCA for the high- and low-risk groups. (G) t-SNE analysis for the high- and low-risk groups. 
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(Tregs) in the high-risk group compared to the  

low-risk group. In contrast, the infiltration of resting 

mast cells in the high-risk group was substantially 

lower than the same parameter in the low-risk group 

(Figure 12B). 

 

Identification of ICB-related gene expression for 

different risk scores 

 

Since ICB-related genes are widely known for their 

involvement in the development of cancers, the 

expressions of 47 ICB-related genes were also 

analyzed in the ccRCC samples with different risk 

scores. The expressions of multiple ICB-related  

genes in the low-risk group were significantly lower 

than that in the high-risk group (Figure 13A). 

Moreover, the expressions of most ICB-related genes 

and risk scores were positively correlated 

(Supplementary Table 1). The top six genes highly 

correlated with the risk score are shown in Figure 

13B–13G. 

DISCUSSION 
 

The recently developed high-throughput sequencing 

technologies have shifted the research focus from 

protein-coding RNAs to ncRNAs, especially lncRNAs. 

These molecules are being rapidly identified and 

characterized by the accumulating evidence to be 

strongly associated with tumorigenesis and progression 

in diverse cancers [24]. In addition, as compared to 

protein-coding RNAs, the relationship between 

lncRNAs and cancer status is tighter, which implies that 

lncRNAs may serve as accurate diagnostic, therapeutic, 

and prognostic biomarkers of several malignancies [25]. 

For instance, lncRNA SARCC expression in ccRCC 

tissues decreases, and low SARCC expression is 

associated with a worse prognosis. Androgen receptor 

has been identified as a target gene of SARCC. 

Knocking down SARCC decreases the expression of 

miR-143-3p and stimulates multiple oncogenes by 

enhancing androgen receptor expression, which leads to 

greater cancer cell proliferation, migration, and invasion 

 

 
 

Figure 9. Validation of the independent prognostic factors. (A, B) Univariate and multivariate Cox regression analyses of the risk score 

and clinical parameters in the training cohort. (C, D) Univariate and multivariate Cox regression analyses of the risk score and clinical 
parameters in the testing cohort. 
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[26]. Similarly, lncRNA MRCCAT1 is overexpressed in 

ccRCC cell lines as well as the relevant tissues. 

MRCCAT1 enhances the binding of PRC2 at NPR3 

promoter regions, leading to transcriptional repression 

of NPR3 and the activation of the p38-MAPK signaling 

pathway. Thus, the aggressive cancerous cell 

phenotypes are enhanced both in vitro and in vivo [27]. 

Although previous studies have expanded our 

knowledge on lncRNAs to a certain extent, the potential 

functions and molecular mechanisms underlying 

lncRNA actions remain unknown. 

 

WGCNA package in R is widely used for identifying the 

co-expressed gene modules based on the correlation 

within gene expression profiles as well as the correlation 

between gene modules and clinical characteristics. 

Thereby, the genes with analogous expression tendencies 

and functions are clustered into the separate gene 

modules, and those gene modules which are most relevant 

to clinical traits are representative of the prominent 

regulators of the disease [28, 29]. The differential gene 

expression analysis and WGCNA are performed for 

genes associated with ccRCC, and the overlapping genes 

are considered to be pivotally involved in the 

development of ccRCC. To the best of our knowledge, 

the present report is the first study that employs the 

results of WGCNA to construct the ceRNA network in 

ccRCC. Thus, our results are reliable and convincing. 

 

The role of immune system involvement in carcinogenesis 

is widely recognized. In immunocompetent individuals, 

the immune system takes responsibility for recognizing 

and exterminating the cancer cells [30]. However, 

emerging evidence suggests that evasion of immune 

 

 
 

Figure 10. Identification of co-expression modules related to the high-risk group by WGCNA. (A, B) The scale-free fit index and 
the mean connectivity for various soft-thresholding powers (β) were optimized. (C) Cluster dendrogram of genes based on the 1-TOM. (D) 
Heatmap of the correlation between module eigengenes and sample types. (E) Scatter plot of module eigengenes for the high-risk group in 
the magenta module. 
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destruction is a distinct feature of cancers [31]. Hence, 

immunotherapy as a promising therapeutic strategy has 

attracted extensive research attention. Several 

immunotherapeutic biomarkers have been identified, 

and the corresponding immunotherapeutic agents have 

received approval to be used in clinical trials or 

treatment, including cytotoxic T-lymphocyte associated 

protein 4 (CTLA4) inhibitor, programmed cell death 

protein 1 (PD-1)/ PD-1 ligand 1 (PD-L1) inhibitor, and 

chimeric antigen receptor (CAR) T cell. Nevertheless, 

such treatments are currently accessible only for a 

specific subset of patients. Thus, the identification of 

novel immunotherapeutic biomarkers is necessary [32]. 

Accumulating studies suggest that lncRNAs may 

function as effective immunotherapeutic targets. Huang 

et al. [33] reported that activation-induced cell death of 

T-lymphocytes assists cancer cell evasion from immune 

destruction. lncRNA NKILA overexpression sensitizes 

tumor-specific cytotoxic T-lymphocytes and type 1 

helper T cells, resulting in activation-induced cell death 

and cancer immune evasion in breast and lung cancers. 

Liu et al. [34] reported that LINC00973 induces immune 

suppression by regulating the ceRNA network. Siglec-15, 

a novel immune suppressor, is promoted by LINC00973/ 

miR-7109 axis and leads to immune evasion in ccRCC. 

Consequently, these results imply that lncRNAs in the 

ceRNA network may regulate immune-related genes and 

provide novel immunotherapeutic targets. In our study, 

we identified four promising lncRNAs including 

LINC00943, SRD5A3-AS1, LINC02345, and U62317.3. 

A recent study shows that LINC00943 is upregulated  

in gastric cancer. Knocking down LINC00943 enhances 

the expression of miR-101-3p, resulting in the 

suppression of cell proliferation and chemoresistance.

 

 
 

Figure 11. Gene functional enrichment analysis of genes associated with the high-risk group. (A–C) Overrepresented GO terms 
for BP, CC, and MF. (D) Top 10 enriched functional pathway terms based on KEGG analysis. 
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However, SRD5A3-AS1, U62317.3, and LINC02345 

have not yet been reported in cancers.  

 

Immune cell infiltration is a pivotal component of TME, 

and dysregulation of immune cells has a powerful 

impact on clinical outcomes. The present results 

demonstrated that the immune cell infiltration is 

distinguished and distinctive in ccRCC samples 

belonging to different risk groups. In samples with high 

risk scores, plasma cells, CD4 memory-activated T cells, 

and Tregs were upregulated, while resting mast cells 

were downregulated. Several studies report high immune 

cell infiltration in ccRCC, especially that of the T cells 

[35, 36]. Upregulation of CD4 memory-activated T cells 

and Tregs showed to be negatively correlated with the 

OS [37]. Tregs are potent immunosuppressive cells that 

limit antitumor immunity and promote angiogenesis. 

Extensive Tregs infiltration is reported in multiple tumor 

types and is linked with poor clinical outcomes [38]. B 

cells can differentiate into plasma cells and produce 

antibodies, and are an important component of TME 

[39]. However, B cells recruited from TME promote 

RCC metastasis by activating the IL-1β/HIF-2α/Notch1 

signaling axis [40]. The role of mast cells in ccRCC 

remains controversial. Some studies show that mast  

cell infiltration correlates with poor survival, since it 

 

 
 

Figure 12. Evaluation of the immune cell infiltration in ccRCC samples. (A) The abundance of 22 immune cell types in ccRCC samples. 

(B) The proportion of different immune cell types between the high- and low-risk groups in ccRCC samples. 
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has shown a positive correlation with the size, grade, 

and metastasis parameters of the tumor [41, 42]. 

Nevertheless, Xiong et al. [43] suggest that increased 

infiltration of mast cells represents high sensitivity to 

tyrosine kinase inhibitors treatment response and good 

survival. The controversy is reflective of the inherent 

complexity of TME in ccRCC, and more studies are 

required to elucidate and address the TME complexities 

in the future. 

 

In conclusion, an immune signature-related ceRNA 

network was constructed, and a corresponding 

prognostic risk model was developed based on four 

lncRNAs with a significant prognostic value. To 

achieve this, the ccRCC samples have been 

categorized into the high- and low-risk groups 

according to the risk score. Further analyses indicated 

that the clinical outcome was significantly correlated 

with specific immune cell infiltration levels and ICB-

related gene expression in ccRCC samples belonging 

to different risk groups. Therefore, we envisage that 

our study offers a reference for identifying novel 

prognostic biomarkers and benefits studies aimed at 

developing immunotherapeutic strategies. 

 

 
 

Figure 13. Identification of the correlation between the risk score and ICB-related genes. (A) The differential expression of ICB-

related genes between the high- and low-risk groups. (B–G) The top six ICB-related genes with the most relevance to the risk score. 
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MATERIALS AND METHODS 
 

Data collection 

 

TCGA is a cancer genomics consortia-developed 

database comprising more than 20,000 primary cancer 

and correspondingly matched normal tissues from 

patients, spanning across 33 different cancer types. The 

TCGA portal (https://portal.gdc.cancer.gov/) was used 

to retrieve the RNA sequences and clinical data of 

ccRCC samples. The downloaded lncRNA and mRNA 

sequencing data comprised 539 ccRCC samples and 72 

normal tissue samples of the kidney. The miRNA 

sequencing data comprised 545 ccRCC and 71 normal 

tissue samples of the kidney. Since the required data 

were accessible from a public portal, no ethical 

approval or informed consent was needed. 

 

Differential gene expression analysis 

 

The gene sequencing data retrieved from TCGA were 

analyzed by the “edgeR” package [44] in the R software. 

The differentially expressed lncRNAs, miRNAs, and 

mRNAs were identified using |log2FC| > 1 and FDR < 

0.05 as the set threshold. 

 

Construction of weighted gene co-expression network 

 

WGCNA [45] was utilized to develop the gene co-

expression modules gleaned from the clinical features. 

First, the gene expression profiles were normalized using 

the “edgeR” package. Then, data reliability confirmation 

was performed by checking the sample quality using the 

goodSamplesGenes function in the WGCNA package. 

Next, a soft threshold power β was opted for constructing 

a standard scale-free network. Subsequently, the 

correlation of genes was calculated using a power 

function, and an adjacency matrix was thus established. 

Thereafter, the obtained adjacency matrix underwent 

remodification into a topological overlap matrix (TOM). 

Genes then underwent the hierarchical clustering analysis 

based on dissimilarity (1-TOM), and the dynamic tree cut 

algorithm was used to seek the modules. Eventually, we 

applied a height cut-off of 0.25 for the modular 

dendrogram to merge modules with the most similarities. 

 

Conversion of gene names 

 

The Ensembl database (http://www.ensembl.org/ 

index.html) was used to convert the gene names from 

Ensembl gene stable ID to gene symbol [46]. 

 

Construction of the ceRNA network 

 

Firstly, the overlapping lncRNAs, miRNAs, and mRNAs 

between those from differential gene expression analysis 

and WGCNA were selected. Secondly, the genes targeted 

by lncRNAs were predicted using LncBase v.2 

(http://carolina.imis.athena-innovation.gr/diana_tools/ 

web/index.php?r=lncbasev2%2Findex-predicted) [47] 

and matched with corresponding differentially 

expressed miRNAs. Thirdly, the miRNAs-targeted 

genes were predicted using three databases, including 

TargetScan (http://www.targetscan.org/vert_72/) [48], 

miRDB (http://mirdb.org/) [49], and miRTarBase 

(http://mirtarbase.cuhk.edu.cn/php/index.php) [50]. 

The common predicted genes by these databases  

were selected and matched with differentially 

expressed mRNAs. Finally, we constructed and 

visualized the ceRNA network using Cytoscape 

version 3.8.0. 

 

Gene functional enrichment analysis 

 

Using the STRING database, GO and KEGG pathway 

analyses were conducted to determine the 

overrepresented biological functions of genes in the 

ceRNA network (https://www.string-db.org/). GO terms 

describe the biological functions in three aspects: MF, 

CC, and BP [51]. KEGG is a database for the 

identification of high-level functions of a biological 

system with great utilities [52]. 

 

Construction and validation of the prognostic risk 

model 

 

The lncRNAs-based survival analysis in the ceRNA 

network was conducted to indicate the independent 

prognostic factors in ccRCC. For this purpose, the 

ccRCC clinical data were acquired from TCGA. Then, 

samples with a survival time of < 30 days were 

excluded. Next, the ccRCC samples were randomly 

grouped into the training (n = 257) and testing  

cohorts (n = 256) using the “caret” package. Next, 

LASSO regression and Cox regression analyses were 

used for the training cohort lncRNAs and a prognostic 

risk model was developed. Then, the samples in 

training or testing cohort were divided into the high- 

and low-risk groups based on the median risk score of 

the training cohort. Subsequently, the Kaplan-Meier 

survival analysis was used to measure the survival 

differences between the high- and low-risk groups. 

The ROC curves were plotted using the “timeROC” 

[53] package to evaluate the risk model performance 

by calculating the corresponding AUCs. The PCA and 

t-SNE analyses were conducted for assessing the 

distribution pattern of each risk group using “stats” 

and “Rtsne” packages. Finally, the univariate and 

multivariate Cox regression analyses were conducted 

to evaluate if the risk score serves as an independent 

prognostic factor in comparison to other clinical 

parameters. 

https://portal.gdc.cancer.gov/
http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-predicted
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-predicted
http://www.targetscan.org/vert_72/
http://mirdb.org/
http://mirtarbase.cuhk.edu.cn/php/index.php
https://www.string-db.org/
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Analysis of the infiltration levels of immune cells 

 

The infiltration levels of different immune cells were 

estimated by the CIBERSORT algorithm [54]. The 

leukocyte gene expression matrix was employed to 

identify the 22 immune cell types and their infiltration 

proportions in ccRCC samples with different risk 

scores. 1000 permutation count and p < 0.05 were set as 

the threshold. 

 

Analysis of the ICB-related genes 

 

The differential expression of 47 ICB-related genes 

between the high- and low-risk samples, and the 

correlation of ICB-related genes expression and the risk 

score were evaluated. The results were visualized using 

the “ggpubr” package. p-value < 0.05 was considered to 

be statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. ROC curves based on the present and previous prognostic risk models for predicting the 5-year OS 
in the testing cohort. 
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Supplementary Table 
 

Supplementary Table 1. The correlation between the risk score and ICB-related genes. 

Risk score Genes Correlation Pvalue 

Risk score TNFRSF18 0.628998143 7.39E-58 

Risk score LAG3 0.582342029 6.63E-48 

Risk score TNFSF14 0.578299472 4.07E-47 

Risk score CTLA4 0.559690938 1.26E-43 

Risk score LAIR1 0.554739361 9.80E-43 

Risk score TNFRSF8 0.539604233 4.23E-40 

Risk score TIGIT 0.53570365 1.92E-39 

Risk score LGALS9 0.530655091 1.33E-38 

Risk score TNFRSF25 0.529224992 2.28E-38 

Risk score PDCD1 0.529215128 2.29E-38 

Risk score CD27 0.506205589 9.80E-35 

Risk score TNFRSF9 0.492734013 9.83E-33 

Risk score CD80 0.487758574 5.12E-32 

Risk score ICOS 0.462756108 1.38E-28 

Risk score CD244 0.461539911 1.99E-28 

Risk score IDO2 0.456579955 8.79E-28 

Risk score TMIGD2 0.433183535 7.03E-25 

Risk score CD40LG 0.4279925 2.89E-24 

Risk score CD86 0.420920703 1.91E-23 

Risk score CD48 0.408111515 5.21E-22 

Risk score TNFSF4 0.406643645 7.54E-22 

Risk score CD70 0.389525679 4.93E-20 

Risk score BTLA 0.387656784 7.67E-20 

Risk score TNFSF9 0.38474049 1.52E-19 

Risk score CD200R1 0.372174827 2.68E-18 

Risk score CD160 0.36218579 2.40E-17 

Risk score CD28 0.359554881 4.22E-17 

Risk score CD44 0.334013414 7.78E-15 

Risk score CD40 0.292971982 1.30E-11 

Risk score ADORA2A 0.254870413 4.75E-09 

Risk score PDCD1LG2 0.248463719 1.17E-08 

Risk score TNFRSF4 0.233256205 9.08E-08 

Risk score TNFRSF14 0.22041312 4.60E-07 

Risk score VSIR 0.220110972 4.78E-07 

Risk score BTNL2 0.183270027 2.96E-05 

Risk score IDO1 0.166154592 0.000156546 

Risk score CD276 0.15429199 0.000452959 

Risk score TNFSF18 0.069039149 0.118346459 

Risk score HAVCR2 0.062374443 0.158339645 

Risk score CD200 0.059886251 0.175640432 

Risk score HHLA2 0.036799909 0.405551096 

Risk score CD274 0.01448957 0.743366739 

Risk score KIR3DL1 0.003153622 0.943195674 
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Risk score ICOSLG -0.031925248 0.470595153 

Risk score NRP1 -0.044113629 0.318667462 

Risk score TNFSF15 -0.093830422 0.03361018 

Risk score VTCN1 -0.205208172 2.78E-06 

 


