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INTRODUCTION 
 

The exact cause of the eye disease age-related macular 

degeneration (AMD) is unknown, but the most 

significant risk factor is aging [1]. A study estimates 

that nearly 200 million people globally have AMD. 

These numbers are expected to rise to nearly 300 

million by 2040 due to increased life expectancy [2]. 

AMD is a debilitating disease affecting central visual 

acuity and complicates everyday activities such as 

reading, driving, and recognizing faces. There is an 

urgent need for a better understanding of the condition 

and better treatment options. 

Age-related macular degeneration is divided into early-, 

intermediate- and late AMD. Late-stage AMD can take 

two forms: the fast-developing neovascular AMD 

(nAMD) and the more slowly progressing atrophic 

form, geographic atrophy (GA). 

 

A characteristic of all stages of AMD is the presence of 

small deposits of lipids and proteins (drusen) lying 

below or above the retinal pigment epithelium (RPE) of 

the retina [3]. Why we develop drusen is not entirely 

understood, but they occur with increasing age in most 

people, and the risk of developing late AMD increase 

with the number and size of drusen [4, 5]. The buildup 
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ABSTRACT 
 

The cause of age-related macular degeneration (AMD) is unknown, but evidence indicates that both innate and 
adaptive immunity play a role in the pathogenesis. Our recent work has investigated AMD in patients with 
myeloproliferative neoplasms (MPNs) since they have increased drusen and AMD prevalence. We have 
previously found increased levels of chronic low-grade inflammation (CLI) in MPN patients with drusen (MPNd) 
compared to MPN patients with normal retinas (MPNn). CLI and AMD are both associated with aging, and we, 
therefore, wanted to study immunosenescence markers in MPNd, MPNn, and AMD. The purpose was to 
identify differences between MPNd and MPNn, which might reveal novel information relevant to drusen 
pathophysiology and thereby the AMD pathogenesis. Our results suggest that MPNd have a T cell 
differentiation profile resembling AMD and more effector memory T cells than MPNn. The senescence-
associated-secretory-phenotype (SASP) is associated with effector T cells. SASP is thought to play a role in 
driving CLI seen with advancing age. Senescent cells with SASP may damage healthy tissue, including the eye 
tissues affected in AMD. The finding of increased effector cells in MPNd could implicate a role for adaptive 
immunity and senescent T cells together with increased CLI in drusen pathophysiology. 

mailto:liisborg@c.dk
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 25764 AGING 

of cellular damage characterizes the aging process, and 

the declining functions of the repair mechanisms can 

lead to the buildup of cellular defects or debris [6]. The 

current understanding of drusen pathophysiology is a 

process initiated locally and starts with the 

accumulation of debris in Bruch’s membrane (BM) and 

the following thickening of this layer. The debris 

buildup occurs partly by accumulating waste products 

from the visual cycle and nutrients and waste products 

from the bidirectional transport between the choroid, 

BM, RPE, and photoreceptors. With age, the thickening 

of the BM seems to decrease the function of the 

bidirectional flow, and an accumulation of lipids is 

seen, resulting in drusen formation. The RPE cells are 

suspected of contributing to this process and the 

subsequent complement activation and induction of 

reactive oxygen species (ROS) [7, 8]. In a proposed 

two-level hypothesis, this random accumulation of 

debris is the “first step,” and the systemic inflammatory 

response to this damage is the second. Both steps are 

thought to be necessary to develop AMD [8]. 

 

Our recent work investigated AMD in patients with 

Philadelphia chromosome-negative myeloproliferative 

neoplasms (MPN) [9]. The MPNs are a group of closely 

related hematological cancers named essential 

thrombocythemia (ET), polycythemia vera (PV), and 

primary myelofibrosis (PMF). They are thought to 

evolve in a biological continuum from early-stage ET to 

PV to PMF [10, 11]. The diseases are characterized by 

acquired driver mutations in the JAK2, MPL, and CALR 

genes, resulting in excessive production of myeloid 

cells, overproduction of inflammatory markers, and a 

massive symptom burden [12]. 

 

The rationale for investigating patients with MPNs is 

that we have found an increased prevalence of AMD, 

including an increased prevalence of drusen in these 

patients [13, 14]. The MPNs do not only have a higher 

prevalence of drusen and AMD, but drusen also show 

up earlier, and significantly more younger people have 

drusen than the background population [14]. We have 

also shown that the drusen prevalence in MPNs was 

associated with an increased level of chronic low-grade 

inflammation (CLI), and we also found evidence of a 

dysregulated complement system. In this recent work, 

we proposed to use MPNs as a “Human Inflammation 

Model” of drusen development. The CLI triggers drusen 

formation, leading to more CLI, creating a self-

perpetuating vicious cycle, increasing the risk of 

developing late AMD. This idea challenges the current 

theory of drusen pathophysiology happening at least 

initially locally. 

 

Both CLI and AMD are associated with aging. In AMD, 

retinal aging is observed, and in peripheral blood of 

these patients, accelerated T cell differentiation and 

elevated aging markers have been found [15], but we do 

not know the role of the aging peripheral immune 

system on AMD. Patients with MPNs provide a unique 

opportunity to investigate immune aging in patients 

with and without drusen and evaluate if patients with 

MPNs also show signs of accelerated immune aging. 

 

Numerous studies of the normal aging process have 

identified changes in the immune system with age. 

These changes are often termed “immunosenescence,” 

and one of the most notable changes is that the 

proportion of naïve CD8 T cells decreases. In contrast, 

the memory T cell pool increase, altering the cytokine 

profile since the different T cells secrete various 

cytokines, which alter functions of T cells such as 

cytokine production and T cell proliferation. Studies 

indicate that senescent T cells are synonymous with 

effector T cells [16–18], and therefore, senescent T cells 

accumulate with age [19–21]. 

 

The CD4 T cell compartment shows smaller age-related 

changes than the CD8 compartment [19, 20]. Other 

recognized changes with age are the loss of the co-

receptors for T cell stimulation CD27 and CD28 [21], 

the upregulation of cytolytic activity, and an increase in 

markers commonly associated with natural killer cells 

(NKRs) [22–25]. Also, a chronic pro-inflammatory 

milieu is associated with aging, often termed 

“inflammaging” [26]. 

 

With this study, we wanted to investigate markers of 

immunosenescence in patients with MPN and MPN 

subtypes. We specifically evaluated CD4+ and CD8+ T 

cell differentiation (naïve, central memory (CM), 

effector memory (EM), and effector memory CD45Ra+ 

cells (EMRA) – Figure 1 [16, 17, 27]). Additionally, we 

assessed the loss of the costimulatory markers CD27 

and CD28 and the expression of an NKR CD56+ used 

as a marker for T cell aging. We also wanted to 

compare patients with MPNs and drusen (MPNd) with 

patients with MPNs and normal retinas (MPNn) and 

finally to compare these results with patients having 

AMD. The purpose was to identify differences between 

patients with and without drusen and how these patients 

resemble patients with AMD. This may reveal 

information that could be relevant for the pathogenesis 

of AMD. 

 

RESULTS 

 

Study population 

 

We included 123 patients in the study. Four patients 

were excluded post hoc. One patient because of a high 

CRP, implying an ongoing acute immune response, 
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two patients because they fulfilled the criteria of 

having GA; and one was excluded because the flow 

cytometric analyses failed. The result was 119 

included patients: 29 nAMD, 28 iAMD, 35 MPNd, and 

27 MPNn. The patients are the same as in our previous 

work, and patient characteristics (Table 1) are 

therefore identical [9]. 

 

Patients with nAMD had a median age of 77 (IQR: 71–

82) years, significantly older than iAMD (73 years, 

IQR: 68–76, p = 0.034) MPNd (72 years, IQR: 65–76, p 

= 0.0040) and MPNn (69 years, IQR: 62–74, p < 0.001). 

No differences were found between the groups 

regarding sex, smoking habits, body mass index, and 

comorbidities. The MPNd group had a higher median 

alcohol consumption of 7 units per week than nAMD 

(2, IQR: 0–7, p < 0.001), iAMD (3, IQR: 0–7, p = 

0.019), and MPNn (2, IQR: 0–8, p0.021). We found no 

influence of alcohol consumption on outcomes reported 

in the following sections. The distribution of subtypes 

of MPNs was 39 PV-, 17 ET-, and six PMF patients. 

Most patients with MPN had the JAK2V617F-mutation 

(82%), fewer CALR (6.2%), and MPL (1.5%). We 

detected no difference in JAK2V617F allele burden 

between the two MPN groups (p = 0.088), but it seemed 

that MPNn had a lower allele burden of 17% compared 

to 33% for MPNd. We also subdivided allele burden 

into four groups of 0–25%, >25–50%, >50%–75%, and 

>75%, and no difference in distribution between the two 

groups was seen (p = 0.61). There were no differences 

between the MPN groups regarding treatment with 

hydroxyurea (HU) (p = 0.99). All received 

acetylsalicylic acid or other anticoagulant therapy. The 

distribution of patients receiving statins was similar 

across all groups (p-value = 0.58). 

 

CD4+ and CD8+ T cells 

 

Patients with iAMD had a lymphocyte percentage of 

15% (CI: 13–18), significantly higher than 11% (CI: 

8.8–13) in AMD (p = 0.0050), 8.8% (CI: 7.3–10) in 

MPNd (p < 0.001) and 9.9% (CI: 8.6–11) in MPNn (p 

< 0.001). No difference was found in the CD4+ T cell 

percentage between the groups (p = 0.86), but AMD 

and iAMD had a statistically significant higher 

percentage of CD8+ T cells (30% (IQR: 22–34) and 

28% (IQR: 21–33)) than the MPNd and MPNn groups 

(23% (IQR: 17–28) and 22% (IQR: 16–28)) (nAMD- 

MPNd: p = 0.0010, nAMD-MPNn: p = 0.0040, iAMD-

MPNd: p = 0.050, iAMD-MPNn: p = 0.038) (Figure 

2B). We did not find any differences between groups 

in CD4/CD8 ratio or the CD4+CD8+ double-positive 

cells percentage (p = 0.68 and p = 0.44) (data not 

shown). 

 

 
 

Figure 1. Surface markers and functions in stages of T-cell differentiation (in the CD4 and CD8 compartments). −: low expression/not 

expressed/function not present. +: expressed/function present, and additional +’s: higher expression/function. Abbreviation: SASP: Senescence-
associated secretory phenotype. 
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Table 1. Patient characteristics. 

 nAMD (n = 29) iAMD (n = 28) MPNd (n = 35) MPNn (n = 27) p-value 

Demographics      

Age, years, median (IQR) 77 (71–82) 73 (68–76) 72 (65–76) 69 (62–74) <0.001a 

Sex     0.28b 

Males, n (%) 12 (41) 10 (36) 20 (57) 10 (37)  

Females, n (%) 17 (59) 18 (64) 15 (43) 17 (63)  

Lifestyle factors      

Smoking, n (%)     0.83c 

Never 12 (41) 12 (43) 16 (46) 11 (41)  

Former 13 (45) 13 (46) 18 (51) 14 (52)  

Current 4 (14) 3 (11) 1 (3) 2 (7)  

Body mass index, mean (95%CI) 26 (24–27) 25 (24–27) 25 (24–27) 27 (25–29) 0.48d 

Alcohol consumption, units per week, 
median (IQR) 

2 (0–7) 3 (0–7) 7 (2–14) 2 (0–8) 0.0036a 

Comorbidities      

Cardiovascular disease, n (%) 4 (14) 5 (18) 6 (17) 6 (22) 0.89c 

Hypertension, n (%) 13 (45) 8 (29) 18 (51) 17 (63) 0.075b 

Hypercholesterolemia, n (%) 4 (14) 2 (7) 3 (9) 2 (7) 0.82c 

Type 2 diabetes, n (%) 2 (7) 1 (4) 2 (6) 0 (0) 0.76c 

MPN diagnosis (MPN patients only)     0.082b 

Essential thrombocythemia, n (%) − − 6 (17) 11 (41)  

Polycythemia vera, n (%) − − 26 (74) 13 (48)  

Pre-PMF, n (%) − − 0 (0) 1 (4)  

Primary myelofibrosis, n (%) − − 3 (9) 2 (7)  

Mutation status (MPN patients only) − −   0.43c 

JAK2V617F, n (%) − − 31 (91) 22 (82)  

CALR mutation, n (%) − − 1 (3) 3 (11)  

MPL mutation, n (%) − − 1 (3) 0 (0)  

Triple-Negative, n (%) − − 1 (3) 2 (7)  

Significant p-values are shown in bold. Statistical comparisons between groups: aKruskal Wallis test, bPearson's Chi-squared 
test, cFischer’s exact test, dOne-way ANOVA. Abbreviations: AMD: age-related macular degeneration; nAMD: neovascular 
AMD; iAMD: intermediate AMD; MPN: myeloproliferative neoplasms; MPNd: Patients with MPN and drusen; MPNn: patients 
with MPN and normal retinas; IQR: interquartile range; PV: polycythemia vera; ET: essential thrombocythemia; PreMF: pre-
myelofibrosis; PMF: primary myelofibrosis; JAK2V617F: mutation in the JAK2 gene; CALR: calreticulin gene; MPL: MPL gene; 
the gene encoding the thrombopoietin receptor. 

 

T cell differentiation 

 

We investigated the T cell differentiation profile 

(Naïve-, CM, EM, and EMRA T cells) in all groups 

(Figure 2A and 2B). We found a statistically 

significant difference in the distribution of EM T cells 

in both the CD4 and CD8 T cell compartment. In 

MPNn patients, EM cells accounted for 15% (IQR: 

12–18) of the total CD4+ cells, significantly lower 

than 22% (IQR: 19–26) in MPNd (p = 0.023), 23% 
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(IQR: 16–30) in iAMD (p = 0.023), and 22% (IQR: 

17–28) in nAMD patients (p = 0.017). The same was 

observed for CD8 T cells where EM cells comprised 

23% (IQR: 14–31) of CD8 T cells in MPNn compared 

to 29% (IQR: 21–35) in MPNd (p = 0.030) 35% (IQR: 

20–42) in iAMD (p = 0.0070) and 28% (IQR: 23–35) 

in nAMD patients (p = 0.025). 

Costimulatory markers CD27 and CD28 and CD56+ 

expression 

 

Although there was a tendency for MPNn patients to 

lose less of the differentiation markers CD27 and CD28 

compared to the other groups, the differences were not 

statistically significant (Figure 2C). 

 

 
 

Figure 2. Barplots of (A) CD4 T cell differentiation profile. (B) CD8 T cell differentiation profile. (C) Loss of costimulatory markers in CD4 and 
CD8 T cells. (D) CD56 expression in CD4 and CD8 cells Statistically significant p-values are shown above bar plots. Statistical comparisons 
between groups: Kruskal Wallis test or robust linear regression if the outcome were age-dependent and Wilcoxon rank-sum test for 
multiple comparisons. Abbreviations: nAMD: neovascular AMD; iAMD: intermediate AMD; MPN: myeloproliferative neoplasms; MPNd: 
Patients with MPN and drusen; MPNn: patients with MPN and normal retinas; Naïve: naïve T cells; CM: central memory T cells; EM: effector 
memory T cells; EMRA: effector memory CD45Ra+ T cells. 



 

www.aging-us.com 25768 AGING 

We did not observe any differences in the expression of 

the aging marker CD56 between any of the groups 

(Figure 2D). 

 

MPN biological continuum 

 

We investigated differences in the biological continuum 

in MPNs from ET to PV to PMF (Figure 3). 

The lymphocyte percentage decreased over the 

biological continuum. ET patients had 11% (CI: 9.4–13) 

lymphocytes compared to 8.9% (CI: 7.6–10) in PV 

patients (p = 0.043) and 6.7% (CI: 4.4–10) in PMF 

patients (p = 0.022) (data not shown). PMF patients had 

a percentage of terminally differentiated EMRA cells in 

the CD8 compartment of 49% (IQR: 30–54), 

significantly higher than 26% (IQR: 15–41) in ET 

 

 
 

Figure 3. Barplots MPN subtypes of (A) CD4 T cell differentiation profile (B) CD8 T cell differentiation profile. (C) Loss of costimulatory 

markers in CD4 and CD8 T cells. (D) CD56 expression in CD4 and CD8 cells Statistically significant p-values are shown above bar plots. 
Statistical comparisons between groups: Kruskal Wallis test or robust linear regression if the outcome were age-dependent and Wilcoxon 
rank-sum test for multiple comparisons. Abbreviations: ET: essential thrombocythemia; PV: polycythemia vera; PMF: primary myelofibrosis; 
Naïve: naïve T cells; CM: central memory T cells; EM: effector memory T cells; EMRA: effector memory CD45Ra+ T cells. 
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patients (p = 0.024) and near significantly higher than 

29% (IQR: 24–38) in PV patients (p = 0.070) (Figure 

3B). We found no significant differences in the CD4 

compartment (Figure 3A). PMF patients correspondingly 

seemed to have a lower percentage of EM cells, 17% 

(IQR: 11–30), than PV 25% (IQR: 14–34) (p = 0.22) 

and ET 26% (IQR: 26–38) (p = 0.062), but this was not 

statistically significant. 

 

The expression of CD56 seemed to rise over the 

biological continuum (Figure 3D), but this was not 

statistically significant (CD4 p = 0.38, CD8 p = 0.19). 

There were no differences between the groups in the loss 

of differentiation markers CD27 and CD28 (Figure 3C). 

Immunosenescence plots 

 

To visualize our results, we created radar plots of the 

different T cell subsets and differentiation markers to 

evaluate the resemblance among groups further. MPNn 

patients stood out in most plots compared to the other 

groups (Figure 4). The MPNd, AMD, and iAMD 

patients seemed to have a more senescent profile, with 

more loss of costimulatory markers, higher CD56 

expression, and more terminally differentiated T cells. 

In Figure 5, we compare MPN subtypes. ET and PV 

patients looked more alike with minor shape changes, 

but PMF patients stood out with a more senescent 

profile. 

 

 
 

Figure 4. Radarplots of (A) CD4+ T cell with loss of CD27 and CD28 and CD56 expression. (B) CD8+ T cell with loss of CD27 and CD28 and 

CD56 expression. (C) CD4+ T cell differentiation profile. (D) CD8+ T cell differentiation profile. A more senescent profile is characterized by 
loss of CD27 and CD28, more CD56, and more terminally differentiated cells (EM and EMRA). Abbreviations: nAMD: neovascular AMD; 
iAMD: intermediate AMD; MPN: myeloproliferative neoplasms; MPNd: Patients with MPN and drusen; MPNn: patients with MPN and 
normal retinas Naïve: naïve T-cells; CM: central memory T cells; EM: effector memory T cells; EMRA: effector memory CD45Ra positive 
T cells; other: includes intermediate subsets of T cells not belonging to Naïve, CM, EM, or EMRA. 
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DISCUSSION 

 

Age-related macular degeneration is a common and 

debilitating disease affecting millions worldwide. Today 

treatment for nAMD is regular anti-vascular endothelial 

growth factor eye injections, which may slow the 

disease and prevent further vision loss. We have no 

treatment options for the early- or intermediate stages of 

AMD or the late atrophic form, GA. A better 

understanding of the underlying disease mechanisms 

can lead us to new target areas aiding the development 

of new therapies. Especially information on drusen 

 

 
 

Figure 5. Radarplots MPN subtypes of (A) CD4+ T cell with loss of CD27 and CD28 and CD56 expression. (B) CD8+ T cell with loss of CD27 
and CD28 and CD56 expression. (C) CD4+ T cell differentiation profile. (D) CD8+ T cell differentiation profile. A more senescent profile is 
characterized by loss of CD27 and CD28, more CD56, and more terminally differentiated cells (EM and EMRA). Abbreviations: ET: essential 
thrombocythemia; PV: polycythemia vera; PMF: primary myelofibrosis. Naïve: naïve T-cells; CM: central memory T cells; EM: effector 
memory T cells; EMRA: effector memory CD45Ra positive T cells; other: includes intermediate subsets of T cells not belonging to Naïve, CM, 
EM, or EMRA. 
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pathophysiology would be of great importance and may 

eventually lead to treatment options for the disease in 

earlier stages. 

 

We have investigated the immune systems of patients 

with MPNs because they have an increased prevalence 

of drusen and late AMD [14]. We have published 

several differences between MPN patients with and 

without drusen. The MPNd have a higher level of CLI 

and signs of a dysregulated complement system [9]. In 

this study, we investigated immunosenescence markers, 

and the results suggest that MPNd have accelerated T 

cell differentiation with more effector T cells than 

MPNn and a similar differentiation profile to AMD and 

iAMD patients. We observed a tendency for a smaller 

loss of costimulatory markers in MPNn, but the results 

were not statistically significant. The CD56 expression 

on CD28 negative cells has previously been found to be 

increased in patients with AMD compared to healthy 

individuals [28]. We found no difference in the 

expression of the NKR CD56 between the groups. 

However, the increase in CD56 expression plateaus in 

the seventh decade of life. All the groups’ median ages 

were at the end of the seventh- or in the eighth decade 

and could explain the similar CD56 expression [22]. 

Finally, we also observed a smaller percentage of CD8 

T cells in patients with MPN than AMD patients, which 

may reflect accelerated immune aging in these patients, 

since the overall CD8 T cell reservoir decreases with 

age [29]. 

 

One of the most notable and recognized changes with 

age is the depletion of the CD8 naïve T cell pool while 

the memory T cell pool increase [19]. After thymic 

involution around puberty, the thymic output of naïve T 

cells progressively declines, and the cells are hereafter 

maintained primarily by proliferation from the existing 

pool [20, 30]. The naïve CD4 T cell pool number 

remains relatively stable during adulthood, but a similar 

accumulation of memory and effector cells occurs for 

these cells too, although later in life than for the CD8 

compartment [20, 21]. 

 

Naïve T cells are activated and differentiate to 

become central memory or effector memory cells. We 

define the differentiated cells according to their 

markers (CD45Ra, CD45Ro, and CCR7) [21, 31, 32] 

and function (Figure 1). Differentiated cells also 

gradually lose the costimulatory molecules CD27 and 

CD28, which play an important part in T cell 

activation, such as cytokine production and 

stimulating cell proliferation [21, 27, 33, 34]. The 

CD8 cells lose CD28 first and then CD27, while the 

opposite is the case for CD4 cells, which lose CD27 

first, followed by CD28 loss [21]. Further, the 

upregulation of cytolytic activity and markers 

commonly associated with NK cells are seen, giving 

the cells a cytotoxic capability. One example is CD56, 

as investigated in this study, one of the best-described 

markers of T cell aging [22–25]. 

 

Evidence indicates that senescent T cells are 

synonymous with effector T cells [16–18]. So, with age, 

senescent T cells accumulate [19–21]. DNA damage 

due to stress factors as oxidative- and replicative stress 

and the following repair mechanisms can induce 

senescence [35, 36]. Also, infection and inflammation 

drive T cells to senescence [37], and CLI is associated 

with progressive T cell differentiation [21]. An example 

of an infection that drives CD8 senescent cells to 

accumulate is cytomegalovirus (CMV) [38], and 

seropositivity for CMV is interestingly also associated 

with an increased risk of AMD [39]. 

 

Senescent cells do not proliferate but are active and 

secrete cytokines, chemokines, and cytotoxic granules 

referred to as the senescence-associated secretory 

phenotype (SASP) initially established in fibroblast 

but also shown in other cells, including T cells [16, 40, 

41]. The SASP is thought to play a role in driving 

inflammaging [42]. The cells acquiring SASP may 

also be beneficial in preventing, for instance, cancer 

but can also become dysregulated and accelerate 

inflammaging [43]. The characteristics of senescent T 

cells are highly inflammatory and cytotoxic cells that 

secrete cytotoxic mediators and may damage healthy 

tissue [27]. Senescent cell accumulation may underlie 

many age-related diseases such as cardiovascular- [44–

46], autoimmune- [47], and neurodegenerative 

diseases [48, 49]. 

 

Interestingly, lymphocytes, including CD8 T cells, have 

been observed in the choroid of eyes from AMD 

patients [50–52], and CD8 positive cells are more 

abundant in the macular choroid of patients with drusen 

[50]. In this study, the finding of increased effector cells 

in MPNd could be supportive of a role of CD8 T cells in 

the drusen/AMD pathogenesis. We do not know, 

though, if the increase in CD8+ T effector cells 

preceded the appearance of drusen or is a result of 

drusen presence. Either way, the presence of CD8 

effector cells could potentially harm the choroid and, 

hereafter, the BM, RPE, and photoreceptors. Previous 

studies have shown that activated T-cells can modify 

the chemokine profile [53] and upregulate complement 

factor expression [54] of the RPE. The RPE constitutes 

the outer layer of the blood-retina barrier and plays an 

essential role in ocular immune regulation and retinal 

homeostasis. This T cell-mediated modification could 

lead to different effects, for example, chemotaxis, 

adhesion, and activation of different cells, such as 

monocytes and resident ocular microglia. 
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A hypothesis could be that the combined effect of 

inflammation and T cell differentiation (accelerated 

immune aging) initiate drusen. T cells are attracted to 

the site of tissue damage, inducing further secretion of 

cytotoxic and pro-inflammatory molecules generating a 

self-maintaining positive feedback loop. The results in 

our study indicate that the patients with drusen are the 

ones with the higher CLI and are the ones with the most 

accelerated immune aging. These findings could 

indicate that CLI, accelerated immune aging, or both 

factors combined could trigger drusen formation or 

speed the accumulation of debris in the BM. 

 

In a previous study, we found that the RPE-BM 

complex was significantly thicker in patients with 

MPNs than an older healthy control group, indicating 

that the MPN patients accumulated debris and BM 

thickening earlier, which could be due to their elevated 

CLI and/or accelerated immune aging. Other factors 

that induce a pro-inflammatory milieu such as smoking 

or atherosclerosis and cardiovascular disease also 

increase the risk of AMD and could therefore be 

supportive of systemic inflammation being able to 

initiate drusen formation [1, 55]. The accumulation of 

chronic inflammatory episodes during a lifetime and 

how the host’s immune system can control the 

inflammatory processes may explain why some people 

develop AMD. The MPN patients show massive 

inflammation over a longer period and may, as a result, 

develop drusen. 

 

We also evaluated the MPN biological continuum 

from early cancer stage ET, over PV, to the advanced 

PMF stage. In the CD8 compartment, patients with 

PMF had a significantly higher percentage of 

terminally differentiated EMRA cells compared to 

both ET and near significant compared to PV, 

indicating an increasing senescent profile over the 

continuum. This fits well with our previous finding of 

increasing CLI over the continuum [9]. We also 

observed a tendency to lose costimulatory markers and 

increased CD56 expression over the continuum, but 

the results were not statistically significant. This 

tendency was also observed in the radar plots of the 

biological continuum, and the PMF patient plots stood 

more out compared to especially ET patients but also 

PV patients in some of the plots. Better powered 

studies could investigate this. 

 

For the MPNs, a concept considers CLI as a trigger and 

driver of disease development and progression and 

substantiates the need for early treatment intervention to 

dampen CLI [56]. This dampening of inflammation may 

be beneficial as a treatment for AMD patients, 

potentially decreasing the possible inflammation-driven 

drusen development and T cell differentiation. 

Being an observational study, we can only guess on 

causality, and further studies using experimental 

methods are needed. 

 

In conclusion, this and our previous studies suggest that 

MPNd patients show signs of altered innate immunity 

(elevated CLI and complement dysregulation) as well as 

adaptive immunity (accelerated T cell differentiation – 

more effector T cells/senescent T-cells). These findings 

may implicate that CLI and senescent T cells play a role 

in AMD pathogenesis by triggering drusen formation. 

 

METHODS 
 

Study design and participants 

 

The participants in this cross-sectional study consisted 

of the same participants as in our recent work, and the 

description of the methods in this study will be very 

similar [9]. We included 29 patients with nAMD, 28 

with intermediate AMD (iAMD) [57], and 65 patients 

with MPNs [58] between July 2018 and November 

2020. The MPN participants consisted of two groups, 

35 MPNd patients (with drusen corresponding to early 

or intermediate AMD) and 27 with MPNn. Each 

participant provided written and oral informed consent 

after thorough information about the study. The Ethics 

Committee in Region Zealand, Denmark approved the 

study, and we adhered to the Helsinki declaration’s 

tenets. We carried out the study at Zealand University 

Hospital (ZUH) in Roskilde, and we included and 

examined patients at the ophthalmology and 

hematology departments. 

 

The exclusion criteria consisted of patients with other 

active cancer, inflammatory- or autoimmune diseases, 

patients receiving immunomodulating treatment 

(Ruxolitinib, interferon-α), CRP levels >15, and VEGF 

inhibition therapy within the last eight weeks. 

 

Retinal imaging and clinical data 

 

The patients had their pupils dilated with tropicamide 

1% before obtaining a stereoscopic 45°C color fundus 

photograph centered on the macula (model TRG-NW8, 

Topcon). The digital color images were used to identify 

drusen and determine the patients’ AMD status, using a 

simplified version of the Wisconsin age-related 

maculopathy grading system (WARMGS) [14, 59]. 

Each participant answered a questionnaire about their 

health status, medication, and lifestyle. 

 

Blood sampling and flow cytometry 

 

For flow cytometric analyses, we collected venous 

blood from antecubital veins in ethylenediamine-
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tetraacetic-acid-coated (EDTA) tubes. The same 

investigator (C.L.) collected blood samples from all 

patients and performed flow cytometry- cell preparation 

and analysis within four hours. Leukocyte count was 

obtained with a Sysmex KX-21NTM (Sysmex 

Corporation). We obtained 1.0 × 106 leukocytes in the 

test tube and lysed erythrocytes with a 1% lysis buffer 

(Nordic BioSite AB). We washed and centrifuged (5 

min at 500 × g) the leukocytes three times with BD 

FACS Flow isotonic buffer (BD Biosciences), and cells 

were resuspended in isotonic buffer. Hereafter, 

monoclonal antibodies were added, and cells were 

incubated for 20 min in the dark at room temperature. 

Antibodies and fluorochrome-matched negative isotype 

controls were from R&D Systems; Peridinin-

chlorophyll-protein (PerCP) CD4 IgG2a (FAB3791C), 

Fluorescein Isothiocyanate (FITC) IgG2a (IC0041F); 

From BioLegend; Phycoerythrin(PE)/ 

Cyanine7(Cy7) CD8a IgG1  (300914), Brilliant Violet 

V510 CCR7 IgG2a (353232), Allophycocyanin (APC) 

CD56 IgG1  (318332), Pacific Blue CD45Ra IgG2b 

(304123), APC CD28 IgG1 (302912), PE CD27 IgG1 

(356406), Brilliant Violet V510 IgG2a (400268), 

PE/Cy7 IgG1 (400126), APC/Cy7 IgG1 (400128), 

Pacific Blue IgG2b (400331), APC IgG1 (400120), 

PerCP IgG2a  (400250); From Bio-Rad FITC CD45Ro 

IgG2a (MCA461FT); From BD Biosciences PE IgG1  

(555749). The fluorochrome-matched negative isotype 

controls were used for each antibody to identify 

unspecific binding and were set to a threshold of 1%. In 

the last step, we washed the stained cells, resuspended 

them in isotonic buffer, and immediately analyzed them 

on a flow cytometer (BD FACSCanto II; BD 

Biosciences). The gating size was 100,000 singlet 

leukocytes. We used Kaluza Analysis (Kaluza Analysis 

v. 2.1; Beckman Coulter) to analyze flow data and 

estimated singlet leukocytes with forward scatter cell 

height vs. area. We used forward/side scatter area plots 

to gate lymphocytes and the markers CD4 and CD8 to 

differentiate CD4+ T cells and CD8+ T cells. Finally, 

we used the CD45Ra, CD45Ro, CCR7, CD27, CD28, 

and CD56 expressions and the Boolean function in 

Kaluza to analyze T cell differentiation, loss of 

differentiation markers, and CD56 expression. 

 

Statistical analysis 

 

For data analysis, we used RStudio version 4.1.1. 

Normally distributed data are shown as mean and 95% 

confidence interval (CI), non-normal data as median 

and interquartile range (IQR). We assessed data for 

normality with histograms and QQ-plots, and we used 

linear regression or robust linear regression to assess if 

outcomes were age-dependent. Group comparisons 

were analyzed for continuous variables with the 

independent samples t-test, Wilcoxon’s rank-sum test, 

One-way analysis of variance (ANOVA), or Kruskal 

Wallis test. For categorical values, we used the Chi-

squared test or Fisher’s Exact test. Power calculations 

were based on previous similar immunologic studies of 

patients with nAMD, with an alpha level of 0.05, a 

power of 80%, and an effect size of 20%, resulting in a 

sample size of a minimum of 26 in each group [60, 61]. 

P-values less than 0.05 were considered statistically 

significant. 
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