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INTRODUCTION 
 

RNA modification is a form of post-transcriptional 

regulation, and RNA methylation accounts for 60% of 

all RNA modifications, among which the N6-

methyladenosine (m6A) methylation is the most 

common type [1, 2]. The m6A methylation of RNA is a 

methylation modification formed by the 6th N of 
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ABSTRACT 
 

Background: Studies have shown that the RNA N6-methyladenosine (m6A) modification patterns are extensively 
involved in the development of multiple tumors. However, the association between the m6A regulator 
expression patterns and the sarcoma tumor immune microenvironment (TIME) remains unclear. 
Methods: We systematically evaluated the m6A regulator expression patterns in patients with sarcoma based 
on known 23 m6A regulators. Different m6A regulator expression patterns were analyzed using gene set 
variation analysis and a single-sample gene set enrichment analysis algorithm. According to the results of 
consensus clustering, we classified the patients into four different clusters. Next, we subjected the four clusters 
to differential genetic analysis and established m6A-related differentially expressed genes (DEGs). We then 
calculated the m6A-related DEGs score and constructed the m6A-related gene signature, named m6A score. 
Finally, the 259 sarcoma samples were divided into high- and low-m6A score groups. We further evaluated the 
TIME landscape between the high- and low-m6A score groups. 
Results: We identified four different m6A modification clusters and found that each cluster had unique 
metabolic and immunological characteristics. Based on the 19 prognosis-related DEGs, we calculated the 
principal component analysis scores for each patient with sarcoma and classified them into high- and low-m6A 
score groups. 
Conclusions: The m6A regulator expression patterns and complexity of the sarcoma TIME landscape are closely 
related to each other. Systematic evaluation of m6A regulator expression patterns and m6A scores in patients 
with sarcoma will enhance our understanding of TIME characteristics. 
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adenine (A) catalyzed by methyltransferase [3]. All 

m6A methylation reactions require the involvement of 

methyltransferases (Writers), demethylases (Erasers), 

and m6A-binding proteins (Readers) to perform the 

biological functions [4]. As a dynamic and reversible 

modification, m6A modification can directly or 

indirectly affect the biological processes of RNA 

transport, degradation, translation, and splicing [1]. 

Increasing evidence suggests that disordered expression 

of m6A regulators is closely associated with tumor 

immunity, tumor microenvironment, tumorigenesis, and 

tumor metastasis [5–7]. 

 

Sarcoma is a group of highly heterogeneous tumors that 

originate from the mesenchymal stromal cells. The five-

year survival rate is 10–20% in patients with advanced 

sarcoma [8]. In clinical practice, the lack of knowledge 

of the molecular mechanisms of sarcoma development 

often leads to limitations in treatment tools and delays 

in the treatment period, especially in patients with 

advanced sarcomas. At present, the molecular 

regulatory mechanisms of sarcoma have not yet been 

fully elucidated. Notably, an increasing number of 

studies have shown that changes in the tumor immune 

microenvironment (TIME) play a key role in the 

occurrence and development of sarcoma [9, 10]. 

 

TIME is a complex ecosystem containing adaptive and 

innate immune cells with both pro-and anti-tumor 

properties [11]. Due to the diversity of its composition, 

TIME has a variety of possible cancer treatment targets 

[12]. With the development of immunotherapy, the 

treatment of malignancies has changed dramatically. 

Immunotherapy with immunological checkpoint 

inhibitors (ICIs), cytotoxic T lymphocyte-associated 

antigen-4 (CTLA-4), programmed cell death protein-1 

(PD-1), and PD-ligand 1 (PD-L1) have demonstrated 

impressive clinical efficacy in patients with sarcoma [13, 

14]. Unfortunately, 77.1% of patients with sarcoma 

receive little or no clinical benefit from ICIs [15]. Thus, 

TIME can identify different tumor immunophenotypes 

and improve the ability to guide and predict the 

immunotherapy response by comprehensively resolving 

the heterogeneity and complexity of immune cells in 

TIME [16]. 

 

Recent studies have revealed a potential connection 

between TIME and m6A modifications in various types 

of cancers [17, 18]. In a study of gastric cancer, Bo 

Zhang et al. demonstrated that assessment of m6A 

regulator expression patterns could predict the 

inflammation level, subtype, genetic variation, patient 

prognosis, and TIME [7]. Xin Liu et al. showed that 

methyltransferase-like (METTL)-14 (an m6A writer) 

overexpression inhibited gastric cancer cell proliferation 

and invasion by regulating the phosphoinositide 3-

kinase/serine-threonine kinase/mammalian target of 

rapamycin (PI3K/AKT/mTOR) signaling pathway [19]. 

In addition, Botai et al. demonstrated that circNDUFB2 

(a circular RNA) is involved in the degradation of the 

insulin-like growth factor 2 (IGF2) mRNA-binding 

protein 2 (IGF2BP2) (an m6A reader) during the 

progression of non-small cell lung cancer, which in turn 

activates anti-tumor immunity [20]. However, the 

potential roles of m6A modifications in the TIME of 

sarcomas remain unclear. Understanding the 

relationship between m6A methylation and TIME is 

important for further understanding the changes in 

immune transition during the development of sarcoma 

and accurately identifying potential new targets for the 

early diagnosis and effective treatment of sarcoma. 

 

Therefore, a systematic evaluation of the connection 

between m6A regulator expression patterns and TIME 

will help improve our understanding of the sarcoma 

immune transition. In this study, we integrated genomic 

information from 259 sarcoma samples to 

systematically analyze m6A regulator expression 

patterns and combine them with the TIME landscape. 

We identified four m6A modification clusters and 

established an m6A scoring system to quantify 

individual patients with sarcoma to predict and guide 

their immunotherapy. 

 

RESULTS 
 

Landscape of m6A regulators in sarcoma 

 

The workflow of our study is shown in Figure 1. 

Through literature search and analysis, we identified a 

total of 23 m6A regulators, including 13 readers, eight 

writers, and two erasers (Supplementary Table 1). We 

summarized the process by which m6A regulators could 

add or remove m6A modification sites and change the 

potential biological functions of RNA splicing, 

translation, and degradation (Figure 2A). The 

investigation of copy number variation (CNV) alteration 

frequency showed a prevalent CNV alteration in 23 m6A 

regulators, and ALKB homolog 5 (ALKBH5), METTL3, 

heterogeneous nuclear ribonucleoprotein (HNRNP)-C, 

and ELAV-like 1 (ELAVL1) showed widespread CNV 

frequency gains. In contrast, METTL15, zinc finger 

CCCH-type containing 13 (ZC3H13), fat mass and 

obesity-associated (FTO), leucine-rich pentatricopeptide 

repeat containing (LRPPRC), and RNA-binding motif 

protein 15B (RBM15B) showed widespread CNV 

frequency loss (Figure 2B). We further searched for the 

position of CNV alteration in the m6A regulator on the 

chromosome (Figure 2C). We can completely 

distinguish sarcoma samples (259 sarcoma samples from 

The Cancer Genome Atlas [TCGA] database) from 

normal samples (911 muscle and adipose tissue samples 



 

www.aging-us.com 332 AGING 

from the University of California Santa Cruz [UCSC] 

Xena database) based on the expression levels of these 

23 m6A regulators (Figure 2D). The median overall 

survival (OS) of patients with sarcoma was found to be 

2.57 years (IQR = 1.3–4.34 years). Among them, Vir-

Like m6A methyltransferase associated (VIRMA), 

METTL14, METTL3, Wilms tumor 1 (WT1)-associated 

protein (WTAP), fragile-X mental retardation 1 (FMR1), 

HNRNPA2B1, HNRNPC, IGF2BP3, LRPPRC, YTH 

domain containing (YTHDC)-1, YTHDC2, and FTO 

were highly expressed in normal tissues, while RBM15, 

RBM15B, ZC3H13, ELAVL1, IGF2BP1, YTH m6A 

RNA-binding protein (YTHDF)-1, YTHDF3, and 

ALKBH5 were highly expressed in sarcoma tissues. The 

expression levels of Cbl-like 1 (CBLL1) and IGF2BP2 

in normal and sarcoma tissues were not statistically 

significant. Gene Ontology (GO) enrichment results are 

shown in Supplementary Figure 1A. We then used Cox 

regression analysis and Kaplan-Meier (K-M) analysis to 

determine the relationship between m6A regulators and 

the prognosis of patients with sarcoma. Univariate Cox 

regression analysis showed that the expression levels of 

IGFBP2 (P-value = 0.002), VIRMA (P-value = 0.039), 

IGFBP1 (P-value <0.001), HNRNPC (P-value = 0.009), 

HNRNPA2B1 (P-value = 0.004), YTHDF2 (P-value 

<0.001), and IGF2BP3 (P-value = 0.005) were 

protective factors for patients with sarcoma 

(Supplementary Figure 1B and Supplementary Table 2). 

At the same time, we calculated the K-M value of m6A 

regulators in patients with sarcoma by each best cut-off 

point (Supplementary Table 3) and the survival curve of 

m6A regulators (Supplementary Figure 2A–2W). 

 

Identification of m6A methylation modification 

patterns 

 

The m6A regulator network describes the association 

between the 23 m6A regulators, their interactions, and 

their prognostic significance in patients with sarcoma 

(Figure 3A). The results of the m6A regulatory network 

indicate that the interaction between writers, readers, 

and erasers may play unique roles in the formation of 

different m6A regulator expression patterns and affect 

the prognosis of patients with sarcoma [21, 22]. We 

used non-negative matrix factorization (NMF) 

consistent clustering to classify the sarcoma samples 

and identified four m6A modification clusters (Figure 

3B and Supplementary Figure 3A–3J), namely, m6A-

cluster-A, m6A-cluster-B, m6A-cluster-C, and m6A-

cluster-D. K-M analysis showed that m6A-cluster-C 

 

 
 

Figure 1. Design and workflow of the study. 
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had a significant survival advantage, while m6A-cluster-

D showed a poor prognosis (Figure 3C). A heat map 

showed the differential expression patterns of 23 m6A 

regulators in four different m6A modification clusters 

(Figure 3D). 

 

TIME landscape characteristics in four m6A 

regulator expression patterns 

 

To explore the biological behavior of the four different 

m6A modification types, we performed pairwise gene 

set variation analysis (GSVA) enrichment analysis 

(Figure 4A–4F). GSVA results showed that m6A-

cluster-A was significantly rich in material metabolism 

(amino acid and lipid metabolism) and human diseases 

(immune-related, such as systemic lupus erythematosus 

and primary immunodeficiency). It is worth noting that 

material metabolism-related processes, especially 

glucose metabolism, are enriched in m6A-cluster-B. The 

pathways enriched by m6A-cluster-C are 

phosphoinositide transduction and metabolism and 

human diseases (circulatory system related). The 

pathways enriched by m6A-cluster-D are mainly 

metabolism-related pathways (such as glycan 

metabolism and lipid metabolism) and human disease-

related signaling pathways (basal cell carcinoma and 

diabetes). Surprisingly, GSVA results showed that the 

signaling pathways with high expression between 

different clusters were mostly material metabolism- and 

immune-related, further confirming a direct or indirect 

link between m6A regulator expression patterns and 

TIME. In addition, we constructed a visible box-line 

plot by the “ssGSEA” package to compare the 

differences in the relative abundance of 28 immune 

infiltrating cell subpopulations in 4 different m6A 

clusters (Figure 4G). Statistically significant differences

 

 
 

Figure 2. Landscape of N6-methyladenosine (m6A) regulators in patients with sarcoma. (A) Regulation of m6A regulators and 

their biological functions in RNA metabolism. A total of 23 known m6A regulators, including 13 readers, 8 writers, and 2 erasers. m6A 
methylation involves multiple stages of the RNA life cycle, including pre-mRNA shearing, pre-mRNA splicing, pre-mRNA transport, RNA 
translation, RNA degradation, etc. (B) Copy number variation (CNV) mutations in 23 m6A regulators. (C) The location of CNV alterations of 
m6A regulators on chromosomes. (D) Differential expression levels of 23 m6A regulators between normal tissues (Adipose and muscle 
tissues) and tumor tissues (sarcoma samples). Asterisks represent the statistical P-values (*P < 0.05; **P < 0.01; ***P < 0.001). 
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in immune cell infiltration results indicate the reliability 

of the m6A cluster in elucidating the 

immunophenotyping of TIME. Three-dimensional PCA 

(3D PCA) analysis was performed in four different m6A 

clusters based on the expression of 23 m6A regulators. 

3D PCA and its projection on the three planes (Figure 

4H–4K) showed that the distribution of four different 

m6A modification clusters was disorderly. 

 

Generation of m6A gene signatures and functional 

annotation 

 

To deeply explore the potential biological functions of 

the four m6A regulator expression patterns, we analyzed 

the differentially expressed genes (DEGs) of the two 

m6A modification clusters using the “limma” package 

and took the intersection (Figure 5A and Supplementary 

Table 4). Finally, we identified 22 m6A-related DEGs 

(Supplementary Table 5). Surprisingly, based on the 

results of GO (Figure 5B) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) (Figure 5C), these 22 

m6A DEGs showed that tumor metabolism was closely 

related to m6A modification, which reinforces that m6A 

modification plays a non-negligible role in TME. We 

further performed univariate Cox analysis on 22 DEGs 

and obtained 19 prognosis-related DEGs 

(Supplementary Table 6). To further validate the 

mechanism between m6A and TIME, we performed 

consensus clustering analysis based on the 19 m6A 

prognosis-related DEGs. We classified the samples into 

three different genomic subtypes and named these three 

clusters as m6A gene clusters A, B, and C (Figure 5D 

 

 
 

Figure 3. Establishment of m6A methylation modification patterns. (A) Regulatory functions and interactions of the 23 m6A 

regulators in sarcoma. The size of the circle represents the influence of different regulators on prognosis, while the Log-rank test was used 
to calculate values ranging from P < 1e−4, P < 0.001, P < 0.01, P < 0.05, and P > 0.05. Purple dots in circles, prognostic risk factors; green dots 
in circles, prognostic favorable factors. Erasers, readers, and writers are indicated by red, orange, and gray dots, respectively. The 
regulators' lines show their interactions, with negative correlations marked in blue and positive correlations in red. (B) The consensus 
matrix heatmap defined four m6A methylation modification clusters from 259 patients with sarcoma. (C) Kaplan-Meier curves of the overall 
survival rates of 259 patients with sarcoma with four m6A methylation modification clusters. (D) The heat map shows the expression levels 
of 23 m6A regulators in different m6A modification clusters and various clinicopathological features. 
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and Supplementary Figure 4A–4J). Heat map showing 

differences in the expression of 19 m6A prognosis-

related DEGs in the three m6A gene clusters (Figure 5E). 

K-M analysis results showed that m6A gene cluster B 

had a significant survival advantage, while m6A gene 

cluster C had a poor prognosis (Figure 5F). Immediately 

afterward, we found significant differences in the 

expression of m6A regulators among the three m6A gene 

clusters (Figure 5G). 

Development of the m6A score and its clinical 

significance 

 

Although our studies have further confirmed the 

relationship between m6A modification in TIME and 

prognosis, these analyses cannot predict the pattern of 

m6A modification in patients with sarcoma and cannot 

assess the prognosis of these patients. Therefore, we 

developed a scoring scheme called the m6A score to 

 

 
 

Figure 4. Gene set variation analysis (GSVA), single sample gene set enrichment analysis, and principal component analysis 
(PCA). The heat map shows the GSVA scores of representative hallmark passages by comparing two by two m6A regulator expression 
patterns. (A) m6A cluster-A vs. m6A cluster-B; (B) m6A cluster-A vs. m6A cluster-C; (C) m6A cluster-A vs. m6A cluster-D; (D) m6A cluster-B vs. 
m6A cluster-C; (E) m6A cluster-B vs. m6A cluster-D; (F) m6A cluster-C vs. m6A cluster-D; (G) Abundance of infiltrating cells in each of the four 
m6A modification patterns. Asterisks represent the statistical P-values (*P < 0.05; **P < 0.01; ***P < 0.001). (H) Three-dimensional PCA (3D 
PCA) results of four m6A modification clusters, showing significant differences in the transcriptome between different modification clusters. 
(I) Projection of 3D PCA on the first principal component (PC1) and the second principal component (PC2). (J) Projection of 3D PCA on PC1 
and the third principal component (PC3). (K) Projection of 3D PCA on PC2 and PC3. 
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quantify the m6A regulator expression pattern in each 

sarcoma patient (Supplementary Table 7). We used a 

Sankey plot to illustrate the workflow (Figure 6A). The 

Kruskal-Wallis test showed that there were significant 

differences in m6A scores between the m6A clusters. 

The median of m6A cluster C was the lowest, and the 

median of m6A cluster D was the highest, indicating 

that a high m6A score may be closely related to the 

characteristics of material metabolism, while a low m6A 

score may be related to immune cell infiltration (Figure 

6B). At the same time, m6A gene cluster C showed the 

highest median score of m6A, and m6A cluster B 

showed the lowest median score (Figure 6C). The 

results of the K-M curve showed that patients with high 

m6A scores had a shorter survival time than those with a 

low score group (Figure 6D). In different 

clinicopathological characteristics (age, race, sex, site, 

margin status, and metastasis status), it was further 

confirmed that the prognosis of patients with high m6A 

scores was worse than that of patients with low m6A 

scores (Supplementary Figure 5A–5L). We drew the 

receiver operating characteristic (ROC) curve to further 

explore the prediction function of the m6A score for 

patients with sarcoma. We found that the AUC of m6A 

score was 0.748, which is much larger than the AUC of 

other clinicopathological features, and the m6A score 

can predict the prognosis of patients with sarcoma 

(Figure 6E). The m6A score was validated in GSE63157, 

and the AUC value of the validation cohort was 0.675 

(Figure 6F). Additionally, the validation cohort 

GSE63157, survival curves showed that low-risk 

patients had a favorable prognosis than high-risk 

patients (P < 0.001, Figure 6G). 

 

Role of the m6A score in immunotherapy 

 

Using the Tumor Immune Estimation Resource 

(TIMER), we evaluated the association between the

 

 
 

Figure 5. Development of the m6A score and exploration of functional annotation. (A) Venn diagram showing 22 m6A-associated 

differentially expressed genes (DEGs) between the six clusters compared. (B) Functional annotation of m6A-related DEGs using Gene 
Ontology (GO) enrichment analysis. (C) Functional annotation of m6A-related DEGs using Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis. (D) The consensus matrix heatmap defined three m6A gene clusters. (E) The heat map shows the expression 
levels of 22 m6A-related DEGs in different m6A gene clusters and various clinicopathological features. (F) Kaplan-Meier curves of the overall 
survival rates of 259 patients with sarcoma with three m6A gene clusters. (G) Expression levels of 23 m6A regulators in each of the three 
m6A gene clusters. Asterisks represent the statistical P-values (*P < 0.05; **P < 0.01; ***P < 0.001). 
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prognostic features and immune cell infiltration. The 

results indicated that DC (Cor = –0.175, P-value = 

0.005, Figure 7A), macrophages (Cor = –0.320, P-value 

<0.001, Figure 7B), CD4+ T cells (Cor = –0.177, P-

value = 0.005, Figure 7C), and neutrophils (Cor = 

−0.279, P-value <0.001, Figure 7D) were significantly 

negatively correlated with the m6A score. The other two 

types of immune cells, CD8+ T cells (Figure 7E) and B 

cells (Figure 7F) were not significantly different from 

the m6A score. Immune cell infiltration analysis results 

of TIMER further confirmed that a low m6A score 

might be related to immune cell infiltration. In addition, 

using CIBERSORT, we assessed the difference in 

immune cell infiltration between the high-m6A score 

group and the low-m6A score group. The results of 

CIBERSORT showed that the infiltration degrees of 

 

 
 

Figure 6. Development of the m6A score and exploration of m6A-related clinical features. (A) Sankey diagrams of different m6A 

modification clusters, m6A gene clusters, m6A scores, and different prognosis status. (B) Differences in the m6A scores among four m6A 
modification clusters (P-value <0.001, Kruskal-Wallis test). (C) Differences in the m6A scores among three m6A gene clusters (P-value 
<0.001, Kruskal-Wallis test). (D) Survival analyses for low-and high-m6A score groups using Kaplan-Meier curves (P-value < 0.001, Log-rank 
test). (E) Comparison of the area under the receiver operating characteristic curve between the m6A score and clinicopathological 
characteristics. (F) The receiver operating characteristic curve of m6A score in the validation set GSE63157 (Area under curve = 0.675). (G) 
Survival analyses for low- and high-m6A score groups using Kaplan-Meier curves in validation set GSE63157 (P-value < 0.001, Log-rank test). 
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activated B cells, memory T cells, CD4+ T cells, M0 

and M2 macrophages, and mast cells were higher in the 

high-m6A score group than in the low-m6A score group; 

in contrast, the infiltration degrees of naïve B cells, M1 

macrophages, and resting mast cells were higher in the 

low-m6A score group than in the high-m6A score group 

(Figure 7G). Immune cell infiltration analysis results of 

CIBERSORT showed that different m6A scores had 

different immune cell types infiltrated in TIME. Based 

on the m6A score, we divided six patients from Tianjin 

 

 
 

Figure 7. Role of the m6A score in immunotherapy. Infiltration abundances of six types of immune cells (Pearson correlation 

analysis). (A) Dendritic Cells (Cor = –0.175, P-value = 0.005). (B) Macrophages (Cor = –0.320, P-value <0.001). (C) CD4+ T cells (Cor = –0.177, 
P-value = 0.005). (D) Neutrophil (Cor = –0.279, P-value <0.001). (E) CD8+ T cells (Cor = –0.020, P-value = 0.755). and (F) B cells (Cor = –0.047, 
P-value = 0.454). (G) Box plots visualizing significantly different immune cells between high- and low-m6A score groups. Infiltration degrees 
of naive B cells, M1 macrophages, and resting mast cells were higher in the low-m6A score group than the high-m6A score group. 
Meanwhile, the infiltration degrees of memory B cells, activated memory CD4 T cells, M0 and M2 macrophages, and activated mast cells 
were higher in the high-m6A score group than the low-m6A score group. (H) Ten immune cells infiltration heat map of the six patients from 
Tianjin Medical University Cancer Institute and Hospital. (I) Infiltration degrees of M2 macrophages and neutrophils were higher in the 
high-m6A score group than the low-m6A score group in the six patients validation set. The box plot shows the differences in (J) hepatitis A 
virus cellular receptor 2 (HAVCR2) between high- and low-m6A score groups in TCGA database, (K) HAVCR2 between high- and low-m6A 
score groups in the validation set, GSE63157, and (L) programmed cell death 1 (PD-1), (M) CD274, (N) cytotoxic T lymphocyte-associated 
antigen-4 (CTLA-4), (O) T cell immunoglobulin and ITIM domain (TIGIT), and (P) lymphocyte activation gene-3 (LAG3) between high- and 
low-m6A score groups in The Cancer Genome Atlas (TCGA) database. Asterisks represent the statistical P-values (*P-value <0.05; **P-value 
<0.01; ***P-value <0.001). 
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Medical University Cancer Institute and Hospital into a 

low-m6A score group (four samples) and a high-m6A 

score group (two samples) and plotted their immune cell 

infiltration heat map (Figure 7H). By analyzing the 

degree of immune cell infiltration in the external 

validation set of the six patients, we further confirmed 

the conclusion that macrophage M2 and neutrophils 

were higher in the high-m6A score group than in the 

low-m6A score group (Figure 7I). The results of ICI-

related biomarker analysis showed that the expression 

of TIM-3 (p = 0.005) was higher in the high-m6A score 

group than in the low-m6A score group (Figure 7J). The 

validation set GSE63157 high-m6A score group also 

had a higher level of TIM-3 expression than the low-

m6A score group (Figure 7K). However, there was no 

statistical difference in the expression of PD1 (Figure 

7L), PD-L1 (Figure 7M), CTLA4 (Figure 7N), T cell 

immunoglobulin and ITIM domain (TIGIT) (Figure 7O), 

and lymphocyte activation gene-3 (LAG3) (Figure 7P) 

between the high- and low-m6A score groups. 

 

DISCUSSION 
 

With the development of next-generation sequencing 

technology, m6A modifications have been detected in 

innate immune diseases, inflammation, and various 

tumors [5, 6, 23]. m6A modifications can affect the 

transcriptional translation of mRNA and/or non-coding 

RNA of related genes by regulating the methylation at 

the cellular RNA level, thus activating cellular signal 

transduction pathways and affecting cell proliferation, 

differentiation, migration, invasion, apoptosis, DNA 

damage repair, etc. [24, 25]. Currently, most studies are 

focused on single or multiple m6A modulators, and 

there is a lack of comprehensive analysis of the role of 

m6A modulators in sarcoma TIME [22]. Recognition of 

the characteristics of different m6A regulator expression 

patterns in TIME will help enhance our understanding 

of TIME and allow for a more effective evaluation of 

patient prognosis and guidance of immunotherapy. 

 

This study identified four different m6A clusters with 

different TIME characteristics, including different 

immune-related pathways, degree of immune cell 

infiltration, and different material metabolism-related 

pathways. Among the four different m6A clusters, m6A-

cluster-C had a significant survival advantage, while 

m6A-cluster-D had a poor prognosis. This may be closely 

related to the high synthesis and metabolism of lipids and 

glycans in the TIME of m6A-cluster-D [26]. Jiang et al. 

demonstrated that increased glycolysis is closely 

associated with elevated immune activity in TIME [27]. 

In our study, this pattern may also exist in m6A-cluster-B, 

where both glucose metabolism and the level of immune 

cell infiltration were higher than other three m6A-clusters. 

Combining the immune cell infiltration characteristics of 

each m6A cluster with the PCA results, we further 

confirmed the reliability of the fact that different m6A 

regulator expression patterns have different immune 

phenotypes. Therefore, in this study, mRNA and/or non-

coding RNA differences between different m6A clusters 

were significantly associated with m6A modification and 

TIME. However, the relationship between DEGs and 

TIME of different m6A clusters is unclear. Therefore, we 

searched for intersecting genes to further explore the 

relationship between m6A-related genes and TIME. We 

then used univariate Cox regression to analyze the 

intersection genes to identify 19 prognosis-related DEGs. 

These DEGs were considered m6A-related signature 

genes, and these DEGs were also closely associated with 

the TME. Interestingly, we used consensus clustering 

similar to m6A regulator expression patterns, and three 

m6A gene clusters were identified based on prognosis-

related DEGs. The expression of 23 m6A regulators was 

statistically different among the three subtypes. Among 

them, m6A gene cluster B had the best prognosis, and 

m6A gene cluster C had the worst prognosis. These 

results again illustrate that m6A regulators are 

significantly associated with TIME. Thus, a 

comprehensive assessment of m6A-associated DEGs 

enhances our understanding of the TIME landscape with 

different m6A regulator expression patterns. 

 

Given the need for individualized prediction and 

treatment, quantification of m6A regulator expression 

patterns in patients with sarcoma, and enhancing the 

understanding of the TIME landscape, there is an urgent 

need to develop a novel m6A scoring system. To this 

end, we have developed a novel scoring system to 

assess m6A regulator expression patterns in patients 

with sarcoma, named the m6A score. Based on the 

results of the m6A score, patients with sarcoma were 

divided into high- and low-m6A score groups based on 

the optimal cut-off point. Through the common results 

of the two analysis methods, we found that the degree 

of immune cell infiltration in patients with sarcoma with 

high m6A score group was lower than that in patients 

with low m6A score groups (e.g., dendritic cells, 

macrophages, CD4+ T cells, and neutrophils). It is not 

difficult to infer from the previous conclusion that the 

prognosis of patients with a high degree of immune cell 

infiltration is worse [28, 29]. 

 

Moreover, our results further confirmed that the higher 

the m6A score, the lower the degree of immune cell 

infiltration, and the worse the prognosis of patients with 

sarcoma. The expression of TIM-3 has been observed in 

various tumor cells and immune cells [30]. It has been 

well documented that both protein and mRNA 

expression levels of TIM-3 are elevated in tumor tissue 

samples and that elevated TIM-3 is associated with poor 

prognosis in various tumors, including sarcomas [31, 
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32]. In our study, we found that TIM-3 expression was 

higher in the high m6A score group than in the low m6A 

score group, and based on the findings of the existing 

studies [31, 32], we again confirmed that the prognosis 

of patients with sarcoma in the high m6A score group 

was worse than that in the low m6A score group. 

However, we did not find differential expression of 

other ICI-related immune markers (PD1, PD-L1, 

CTLA4, TIGIT, and LAG3) between the high and low 

m6A score groups. 

 

To confirm the reliability of the conclusions of the 

analysis of sarcoma samples from TCGA database, we 

performed validation using two independent datasets. 

The validation set was GSE63157 from GEO and six 

patients from the Tianjin Medical University Cancer 

Institute and Hospital. The validation set of six patients 

may cause some problems, such as an extensive 

confidence interval range, due to the small sample size. 

However, the results reflected by the two validation sets 

combined confirmed the value of clinical use of the 

m6A score to predict survival and assess the TIME 

landscape of patients with sarcoma. The validation 

results confirm that the m6A score can improve our 

understanding of the TIME landscape of sarcomas and 

predict and guide the treatment of patients. 

 

Although the intrinsic association between m6A 

regulators and TIME in patients with sarcoma has been 

preliminarily investigated through statistical and 

bioinformatic analyses, our study still has some 

shortcomings. First, although we reviewed the literature 

and compiled a catalog of 23 recognized RNA 

methylation regulators, more m6A regulators will be 

discovered over time with development. Therefore, 

novel defined m6A regulators need to be enrolled in the 

study to refine the accuracy of m6A regulator expression 

patterns and m6A scores. Second, the external validation 

set consisting of six samples leads to a large confidence 

interval because of the small sample size, and the 

improvement of its validation capability requires further 

expansion of the sample size. Third, m6A regulator 

expression patterns, m6A-related DEGs, and m6A scores 

were identified using retrospective datasets; therefore, 

in vivo and in vitro experiments and prospective cohorts 

of patients with sarcoma are needed to further validate 

our findings. Finally, patients with sarcoma with a 

poorer prognosis were also included in the low m6A 

score group; therefore, additional clinicopathologic 

features should be incorporated into the prediction 

model to improve accuracy. 

 

CONCLUSION 
 

In this study, we comprehensively assessed the 

expression patterns of 23 m6A regulators in 259 

sarcoma samples. m6A was evaluated integrally with 

TIME. This work further confirmed that m6A 

methylation modifications have important regulatory 

mechanisms in sarcoma TIMEs. Differences in m6A 

regulator expression patterns are responsible for the 

individual differences in sarcoma TIMEs. Therefore, a 

systematic evaluation of individual m6A regulator 

expression patterns will help to enhance our 

understanding of the sarcoma TIME landscape and 

predict and guide the treatment of affected patients. 

 

METHODS 
 

Data collection and processing 

 

Gene expression datasets and corresponding clinical 

datasets (including age, race, gender, site, margin status, 

metastasis status, status, and survival months) for 

patients with sarcoma were downloaded from TCGA 

database (https://www.cancer.gov/). Patients with 

sarcomas without related overall survival were excluded. 

Gene expression datasets of normal muscle and adipose 

tissue samples were downloaded from the UCSC Xena 

database (https://xenabrowser.net/). To achieve 

comparability between gene expression data, we 

converted gene expression datasets of UCSC from 

Fragments Per Kilobase Million (FPKM) format to 

transcripts per kilobase million (TPM) format. Genome 

mutation data (CNV) of TCGA-SCAR were also 

downloaded from the UCSC database. By searching the 

literature related to m6A methylation modification, 23 

confirmed m6A regulators were included in our study [7, 

33, 34]. We downloaded the gene file of 

“c2.cp.kegg.v7.4.symbols.gmt” from the Molecular 

Signatures Database (MSigDB) for GSVA analysis. The 

23 m6A regulators included 13 readers, 8 writers, and 2 

erasers (Supplementary Table 1).  

 

Data collection for validation 

 

We obtained gene expression profiles and clinical data 

for an independent cohort, GSE63157, from the Gene 

Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/). GSE63157 was 

used as an external validation cohort. We collected STS 

patients admitted to the Tianjin Medical University 

Cancer Institute and Hospital between 2016 and 2019. 

Tissue specimens from all patients were reviewed by 

pathologists and diagnosed with STS. All patients 

underwent whole-exome sequencing (WES). We 

quantified the scores of 10 immune cell types from the 

RNA-seq data of the six samples. The retrospective 

investigation was conducted in accordance with the 

Declaration of Helsinki and approved by the Ethics 

Committee of Tianjin Medical University Cancer 

Institute and Hospital (Approval No. E2019144). All 

https://www.cancer.gov/
https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
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patients provided signed informed consent. Genetic 

sequencing data were obtained from the tissue samples 

of six patients (the trial registration was NCT04126993) 

[35]. The Yuce Bio Company conducted gene 

sequencing procedures. Genomic DNA from formalin-

fixed, paraffin-embedded (FFPE) sections from biopsy 

samples or whole blood control samples were extracted 

using the Gene Read DNA FFPE Kit (Qiagen, 

Germantown, MD, USA) and the Mag-Bind Blood and 

Tissue DNA HDQ 96 Kit (Qiagen), respectively. 

Library preparations were performed using the KAPA 

Library Quantification Kit (Roche, Indianapolis, IN, 

USA), and target enrichment was performed using the 

Target Seq Enrichment Kit (iGene Tech, Beijing, 

China), and sequencing was performed on a NovaSeq 

(Illumina, San Diego, CA, USA). The raw reads of 

WES-seq were processed using SOAPnuke (version 

1.5.6, parameters: -l 20 -q 0.1 -n 0.1) to remove 

ambiguous reads and/or low-quality reads. These 

qualified sequence reads were then aligned to the 

human reference genome (UCSC hg38) using BWA-

mem (BWA, version 0.7.12). We quantified the scores 

of 10 immune cell types from the RNA-seq data of the 

six samples. 

 

CNV analysis and differential analysis of m6A 

regulators and establishment of m6A regulator 

network 

 

To explore the extent of mutation of 23 m6A regulators 

in sarcoma, we performed CNV analysis and labeled the 

positions of 23 m6A regulators in human chromosomes. 

Gene Ontology (GO) enrichment analysis based on 23 

m6A regulators was performed. Combined with the 

datasets of sarcoma samples in TCGA and the datasets 

of muscle and adipose tissues in UCSC, we performed 

differential analysis. Immediately afterward, we 

combined the survival data of patients with sarcoma 

with K-M analysis for each m6A regulator and explored 

the interrelationships between the m6A regulators. 

Based on the results of the above analysis, an m6A 

regulator network was established. 

 

Consistent cluster analysis of 23 m6A regulators 

 

NMF consensus clustering adds non-negative 

constraints to the decomposed matrix based on matrix 

factorization. For example, matrix A (MA) is 

decomposed into two non-negative matrices B (MB) and 

C (MC) (i.e., MA ≈ MB × MC, MB ≥ 0, MC ≥ 0) [36]. 

NMF consensus clustering was applied to identify 

different m6A regulator expression patterns by the 

“ConsensusClusterPlus” package, and we named the 

m6A regulator expression pattern the m6A cluster. The 

selection of the optimal number of clusters was 

determined by the cophenetic, consensus index, and 

silhouette coefficients. According to the consensus 

clustering results, we performed K-M analysis and 

plotted a heat map of patients in different m6A clusters. 

 

GSVA 

 

GSVA is a non-parametric unsupervised analysis 

method that assesses whether different metabolic 

pathways are enriched among different clusters by 

combining the analysis of differences in gene 

expression between clusters [37]. We analyze the 

differences in biological processes between four 

different m6A regulator expression patterns by the 

“GSVA” package. Adjusted P-values less than 0.05, 

and log fold change (log FC) less than 0.1 were 

considered statistically significant. 

 

Estimation of immune cell infiltration and Principal 

Component Analysis (PCA) 

 

The enrichment score calculated by single-sample gene 

set enrichment analysis (ssGSEA) represents the 

relative abundance of each immune cell in each m6A 

cluster [38]. PCA uses the idea of dimensionality 

reduction to transform K dimensions into M dimensions 

(K > M) with a small loss of information and uses M 

dimensions to explain the variance-covariance structure 

of multiple variables, thereby simplifying the system 

structure [39]. In our study, the N dimensions represent 

23 m6A modulators, and the K dimensions represent 

two dimensions, which can be visualized. At the same 

time, we used different colors to distinguish the 

different m6A clusters. 

 

Identification of m6A related DEGs 

 

To identify m6A-related genes, we divided patients into 

four different m6A clusters (Clusters A, B, C, and D) 

based on the expression of 23 m6A regulators. Next, we 

performed a two-by-two comparison of different 

clusters (Cluster AvsB, AvsC AvsD, BvsC, BvsD, and 

CvsD) to identify DEGs. We combined the DEGs 

intersection of the 6 groups (Cluster AvsB, AvsC AvsD, 

BvsC, BvsD, and CvsD) by jvenn [40]. Moreover, we 

obtained prognosis-related DEGs by performing 

univariate Cox regression analysis. The log FC and 

adjusted P-values were used to evaluate the significance 

of m6A DEGs. The filter criterion was set to log FC less 

than 2.00, and the adjusted P-value was less than 0.05. 

 

Establishment of m6A gene clusters and m6A score 

 

We then established different m6A gene clusters to 

analyze the m6A DEGs. The process is as follows: (I) 

Analysis of differential genes using unsupervised 

clustering; (II) The number and stability of gene clusters 
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were also defined by the consensus clustering algorithm. 

Based on the results of the m6A gene clusters, we 

performed a K-M analysis. Furthermore, to further 

quantify the m6A methylation modification in patients 

with sarcoma, we constructed a novel scoring system 

using prognosis-related m6A DEGs and named it the 

m6A score. The m6A score was constructed as follows: 

(I) We performed PCA and extracted the principal 

components 1 and 2 (PC1 and PC2); (II) Calculate the 

m6A score using the following equation: 

 
6m A score (PC1 PC2 )i i=  +  

where i is the prognosis-related m6A DEGs. 

 

Based on optimal cut-off points, patients with sarcoma 

were separated into high- and low m6A score groups. To 

further verify the m6A score, we used the Kruskal-

Wallis test to evaluate whether the m6A score was 

different in the m6A cluster and the m6A gene cluster. 

To further demonstrate the characteristics of the m6A 

score, we assessed the survival status between high- and 

low-m6A score groups by K-M analysis. We also 

assessed survival status in different clinicopathological 

characteristics, including age (≤65, >65 years), race 

(white and others [Asian, black, and African 

American]), sex (female and male), site (soft tissues and 

parts other than soft tissues [uterus and retroperitoneum, 

etc.]), margin status (R0 and R1/2), and metastasis 

status (yes and no/unknown), according to high- and 

low-m6A score groups. To further explore the predictive 

function of the m6A score for patients with sarcoma, we 

drew the receiver operating characteristic curve (ROC) 

and calculated the area under the curve (AUC) for the 

m6A score and the different clinicopathological 

characteristics. To further test the accuracy of the m6A 

score, we calculated the m6A score values of the 

independent cohort (GSE63157) and plotted the ROC 

curve and K-M analysis. 

 

Correlation between m6A score and tumor immune 

microenvironment 

 

First, we analyzed the differences in ICI-related 

biomarkers (CTLA-4, PD-1/PD-L1, hepatitis A virus 

cellular receptor 2/T cell immunoglobulin domain and 

mucin domain-3 [HAVCR2/TIM-3], lymphocyte 

activation gene 3 [LAG3], and T cell immunoreceptor 

with immunoglobulin and ITIM domain [TIGIT]) 

between the high- and low-m6A score groups. Second, 

we used the CIBERSORT database to identify a 

complex association between 22 different immune cells 

and different m6A score groups [41]. Third, TIMER 

[42] (https://cistrome.shinyapps.io/timer/) was used to 

systematically analyze and estimate the abundance of 

the six immune cell immune infiltrates in the m6A score. 

Finally, we used the set GSE63157 from GEO and six 

samples from Tianjin Medical University Cancer 

Institute and Hospital to verify the relationship between 

the m6A score and TIME. 

 

Statistical analyses 

 

Statistical analyses in this study were performed using 

Ri386-4.0.3. Differences in quantitative data and 

normally distributed variables were compared using the 

t-test, and differences in non-normally distributed 

variables were compared using the Wilcoxon rank-sum 

test. Differences were compared for more than two 

groups of variables using one-way analysis of variance 

and the Kruskal-Wallis test. Prognostic analysis was 

performed using the Kaplan-Meier survival analysis and 

Cox proportional hazards model. Pearson’s analysis was 

used for the correlation analysis. A P-value <0.05 (two-

tailed) was considered to indicate statistical 

significance. The Benjamini-Hochberg method was 

used to control for FDR for multiple hypothesis testing. 

 

Ethics approval and consent to participate 

 

TCGA, UCSC, and GEO data did not involve animal 

experiments, human specimens, or ethics-related issues. 

Ethical approval for the six patients was obtained from 

the research ethics committee of the Cancer Institute 

and Hospital of Tianjin Medical University prior to the 

study. Written informed consent was obtained from all 

patients and/or their families. All specimens were 

handled and stored anonymously according to ethical 

and legal standards. 
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A: adenine; AUC: area under the curve; ALKBH5: 

ALKB homolog 5; CBLL1: Cbl-like 1; CNV: copy 

number variation; CTLA-4: cytotoxic T lymphocyte-

associated antigen-4; DC: Dendritic cell; DEG: 

differentially expressed gene; ELAVL1: ELAV-like 1; 

HAVCR2/TIM-3: hepatitis A virus cellular receptor 2/T 

cell immunoglobulin domain and mucin domain-3; 

FFPE: formalin-fixed, paraffin-embedded; FMR1: 
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heterogeneous nuclear ribonucleoprotein; ICIs: 

immunological checkpoint inhibitors; IGF2: insulin-like 

growth factor 2; IGF2BP2: IGF2 mRNA-binding 

protein 2; KEGG: Kyoto Encyclopedia of Genes and 

Genomes; K-M: Kaplan-Meier; LAG3: Lymphocyte 

activation gene 3; log FC: log fold change; LRPPRC: 

leucine-rich pentatricopeptide repeat containing; 

METTL: methyltransferase-like; MSigDB: Molecular 

https://cistrome.shinyapps.io/timer/
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Signatures Database; NMF: Nonnegative matrix 

factorization; m6A: N6-methyladenosine; PC: principal 

component; PCA: principal component analysis; PD-1: 

programmed cell death protein-1; PD-L1: programmed 

cell death protein-ligand 1; PI3K/AKT/mTOR: 

phosphoinositide 3-kinase/serine-threonine 

kinase/mammalian target of rapamycin; RBM15B: 

RNA-binding motif protein 15B; ROC: receiver 

operating characteristic curve; ssGSEA: single sample 

gene set enrichment analysis; STS: soft tissue sarcomas; 

TARGET: Therapeutically Applicable Research To 

Generate Effective Treatments; TCGA: The Cancer 

Genome Atlas; TCGA-SCAR: The Cancer Genome 

Atlas-Sarcoma; TIGIT: T cell immunoreceptor with 

immunoglobulin and ITIM domain; TIME: tumor 

immune microenvironment; TIMER: Tumor Immune 

Estimation Resource; TPM: transcripts per kilobase 

million; UCSC: University of California Santa Cruz; 

VIRMA: Vir-Like m6A methyltransferase associated; 

WTAP: Wilms tumor 1 (WT1)-associated protein; WES: 

whole-exome sequencing; YTHDC: YTH domain 

containing; YTHDF: YTH m6A RNA-binding protein; 

ZC3H13: zinc finger CCCH-type containing 13. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The Gene Ontology (GO) enrichment and univariate Cox regression analyses results of 23 N6-
methyladenosine (m6A) regulators. (A) GO enrichment of 23 m6A regulators. (B) Univariate Cox regression analysis results of 23 m6A 
regulators. Expression levels of insulin-like growth factor 2 (IGF2) mRNA-binding protein (IGFBP)-2 (P-value = 0.002), Vir-Like m6A 
methyltransferase associated (VIRMA) (P-value = 0.039), IGFBP1 (P-value <0.001), heterogeneous nuclear ribonucleoprotein (HNRNP)-C 
(P-value = 0.009), HNRNPA2B1 (P-value = 0.004), YTH m6A RNA-binding protein 2 (YTHDF2) (P-value <0.001). and IGF2BP3 (P-value = 0.005) 
were protective factors for patients with sarcoma. 
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Supplementary Figure 2. Survival curve of 26 m6A regulators. (A) ALKB homolog 5 (ALKBH5); (B) Cbl-like 1 (CBLL1); (C) ELAV-like 1 
(ELAVL1); (D) Fragile-X mental retardation 1 (FMR1); (E) Fat mass and obesity-associated (FTO); (F) HNRNPA2B1; (G) HNRNPC; (H) IGF2BP1; 
(I) IGF2BP2; (J) IGF2BP3; (K) leucine-rich pentatricopeptide repeat containing (LRPPRC); (L) Methyltransferase-like (METTL)-3; (M) METTL14; 
(N) RNA-binding motif protein 15 (RBM15); (O) RBM15B; (P) VIRMA; (Q) Wilms tumor 1 (WT1)-associated protein (WTAP); (R) YTH domain 
containing (YTHDC)-1; (S) YTHDC2; (T) YTHDF1; (U) YTHDF2; (V) YTHDF3; (W) Zinc finger CCCH-type containing 13 (ZC3H13). 
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Supplementary Figure 3. Consensus clustering analysis of m6A modification clusters. (A–H) Consensus matrices of the patients 

with sarcoma for k = 2–9. (I) Cumulative distribution function (CDF) of consensus clustering analysis. (J) Relative change in area under the 
CDF curve of consensus clustering analysis. 
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Supplementary Figure 4. Consensus clustering analysis of m6A gene clusters. (A–H) Consensus matrices of the patients with 

sarcoma for k = 2–9. (I) CDF of consensus clustering analysis. (J) Relative change in area under the CDF curve of consensus clustering 
analysis. 
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Supplementary Figure 5. Kaplan-Meier (K-M) analysis of different clinicopathological features in high- and low-m6A score 
groups. (A) Age (age ≤ 65); (B) Age (age > 65); (C) Gender (Female); (D) Gender (Male); (E) Margin (R1/2); (F) Margin (RO); (G) Metastasis 

(No/unknown); (H) Metastasis (Yes); (I) Race (Others); (J) Race (White); (K) Site (Parts other than soft tissues); (L) Site (Soft tissues). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 4 and 7. 

 

Supplementary Table 4. Differentially expressed genes (DEGs) of different m6A modification clusters. 

 

Supplementary Table 7. m6A score groups of patients with sarcoma. 

 

Supplementary Table 1. The 23 N6-methyladenosine (m6A) regulators and their types. 

Gene Type 

CBLL1 writers 

VIRMA writers 

METTL14 writers 

METTL3 writers 

RBM15 writers 

RBM15B writers 

WTAP writers 

ZC3H13 writers 

ELAVL1 readers 

FMR1 readers 

HNRNPA2B1 readers 

HNRNPC readers 

IGF2BP1 readers 

IGF2BP2 readers 

IGF2BP3 readers 

LRPPRC readers 

YTHDC1 readers 

YTHDC2 readers 

YTHDF1 readers 

YTHDF2 readers 

YTHDF3 readers 

FTO erasers 

ALKBH5 erasers 

 

Supplementary Table 2. Univariate Cox regression analysis between 23 m6A regulators and the prognosis of 
patients with sarcoma. 

Genes HR HR.95L HR.95H p value 

CBLL1 0.987946497 0.96792828 1.00837872 0.245608968 

VIRMA 1.020245477 1.001055583 1.039803235 0.038558877 

METTL14 0.984210143 0.960471466 1.008535538 0.201366338 

METTL3 1.009449577 0.991025738 1.028215927 0.316945737 

RBM15 1.012546871 0.989893507 1.035718648 0.280111444 

RBM15B 1.019962902 0.99921603 1.041140545 0.059407543 

WTAP 0.99611343 0.977705061 1.014868394 0.682411136 

ZC3H13 0.997945483 0.983712034 1.012384878 0.779018426 
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ELAVL1 1.021702847 0.996193527 1.047865379 0.096045309 

FMR1 1.006913884 0.991195559 1.02288147 0.390717979 

HNRNPA2B1 1.029067753 1.009173243 1.049354457 0.004018014 

HNRNPC 1.028329687 1.006938317 1.050175495 0.009197266 

IGF2BP1 1.01752744 1.007412385 1.027744057 0.000652553 

IGF2BP2 1.007904652 1.002903766 1.012930475 0.001918887 

IGF2BP3 1.014359157 1.004393692 1.024423498 0.004650716 

LRPPRC 1.010975473 0.994962862 1.027245785 0.18023504 

YTHDC1 1.011754942 0.987901228 1.036184624 0.337048627 

YTHDC2 0.998674934 0.97826206 1.019513752 0.899858998 

YTHDF1 1.010100437 0.990100876 1.03050398 0.324650043 

YTHDF2 1.041110126 1.019054692 1.063642907 0.000226265 

YTHDF3 1.009027431 0.992122686 1.026220217 0.297164378 

FTO 0.993242582 0.976943695 1.009813393 0.421874008 

ALKBH5 0.9962828 0.986223642 1.006444558 0.471974814 

 

Supplementary Table 3. Kaplan-Meier (K–M) analysis between 23 m6A regulators and the prognosis of patients 
with sarcoma. 

Genes K–M value 

METTL3 0.010691281 

METTL14 0.007747145 

METTL16 0.141020305 

WTAP 0.034642704 

VIRMA 0.0694909 

ZC3H13 0.007800758 

RBM15 0.113802444 

RBM15B 0.077648902 

YTHDC1 0.001146628 

YTHDC2 0.025401174 

YTHDF1 3.49E-06 

YTHDF2 0.002707548 

YTHDF3 0.010291272 

HNRNPC 0.000119071 

FMR1 0.000262172 

LRPPRC 0.083835289 

HNRNPA2B1 0.037667126 

IGFBP1 0.187384629 

IGFBP2 0.086013948 

IGFBP3 2.86E-07 

RBMX 0.031859669 

FTO 0.037951415 

ALKBH5 0.043621219 
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Supplementary Table 5. DEG intersections. 

Gene ID 

CDK6 

EZH1 

POPDC2 

FILIP1 

IL6R 

TP53INP2 

TAGLN 

HMGA1 

LINC00888 

SEMA7A 

RUNX2 

HSPB8 

MYOM1 

AOC3 

ZHX2 

LIMS2 

PRKAG2 

ARHGEF10L 

SH3BGRL 

PARM1 

A2M 

C11orf96 

 

 

Supplementary Table 6. Univariate Cox regression analysis of 19 prognosis-related DEGs. 

ID HR HR.95L HR.95H p value 

CDK6 1.009792144 1.002383 1.017256 0.009498 

EZH1 0.986785685 0.973965 0.999775 0.046194 

POPDC2 0.992457193 0.987348 0.997593 0.004039 

FILIP1 0.991284505 0.983833 0.998793 0.022984 

IL6R 0.984817779 0.975454 0.994271 0.001698 

TP53INP2 0.989839095 0.981187 0.998568 0.022609 

TAGLN 0.995780277 0.992804 0.998765 0.005618 

HMGA1 1.007732345 1.00311 1.012376 0.001024 

SEMA7A 1.006572593 1.001704 1.011465 0.008094 

RUNX2 1.006835934 1.001232 1.012471 0.016733 

HSPB8 0.993486625 0.989581 0.997408 0.001148 

AOC3 0.992256118 0.987973 0.996558 0.000428 

ZHX2 0.98915193 0.979309 0.999094 0.032545 

LIMS2 0.986175928 0.980104 0.992286 9.99E-06 

PRKAG2 0.986008251 0.976491 0.995619 0.00441 

SH3BGRL 0.991622516 0.983443 0.99987 0.046517 

PARM1 0.994161576 0.989296 0.999051 0.019313 

A2M 0.992624042 0.98729 0.997987 0.007087 

C11orf96 0.993273644 0.988734 0.997834 0.003879 

 


