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ABSTRACT

The nature of brain-behavior covariations with increasing age is poorly understood. In the current study, we
used a multivariate approach to investigate the covariation between behavioral-health variables and brain
features across adulthood. We recruited healthy adults aged 20-73 years-old (29 younger, mean age = 25.6
years; 30 older, mean age = 62.5 years), and collected structural and functional MRI (s/fMRI) during a resting-
state and three tasks. From the sMRI, we extracted cortical thickness and subcortical volumes; from the fMRI,
we extracted activation peaks and functional network connectivity (FNC) for each task. We conducted canonical
correlation analyses between behavioral-health variables and the sMRI, or the fMRI variables, across all
participants. We found significant covariations for both types of neuroimaging phenotypes (ps = 0.0004) across
all individuals, with cognitive capacity and age being the largest opposite contributors. We further identified
different variables contributing to the models across phenotypes and age groups. Particularly, we found
behavior was associated with different neuroimaging patterns between the younger and older groups. Higher
cognitive capacity was supported by activation and FNC within the executive networks in the younger adults,
while it was supported by the visual networks’ FNC in the older adults. This study highlights how the brain-
behavior covariations vary across adulthood and provides further support that cognitive performance relies on
regional recruitment that differs between older and younger individuals.

INTRODUCTION variables that correlated positively with more efficient
brain patterns (e.g., stronger network integration) were
Brain organization throughout the lifespan has been positive subject traits and measures (such as education,
associated with multiple genetic, molecular, behavioral, income, IQ, life-satisfaction), while those that correlated
and environmental factors [1-6]. Large-scale studies have negatively were mostly negative subject measures (such as
begun to address the complexity of the brain-behavior- body-mass index (BMI), smoking, age). This finding has
environment associations. In the Human Connectome been consistently reproduced using independent samples
Project -Young Adult (HCP-YA), a U.S. study done on of young adults [9], youth [10-12] and clinical samples [9,
healthy adults aged 22-37 years, personal attributes and 13-16].
environmental factors were correlated with brain structure
and functional connectivity following a positive-negative Throughout adulthood, age has been robustly established
axis [7, 8]. In other words, the majority of behavioral as one of the strongest negative contributors to brain
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function using multivariate [7, 8] and univariate [17-20]
approaches. Healthy aging has been associated with
regional brain atrophy [17, 21, 22], reduced brain network
integrity [20, 23-25] and changes in regional connectivity
[20, 24-26]. Beyond this negative impact, a study by
Miller et al. (2016) [17] that involved 5,000 participants
aged 44—78 years old suggested that aging alters the brain-
behavior-environment associations in two ways. First,
these associations may vary by age range (i.e., early versus
middle versus late adulthood). Second, within older adults,
age-related cognitive decline seems to be a major source of
variability for these associations, suggesting that age-
related impact varies by neural parameter and cognitive
function investigated [17]. However, there is a limited
number of neuroimaging studies that focused on
multivariate associations in late adulthood or across the
adult lifespan, even though a key goal of cognitive
neuroscience and multiple federal funding initiatives is to
characterize how age-related variation in brain
organization relates to cognitive, psychosocial and
environmental factors, as this may help identify the
relevant brain mechanisms that signify the transition from
healthy aging to neurodegenerative states [27, 28].

In this context, the aim of the present study was to
further characterize the impact of healthy aging on
patterns of multivariate covariation between non-
imaging and imaging variables and identify the most
salient features that drive these associations in older
relative to younger healthy adults. To achieve this aim,
we recruited 59 healthy adults (29 adults aged 19-32
years-old and 30 adults aged 55-72 years-old). We
collected a high-resolution structural scan, three
cognitive functional MRI (fMRI) tasks that related to
working memory, visual episodic memory and language
function, respectively, and a resting-state fMRI scan in
one session. These tasks assess three of the most critical
components of cognitive processing, underlying many
more complex functions. Using the structural scan, we
extracted structural morphometric measures (subcortical
volumes and cortical thickness), while with the fMRI
data we extracted individual measures of task-related
and resting-state functional network connectivity (FNC)
and task-related brain activation. We extracted both
types of brain functional features because they: (a) are
among the most commonly analyzed measures in fMRI,
(b) have been suggested to reflect different brain
mechanisms [29, 30] and (c) are related to distinct
behavioral and cognitive features [9, 17]. Lastly, in
aging models, it appears that functional connectivity
versus task-based activation techniques may reveal
different aspects of recruitment of additional regions to
support and/or compensate cognitive processing [31—
34]. Overall, we aimed to: (1) test the relative
sensitivity of these brain features (structural and
functional) to maintain optimal cognitive function and

health, and (2) compare these associations between
early and late adulthood. In this context, we ascertained
non-imaging/health factors that related to medical
history, metabolism, cognition, lifestyle factors and
physical health (n = 59 variables). These variables were
selected based on previous fMRI studies which
demonstrated their relevance in understanding the
covariation linking brain activity, demographics, and
behavior [7, 8, 17]. Using these multimodal data, we
conducted sparse canonical correlation analyses (sCCA)
[35, 36] to investigate the underlying relationship
between the neuroimaging and
health/demographic/lifestyle factors in the whole
sample, and further to identify the differential weights
of contribution of the top variables in each model in the
younger versus older adults. We used sCCA because
this multivariate method is ideally suited for predicting
one dataset from the other while accounting for
correlations between variables [36, 37]. CCA is a
powerful multivariate tool to simultaneously investigate
relationships among multiple variables and/or datasets,
and further enables one to separate distinct biological
processes with opposing relationships between variables
[17, 36]. In particular, we chose to conduct sCCA
because it is tailored to the analyses of high-
dimensional datasets in which variables are expected to
be correlated and does not require data reduction. It has
the further advantage over classic CCA that more
observations than participants is acceptable and
produces reliable results even in smaller samples [36,
38]. Considering preexisting evidence, our working
hypotheses were that beyond an overall negative effect
of age at the level of the whole sample, the brain-
behavior covariation would vary between the two age
groups. Particularly, we expected that: (i) age would
have a stronger (negative) impact on brain efficiency in
the older group, and (ii) top contributors to the brain-
behavior covariations would differ between the two
groups. In particular, we expected that health- and
metabolism-related measures (e.g., glucose rate,
physical activity) would contribute more to brain
integrity in older than in younger adults. We also
hypothesized that cognitive variables shown as strong
positive predictors of brain integrity in youth and young
adults [7-9, 11] would show a lower contribution in
older adults, because healthy aging has been typically
associated with slight declines and slowing in general
cognitive function [39, 40]. Finally, (iii) older adults
would show a more widespread functional and
structural regional contribution to support higher-order
cognitive function when compared to the younger
adults. The Ilatter follows the compensation-related
utilization of neural circuits hypothesis (CRUNCH)
[40], and more recently the revised scaffolding theory
of aging and cognition (STAC-r) model [34, 41]. These
aging models support the overall idea that age-specific
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increases in regional recruitment provide support to
maintain higher cognitive performance in older
individuals, with this positive association enhanced by
enriched lifestyle (e.g., higher physical activity). Lastly,
we hypothesized that measures of structural
morphometry would emerge as stronger contributors to
behavior than the functional features as our previous
study found in young adults [9].

RESULTS

Sparse CCA between non-imaging and sMRI
datasets

Across all participants, we found a significant
association between the non-imaging dataset and the
sMRI dataset (r = 0.785, p = 0.0004; Figure 1A). In the
non-imaging dataset, the highest positive weights were
attributed to measures related to intelligence and higher
cognitive function (verbal fluency, block design), better
accuracy during the fMRI tasks, and emotions related to
negative affect and perceived negative social
relationships (Figure 1B, Supplementary Table 1). In
contrast, older age, emotions related to well-being, and
lower motor dexterity (e.g., slower reaction times)
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displayed the strongest negative contribution. In the
imaging dataset, the structural features with the highest
positive contributions were the cortical thickness of
lateral and medial frontal regions as well as superior
temporal cortex (Figure 1C, Supplementary Table 2). In
contrast, the top negative structural contributors were
the volume of the lateral ventricles.

We further identified the top contributors to the
covariation within each age group (Figure 2). While we
only report and discuss the top variables, all variable
contributions are provided in Supplementary Tables 1
and 2. In the non-imaging dataset, the variables with the
highest correlations with the sMRI dataset were mostly
different between the two groups. In the younger group,
the non-imaging variables with the strongest
contributions were related to higher BMI, reaction
times, apathy and cognitive ability. In the imaging
dataset, cortical thickness measures most highly
correlated with the non-imaging variate were widely
distributed in the parietal, temporal, frontal and visual
cortex. Particularly, cortical thickness of the primary
cortices showed a negative association with the
behavioral variables while cortical thickness of
associative  cortices were positively  associated
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Figure 1. Results of the sCCA between non-imaging and sMRI datasets across all participants. (A) Significant correlation across
all participants (r = 0.612, p = 0.0001). (B) Top behavioral-health variables most strongly associated with the imaging variate. (C) Top sMRI
variables positively associated with the behavioral-health variate. Details of each variable in Supplementary Table 5. Contributions of all

variables are provided in Supplementary Tables 1 and 2.
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(Figure 2, Supplementary Table 2). In the older group,
higher age, blood pressure as well as better life
satisfaction were the variables with the strongest
negative associations to the sMRI dataset, while better
cognitive functions remained among the most positive
variables. In the sMRI dataset, lateral ventricles and
orbitofrontal regions were identified as variables with
the most negative associations to the behavioral
variables, in contrast cortical thickness of the
dorsomedial frontal regions, pre- and postcentral gyri
showed the strongest positive associations.

Sparse CCA between non-imaging and fMRI
datasets

Across all participants, we found the sCCA significant
between the non-imaging dataset and the fMRI variables
(r=0.91, p = 0.0004; Figure 3; Supplementary Table 3).
In the non-imaging dataset, the highest positive weights
were attributed to better cognitive ability (such as matrix
reasoning and block design, higher accuracy during the
fMRI tasks), and stronger report of emotions related to
negative affect. In contrast, the highest negative weights
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were largely attributed to older age, lower motor
dexterity (higher time to complete a pegboard with either
right or left hand), psychological well-being, and higher
estimated average glucose (EAG) rate (Figure 3,
Supplementary Table 3). In the imaging dataset, the
FNC measures mostly showed a negative association
while the activation variables were positive contributors.
Both the FNC and activation measures most highly
correlated with the non-imaging dataset were collected
during the n-back and Scene Encoding Memory (SEM)
tasks. The networks most involved were largely related
to executive function (ECN/SAL) and primary cortices
(SMN/VIS).

We further identified the top contributors to the
covariation between fMRI and behavior features within
each age group (Figure 4, Supplementary Table 3). In
the non-imaging dataset, the variables with the highest
correlations with the fMRI dataset were different
between the two groups. In the younger group, the top
contributors were relatively similar to the results of the
overall SCCA. The non-imaging variables with the
strongest negative contributions were related to older
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Figure 2. Top contributors in the sMRI sCCA in younger and older groups, separately. (A) Top behavioral-health variables most
strongly associated with the imaging variate in each subgroup. (B) Top sMRI variables associated with the behavioral-health variate in the
younger group. (C) Top sMRI variables associated with the behavioral-health variate in the older group. Details in Supplementary Tables 1,

2 and 5.
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age, motor dexterity, sleep quality during the weekend and
positive affect; in contrast, estradiol rate, reading capacity
and negative affect were positively associated with the
fMRI dataset. In the imaging dataset, the FNC measures
mostly showed a negative association while the activation
variables were positive contributors. The FNC most highly
correlated with the non-imaging dataset were collected
during the Verb Generation (VG) and SEM tasks, largely
involving networks related to executive function
(ECN/SAL), primary cortices (SMN/VIS) and the default
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mode (aDMN, pDMN). In the older group, features
related to better life were the variables with the
strongest negative associations to the fMRI dataset,
while better cognitive functions (higher accuracy and
matrix reasoning) and negative affect remained among
the most positive variables. In the fMRI dataset, no
activation features showed strong associations with the
behavioral dataset. In contrast, the FNC measures with
the strongest associations were mostly identified during
the SEM task, and involved the visual (VIS1/2/3),
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Figure 3. Results of the sCCA between non-imaging and fMRI datasets across all participants. (A) Significant correlation
across all participants (r = 0.91, p = 0.0004). (B) Top behavioral-health variables most strongly associated with the imaging
variate. (C) Top fMRI features most strongly associated with the non-imaging variate. Dashed lines between networks
indicate negative contributions of the FNC; solid lines between networks indicate positive contribution of the FNC. Details in

Supplementary Tables 3 and 5.
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executive (ECNs) and default mode networks to a lower
level.

Reliability analyses
To assess whether our overall results were robust, we 1)

performed leave-one out (LOQO) analysis for every
participant; 2) computed a redundancy-reliability score
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(Moser’s RR-score) for each overall sample sCCA [42].
The RR-score is a measure of the stability of the
variable-to-variate correlations and indicates whether
results can be expected to be reliable independent of
sample composition (see detail in the methods). The
LOO analyses indicated that both overall SCCAs were
very stable and did not show outliers (the weights of
each LOO analysis correlated above 0.95 with the
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Figure 4. Top 10 features contributing to the fMRI sCCA in younger and older groups, separately. (A) Top behavioral-health
variables most strongly associated with the imaging variate in each subgroup. (B) Top fMRI variables most strongly associated with the
behavioral-health variate in the younger group. (C) Top fMRI variables most strongly associated with the behavioral-health variate in the
older group. Dashed lines between networks indicate negative contributions of the FNC; solid lines between networks indicate positive

contribution of the FNC. Details in Supplementary Tables 3 and 5.
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sCCA weights in the full dataset). The RR-scores
indicated that both overall sCCAs yielded reliable
solutions (sMRI: median RR-score was 0.88, SD =
0.05; fMRI: median 0.87, SD = 0.11, Supplementary
Figure 1). Lastly, when half the sample was randomly
resampled 5000 times, both overall sCCAs yielded
similar correlations. We then applied the weights of
each sCCA resample to the remaining half of the
sample (using it as a test-set). The mean (standard-
deviation) of the scores indicated that the SCCA results
held predictive value for both sCCAs (sMRI: r = 0.55
(0.11); fMRI: r = 0.67 (0.20)).

DISCUSSION

The current study investigated the covariation between
behavioral-health measures and brain structure and
function across adulthood. While several previous
studies have explored this relationship in adults, they
typically focused on a limited age range, typically under
35 years (20~37 years for [7-9], 4478 years for [17]).
To our knowledge, the current study is among the first
to investigate the multivariate associations among
behavior and multimodal imaging phenotypes
(structural MRI, task-based and resting-state fMRI) in a
population that stretches across most of the adult
lifespan (i.e., over 50 years; 20 to 73 years old). In line
with our hypotheses, we found age-specific effects on
brain-behavior covariations in healthy individuals. The
impact of age was examined in two different and
complementary methods: first, by examining the
contribution of age in the brain-behavior associations
across adulthood, and second by identifying the top
variables that contributed to the covariations within
older and younger age groups separately. Our results
replicate previous findings focused on early adulthood,
with the non-affective cognitive measures (e.g., [Q and
other measures reflecting higher order cognitive
functions) being the strongest positive contributions,
and age and poorer motor dexterity being the most
negative contributors to neuroimaging phenotypes [8,
9]. Beyond this general negative age-related impact, our
findings revealed that such associations strongly vary
by age group and neuroimaging phenotypes.

Across all participants, we found significant robust
covariations between behavior and health measures and
both brain structural morphometry and functional
activation and connectivity measures. Better cognitive
capacity typically had the strongest positive
contribution to both brain structural and functional
measures. In contrast, older age and slower motor
dexterity showed a negative contribution. At the
structural level, better cognition and younger age were
related to thicker frontal and parietal cortices, among
other widespread regions and larger subcortical

volumes; while at the functional level, they were more
strongly associated with greater activation and lower
functional connectivity emerging from the brain
networks supporting higher order cognitive functions,
and particularly working memory (ECN, SAL). The
degree of activation and functional connectivity of the
working memory networks identified during the n-back
task were among the strongest contributors to the non-
imaging variables, which is consistent with both our
previous findings [7, 9] and the fundamental role of
these executive networks in everyday activity [43].
Interestingly, FNC and activations showed relatively
opposite associations with behavior, where better
cognition and younger age were associated with
stronger activation and lower functional connectivity. In
other words, older age was related to weaker activation
in the memory networks and higher between-network
functional connectivity. This finding supports the theory
that healthy aging is associated with a progressive loss
of functional integration and segregation of brain
networks [20, 24, 44]. This opposition between
activation and functional connectivity also points to the
idea that these brain functional features are supported
by different biological mechanisms [29].

In the fMRI sCCA, we found that the FNC features’
contributions to the covariation varied by cognitive
states. In other words, the FNC during n-back, SEM,
VG and rest did not contribute equally to the behavioral
variables. Recent fMRI studies have demonstrated that
the functional network organization of the brain is not
stationary and rather reconfigures dynamically as a
function of the cognitive state [45, 46], predicts general
cognitive abilities [47], and varies by cognitive
demands during the task [48]. Our results are in line
with these findings and the recent study by Varangis et
al. [48] which further described that age, task domain
and performance on the in-scanner task impact
between-network connectivity. Further, in the current
study, the strongest FNC contributors to the behavioral
variate were largely between brain networks supporting
lower order function (i.e., networks related to sensory
and motor processing such as SMN and VIS) versus
those related to higher order functions (i.e., ECN, SAL
and DMN). Variability in such extrinsic-intrinsic
network interactions have been linked to higher order
cognitive capacity [49-52], which is again supported by
the current findings.

Surprisingly, we also found a relatively strong
association of affective cognitive measures with both
brain structural and functional features, where higher
reported positive affect and life satisfaction was
negatively associated with brain measures and negative
affect and higher stress were rather positively
associated. The exact meaning of such finding is
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unclear. While we used the t-scores for each emotional
measure which are age- and sex-corrected, we cannot
exclude the possibility that age ultimately influenced
the measure. Affective cognition has been shown to
change throughout the lifespan, with older adults
reporting improvement in emotional experience and an
increased frequency of positive feelings, relative to
younger adults [53], which is also what we report (see
Supplementary Table 4). Other neuroimaging studies
have independently reported association between
affective cognition and working memory network
activation [7], functional network connectivity [8, 13,
54, 55] or structural morphometry [9]. It is also known
from psychiatric studies that the activation of the
working memory network is modulated by the level of
depression and anxiety [56]. Overall, while the
association between emotional well-being and brain
functional and structural organization remains unclear
and needs further investigation, we believe it likely
reflects the complexity of the brain mechanisms behind
emotional well-being and affective disorders across the
lifespan [13, 57, 58].

When investigating each age group separately, we
found that the strongest contribution of the behavioral
variables to the brain features typically differed
between the younger and older adults, which is in line
with our hypotheses. Our findings support that such
differences between early and late adulthood are likely
related to the non-linear impact of age on brain
structure [21, 22], function [24, 33] and cognition [39,
40]. First, in the current study, age was identified as a
strong negative contributor to Dbrain structural
morphometry in the older but not in the younger adults,
and vice-versa in the fMRI sCCA. This is consistent
with the recent studies done by the ENIGMA-Lifespan
working group which have demonstrated an almost null
impact of age on structural brain morphometry during
early and middle adulthood, before showing a strong
negative effect in late adulthood [21, 22]. Second, in
the sMRI sCCA, we found a relatively unexpected
association in young adults where BMI and motor
dexterity were among the top positive contributors to
variation in brain structural morphometry. However, it
is important to note that at the brain level, cortical
thickness showed a heterogeneous pattern with both
thinning of the primary cortices and thickening of
associative cortices in association with these behavioral
variables. Higher BMI has been previously associated
with reduced functional integration of both visual and
sensorimotor networks in young adults [59]. In this
context, the current study suggests that such impact
may be directly linked to underlying structural thinning
of these primary regions that respond to perception of
food images and tastes [60]. Third, in the fMRI sCCA,
the major differences in contributions between the two

age groups were identified at the neuroimaging level.
While the major functional features associated with the
behavioral dataset in the younger adults largely
followed those from the overall analysis (i.e., large
involvement of the executive networks to support
higher cognitive capacity), the older adults showed a
different pattern where behavior was rather supported
by changes in functional connectivity emerging from
the visual networks. These findings are in line with
aging models [34, 40] that support the idea of an age-
specific regional recruitment of primary cortices to
support and maintain relatively preserved performance
in older individuals. The STAC-r model supports the
idea that preserved cognition in older adults is partially
supported by good brain efficiency, which involves
compensatory mechanisms through the mediation of
primary networks, despite being less efficient than in
their youthful state [32, 34]. With aging, this transition
from executive to visual networks to support healthy
behavior may reflect changes in biological mechanisms
involving brain networks less impacted by aging [23,
34]. In fact, the overall negative impact of age on the
functional integrity of the executive networks have
been consistently reported [20, 23, 24, 44, 61], while
the visual network is among the least impacted [23].
This relatively low impact of aging on the visual
networks is likely related to their high structural-
functional coherence [62], low inter- and intra-
individual variability in functional activation [63],
anatomical morphology [64, 65] and resting-state
functional connectivity [66—68]. Together, the current
findings indicate that, across adulthood: (a) there may
be a progressive change in the functional support of
healthy behavior and cognitive aging by recruiting
more preserved networks such as the primary networks
over executive control networks, as the latter become
less efficient in late adulthood [44]; and (b) functional
connectivity features may be more effective to
highlight neural changes related to aging, than brain
activation.

We found that variation in estradiol level was among
the strongest variables associated with the fMRI dataset
in the younger but not the older adults. We believe that
this specific finding is related to a lack of variability in
this hormone level in the older adults, as the majority of
the older women reported being in menopause.
However, this finding also underscores the impact of
sexual hormones in brain functional organization in
early adulthood.

Lastly, we expected a stronger contribution of health-
related measures (such as physical activity, or EAG) to
brain integrity in older adults but we did not reveal such
effect. On the contrary, we found that BMI was a
stronger contributor to brain structure in the younger
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group. With regard to physical activity, it is possible
that only structured physical interventions have a
significant impact on brain integrity and cognitive
function [34], however, research studies on this topic
remain relatively limited. While higher EAG
contributed negatively to brain functional integrity
across subjects, we did not see a specific impact within
the older group. This lack of association in late
adulthood may be related to the fact that the older adults
had an EAG and HbAIC in the normal range. The
overall negative association is consistent with literature
showing that higher glucose ingestion is associated with
negative changes in brain activity and connectivity [69],
or that glucose fluctuations are linked to disrupted brain
functional architecture and cognitive impairment [70].
This may also reflect that the impact of glycemia on
brain function and cognition is independent of age.

While this study is among the first to investigate the
covariation between different types of brain functional
and structural features and a large series of behavioral
and health variables across the adult lifespan, we must
acknowledge specific limitations. First, our analyses
were based on cross-sectional samples and not
longitudinal data. As discussed by the STAC-r model,
investigating the rate of within-subject cognitive change
is essential to understand and identify brain integrity
preservation versus compensatory mechanisms which
may support preserved cognition in older adults [34].
To our knowledge, there is not yet any large
longitudinal cohorts from older — or even younger-
adults available to conduct sCCAs in a longitudinal
fashion and identify features that predict future brain
and cognitive preservation. Future studies should also
investigate the impact of structured physical or
cognitive interventions on brain-behavior covariations
in late adulthood. Second, it will be important to test the
reproducibility of our findings in a larger independent
sample. It would also be interesting to investigate the
impact of pathologic aging on the findings, although
this might be challenging as clinical populations may
not be able to complete all tasks in one session, as done
in the current study. It is also likely that further
differences between other subgroups could be revealed,
especially in late adulthood (e.g., between participants
aged 50-60 years-old and participants above 60, retired
versus actively working). Such subgroups could also
help identify and improve understanding of the origin of
preserved cognition in late adulthood, including the role
of neurobiology, compensatory processes, or a
combination of both [34]. However, our sample size
was too small to statistically test such differences.
Lastly, we focused on specific tasks covering major
cognitive functions and specific brain measures (FC and
activation). Future studies should test other fMRI tasks
and other neuroimaging measures (e.g., diffusion, graph

theory) to determine their unique patterns of covariation
with behavior, health and demographic characteristics.

The current study reinforces the importance of
accounting for age in multivariate approaches when
investigating the link between behavior and brain
features, and confirms its non-linear impact across the
lifespan. Our findings also highlight the complex
interaction of 1) brain structure with age and variables
related to stress and general well-being; and 2) brain
activation with functional connectivity in their
relationship with age, such that increased connectivity
in older age may be used to compensate for the loss of
brain activation in the networks supporting higher-order
cognitive function. In summary, these data further
underscore the need to use more multimodal approaches
to investigate the impact of healthy aging on behavior,
overall health and brain network organization.

MATERIALS AND METHODS
Participants

We recruited a total of 59 healthy individuals and
divided them into two age groups: A younger adult
group of 29 participants (mean age (SD) = 25.6 (3.4)
years, age range: 20.2-32.8 years; 16 females) and an
older adult group of 30 participants (mean age (SD):
62.5 (4.7) years, age range: 55.4-73.5 years; 19
females). The age cut-off for the older group (i.e., 55
years old minimum) was based on the age criterion used
for the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [71, 72]. Exclusion criteria included any
chronic medical illness affecting central nervous system
function, any neurological or psychiatric disorder, acute
intercurrent illness, pregnancy, history of head trauma,
current substance use disorder, and presence of any
ferrous metal implant which may interfere with the MRI
data acquisition. The study was approved by the
Institutional Review Board for Research with Human
Subjects at Boys Town National Research Hospital.
Each participant provided written informed consent, and
all participants completed the same protocol.

Non-imaging data set

On the day of the scan, participants completed
questionnaires and  cognitive  tests  providing
demographic information, personal and family medical
history, 1Q, cognitive scores, and physical activity.
They also provided samples of saliva and blood after
the MRI scan in order to extract their level of
testosterone and estradiol, HbAlc and estimated
average glucose (see detail in Supplementary Material).
These variables were selected based on previous studies
[7, 8]. Variables that were highly correlated (r > 0.85)
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or had low inter-subject variability (such as smoking
habit, or family history of psychiatric disorders) were
not included. A total of 59 variables were extracted and
are detailed in Supplementary Table 5.

MRI data acquisition

Participants were scanned on a 3T Siemens Prisma
scanner using a 64-channel head coil. Anatomical and
functional acquisitions were similar for all participants
and adapted from the sequence parameters provided by
the Human Connectome Project (HCP) [73]. Structural
images were acquired using a TIl-weighted, 3D
magnetization-prepared rapid gradient-echo
(MPRAGE) sequence with the following parameters:
Repetition Time (TR) = 2400 ms, Echo Time (TE) =
2.22 ms, Field of View (FOV): 256 x 256 mm, matrix
size: 320 x 320, 0.8 mm isotropic resolution, Inversion
Time (TI) = 1000 ms, 8 degree-flip angle, bandwidth =
220 Hz/Pixel, echo spacing = 7.5 ms, in-plane
acceleration GRAPPA (GeneRalized Autocalibrating
Partial Parallel Acquisition) factor 2, total acquisition
time ~7 min. Participants also completed three tasks and
one resting-state fMRI scans, using an identical multi-
band T2" sequence with the following acquisition
parameters: TR = 800 ms, TE = 37 ms, voxel size = 2 x
2 x 2 mm®, echo spacing 0.58 ms, bandwidth = 2290
Hz/Pixel, number of axial slices = 72, multi-band
acceleration factor = 8. The numbers of volumes
collected were: 450 for the n-back task, 375 for the verb
generation task, 340 for the scene encoding memory
task, and 460 for the resting-state f{MRI.

Task fMRI scans: description of the tasks

Each participant completed a n-back, a SEM and a
VG task. These tasks were specifically chosen
because: (1) they are associated with cognitive
functions among the most commonly investigated in
fMRI, and (2) they have been demonstrated as
reliable and robust activators of specific brain
networks. In short, the n-back fMRI task that we used
was developed for the HCP and aimed to activate the
network supporting working memory ability [74]. It
has a block design incorporating alternating
experimental (2-back) and sensorimotor control (0-
back) conditions. The SEM task was based on the
fMRI task developed by Binder et al. known to be a
robust activator of bilateral mesial temporal lobe
(MTL) structures [75]. This task has a block design
incorporating  alternating  experimental (scene
encoding) and control conditions. During the scene
encoding condition, the participant was required to
identify a given scene as indoor or outdoor from the

engagement and full encoding of the scene. During
the control condition, the participant was presented
with scrambled pictures divided into two halves and
was required to identify if the two halves were
identical. Lastly, the VG task aims to activate a
network supporting language function. The task has a
block design incorporating alternating experimental
(verb generation) and control (passive viewing of
‘xxxx’) conditions. In the active condition,
participants were instructed to covertly generate an
action word in response to a viewed object noun
presented on a screen. This task has been extensively
used in clinical fMRI protocols for epilepsy to
localize and lateralize the language network [76, 77].
A detailed description of each task can be further
found in Supplementary Material.

In addition, a resting-state fMRI scan was collected
during which participants were instructed to remain still
and keep their eyes on a fixation cross throughout the
scan. For all participants, the resting-state scan was
collected before the three tasks in order to avoid
cognitive interference from the tasks on the resting-state
mental activity.

Structural preprocessing

In each individual sMRI dataset, we used FreeSurfer

image analysis suite (v.6.0)
(http://surfer.nmr.mgh.harvard.edu/) to derive 68
cortical thickness measures and 18 subcortical

volumetric measures from the Desikan atlas [78]. The
outputs were quality controlled using protocols
developed by the ENIGMA consortium
(http://enigma.ini.usc.edu/). Prior to being entered in
further analyses, subcortical volumes were adjusted for
variation in intracranial volume.

FMRI preprocessing

The resting-state and task-based fMRI data were
preprocessed using SPM12 and the DPABI Toolbox
[79]. For all runs, preprocessing procedures included
motion correction to the first volume with rigid-body
alignment; co-registration between the functional scans
and the anatomical TI1-weighted scan; spatial
normalization of the functional images into Montreal
Neurological Institute (MNI) stereotaxic standard
space; and spatial smoothing within the functional
mask with a 6-mm at full-width at half-maximum
Gaussian kernel. For the functional connectivity
analyses only (including the resting-state fMRI data
and the 3 task-based fMRI data sets), additional steps
were applied for each dataset including linear

variety of landscapes or home/office photos detrending, regression of motion parameters, their
presented. This binary judgment ensured attentional derivatives (24-parameter model, [80]), and the
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scrubbing parameters [81], as well as white matter
(WM), and cerebrospinal fluid (CSF) time series (using
a component based noise reduction method, 5 principal
components [82]).

Subject exclusion and quality control

A total of six participants were excluded from group
analyses because of right hemispheric dominance for
language function based on the VG task (n = 2),
incomplete collection of the fMRI tasks (i.e., one
missing task, #n = 2), mini-mental state (MMSE) inferior
to 25 (n = 1), and excessive head motion during the
resting-state fMRI sequence (n = 1). The final sample
was 27 younger participants (mean age (std) = 25.5
(3.4) years, 14 females) and 26 older participants (mean
age (std) = 62.1 (4.5) years, 16 females). Demographic
and cognitive details on each group are provided in
Supplementary Table 4.

FMRI task activation

For each task, general linear model analyses were
implemented using Statistical Parametric Mapping
(SPM12). For each task, the preprocessed single-
participant images were analyzed in a similar fashion,
using a linear convolution model, with vectors of onset
representing the experimental (n-back: 2-back; VG:
verb generation, SEM: indoor/outdoor categorization)
and the control condition (n-back: 0-back; VG: passive
viewing of “xxxxx”’; SEM: scramble pictures). In each
participant, images were produced for the active versus
control contrast. In each model, the six movement
parameters were entered as nuisance covariates. Serial
correlations were removed using an AR(1) model. A
high-pass filter (128 seconds) was applied to remove
low-frequency noise. At the group level, brain regions
activated were identified using a random-effects one-
sample ¢-test of the single-participant contrast images
for each task. Age and sex were entered as covariates.
The statistical threshold was set up at a height threshold
of a minimum of T > 3.3 at the whole brain level, which
refers to a maximum p < 0.001 at the voxel level, and
cluster size >50 voxels. Furthermore, at the cluster
level, activation peaks were only selected if they had a
T-value >4.5. The threshold was adapted for each task
as they differ in statistical power (detail in
Supplementary Material, Supplementary Tables 6-8).
Using the above parameters, for the n-back task, we
identified: 12 regions localized in the dorsolateral
prefrontal cortex (dIPFC), inferior parietal lobule,
supplementary motor area, precuneus, thalamus and
cerebellum (Supplementary Table 6 and Supplementary
Figure 2). For the VG task, we identified 8 regions
localized in the left inferior frontal gyrus,
supplementary motor area, inferior parietal lobe, left

hippocampus, and cerebellum (Supplementary Table 8,
Supplementary Figure 3A). For the SEM task, we
identified 9 regions localized in the fusiform and lingual
gyri, retrosplenial cortex, orbitofrontal cortex, and
lateral occipital cortex (Supplementary Table 7,
Supplementary Figure 3B). For each task, the regions
identified were consistent with those expected based on
previous studies [7, 76, 83—85].

Extraction of the activation peaks

Using the Marsbar toolbox, we created 4-mm radius
spherical volumes-of-interest (VOIs) centered on each
group peak coordinates of each network node and
extracted the mean beta values for each respective
contrast in each individual. In total, 29 activation
variables per individual were entered in the sCCAs.
Effect sizes for each peak activation measure between
younger and older groups are reported in
Supplementary Figure 4.

Independent component analysis

We conducted a group-based Independent Component
Analysis (ICA) to simultaneously identify the major
brain networks across the four functional runs because
this approach: (a) is fully data-driven (i.e., does not
require a priori seeds), (b) has been widely
demonstrated as among the most robust approaches to
artifacts with minimal assumptions, and (c) allows the
identification of cortical, subcortical and cerebellar
networks [86]. Group ICA of fMRI Toolbox (GIFT,
https://trendscenter.org/software/, version 3.0c) was
used to extract spatially independent components (ICs)
across all the fMRI datasets and all the participants [87,
88]. The fMRI data from the three tasks and the resting-
state from all participants were concatenated into a
single dataset and reduced using two stages of principal
component analysis (PCA) [87]. We extracted 20 ICs
by using Infomax algorithm [89]. The Infomax
algorithm generated a spatial map and a time course of
the source signal changes for each IC. This analysis was
repeated 20 times using ICASSO for assessing the
repeatability of ICs [90] and the 20 most reliable
components were identified as the final group-level
components. IC’s time courses and spatial maps were
back-reconstructed for each participant using Group
information guided (GIG)-ICA [91] implemented in the
GIFT Toolbox. GIG-ICA was chosen because it has
been shown as more sensitive to group differences [92].
Finally, the 20 ICs were evaluated to identify
functionally relevant brain networks. The criteria for
identifying the networks were: (1) the peak clusters of a
network should be in the grey matter, and (2) there
should be minimal overlap with known vascular,
susceptibility, ventricular and edge regions. Following
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this selection procedure, 11 networks were selected for
functional connectivity analyses (Figure 5).

Functional connectivity analyses

Upon completing the group ICA and the selection of
the 11 networks, we extracted FNC correlations for
each pair of networks and within each dataset
separately (each of the three tasks and the resting-
state), using the GIFT Toolbox. Before FNC
computation, subject-specific time courses were
detrended and despiked using 3dDespike (AFNI,
1995), then filtered using a fifth-order Butterworth
low-pass filter with a high frequency cutoff of 0.15
Hz. This resulted in 55 FNC measures per dataset and
per subject. Effect sizes for each FNC measure
between younger and older groups are reported in
Supplementary Figure 4.

Sparse canonical correlation analyses

We conducted sCCAs to determine the covariation
patterns between behavioral features with sMRI and
with fMRI neuroimaging measures.

We used an sCCA approach with an L1-norm penalty
[35], using a MATLAB script available online [93]. To
do this, the sCCA specifies linear combinations (pairs
of canonical variates) of variables in the behavioral-

IC 01: Left ECN

IC 03: Pcu

health dataset and variables in the neuroimaging dataset
that best express the maximal correlation (i.e., canonical
correlation) between the two datasets. The correlations
between the canonical variates are the canonical
correlations. To achieve this, the algorithm groups
variables from either side into component
pairs/dimensions, which are referred to as modes in the
present paper. Instead of a classic (non-sparse)
canonical correlation analysis, we conducted sCCA
because this analysis (a) permits the inclusion of more
features than observations and (b) allows stronger
inferences regarding the contribution of individual
variables (for similar approaches, see [7, 9, 55]; also see
reviews by Zhuang et al. [36], Wang, Smallwood [94]).

Prior to being entered into the sCCAs, both imaging and
behavioral-health variables were z-standardized. The
neuroimaging measures were combined into two
datasets: the cortical thickness and subcortical volumes
on the one hand (total n = 86, referred to as the “sMRI
dataset”), and the activation-related betas from each
task and FNC variables during each fMRI run on the
other hand (total n = 249, referred to as the “fMRI
dataset”). The non-imaging measures included 59
variables listed in Supplementary Table 5. For each
analysis (i.e., non-imaging versus sMRI dataset, and
non-imaging versus fMRI dataset), we selected the
optimal sparse criteria combination based on the
parameters that corresponded to the values of the model

IC 02: VIS1

Figure 5. Spatial maps of the 11 networks identified across fMRI sessions and participants. Abbreviations: ECN: Executive
Control Network; DMN: Default Mode Network; SAL: Salience Network; SMN: Sensorimotor Network; VIS: Visual Network; a: anterior; p:

posterior; Pcu: Precuneus.
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that maximized the sCCA correlation value. We then
computed the optimal sCCA model and determined its
significance using permutations. Accordingly, the non-
imaging dataset was permuted 5,000 times before
undergoing the exact same analysis as the original data.
The P-value was defined as the number of permutations
that resulted in a higher correlation than the original
data divided by the total number of permutations. Thus,
the P-value is explicitly corrected for multiple testing as
it is compared against the null distribution of maximal
correlation values across all estimated sCCAs. The
threshold for statistical significance for each analysis
was set at P < 0.05 after 5,000 permutations. When the
sCCA was significant, we investigated the contribution
weight of each variable in the whole group, and in each
subgroup separately (on both the imaging and
behavioral data sets). To do so, we computed Pearson’s
correlations between each variable and the mode of the
opposing pattern (that is, each non-imaging variable to
mode of the neuroimaging dataset and vice versa).

Subsidiary analyses

To assess whether our overall results were robust, we 1)
performed leave-one out (LOO) analysis for every
participant; 2) computed a redundancy-reliability score
(Moser’s RR-score) for each overall sample sCCA [42].
The RR-score is a measure of the stability of the
variable-to-variate correlations and indicates whether
results can be expected to be reliable independent of
sample composition. The RR-score is based on a
training-test set approach and essentially measures
whether test sets have similar associations between
variables and variates, whereby results with high RR-
scores can be assumed to be truly carried by the entire
sample and not to be dependent on a specific subset of
the population that may not be reliably reproduced if one
were to replicate the study. It ranges between 0 and 1; a
value of 0 indicates no correlation between the canonical
correlations generated from the randomly resampled
5000 test-sets created during the reliability analyses and
a value of 1 indicates complete agreement. In the present
study, 5,000 splits of training and test sets were
performed in order to calculate the mean RR-score. The
RR-score is thus an index of similarity between all test-
sets. RR-scores that are close to 1 indicate that a test-set
would have yielded very similar results as the mean of
test-sets. We report the median RR-score and the
standard-deviation for each overall sCCA. And 3) We
randomly split the sample in half 5,000 times (creating a
training and a test sets), performed an sCCA on each of
these training sets and then applied the identified
weights to the other half of the sample (the test set). This
allowed us to gain information on whether sCCA
derived correlations in this study were likely to be
dependent on this specific sample or not.

The code to compute the Moser’s RR score is available
at: https://github.com/domamo/Matlab-code-and-
example-to-calculate-RR-score-as-related-to-Moser-et-
al-2018.
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SUPPLEMENTARY MATERIALS

Supplementary Materials and Methods
Non-imaging dataset collection

Participants completed a series of questionnaires
regarding demographic information, medical history for
both self and biological family members, and lifetime of
experiences. In order to measure their cognitive
capacity, they completed the Mini-Mental Status
Examination (MMSE), WASI-II [1], and the NIH
Toolbox for Adult, including cognition, emotion and
motor  batteries  (https://www.healthmeasures.net/
explore-measurement-systems/nih-toolbox/intro-to-nih-
toolbox). Lastly, immediately after the fMRI scan,
samples of saliva and blood were collected. From the
blood sample, HbAlc and estimated average glucose
(EAQG) levels were extracted. The saliva sample was
analyzed by the University of Nebraska-Lincoln
Salivary Bioscience Laboratory to measure the level of
estradiol and testosterone. A total of 59 non-imaging
variables were extracted and described in
Supplementary Table 5.

Task description

N-back task

The task was the one developed by the Human
Connectome Project (HCP), and has a block design
incorporating alternating experimental (2-back) and
sensorimotor control (0-back) conditions [2]. At the
start of a block, a written cue (lasting 2.5 seconds)
informed participants about the type of condition to
follow (2-back or 0-back) and the designated target
stimulus for the sensorimotor control condition. Four
different stimulus types (faces, places, tools and body
parts) were presented in separate blocks. Each
stimulus was presented for 3 seconds, followed by a
500 ms inter-stimulus interval. In the 2-back trials
participants were asked to respond by pressing a
button whenever the current stimulus was the same as
the one presented 2 trials back. In the O0-back
condition, participants were asked to respond by
pressing a button each time they saw the designated
stimulus. The run contained 8 blocks of 10 trials, each
lasting 35 seconds, and 4 fixation blocks each lasting
15 seconds. Performance features (accuracy and
reaction time) were monitored and collected during
fMRI scanning.

Verb Generation (VG) task

This task is known to be a robust activator of the
language network [3, 4]. Participants were instructed to
covertly generate an action word in response to a
viewed concrete noun presented on a screen. Each

word was presented for 3 s, within a 30-second block.
These blocks were alternated with passive viewing of a
central stimulus (#####) in epochs of 30 s for a total of
5 min.

Scene Encoding Memory (SEM) task

This task was adapted from the task created by Binder et
al. [S] known to be a robust activator of bilateral mesial
temporal lobe (MTL) structures. A block-design format
was utilized. During the scene encoding condition, the
participant was required to identify a given scene as
indoor or outdoor from the variety of landscapes or
home/office photos presented. This binary judgment
ensured attentional engagement and full encoding of the
scene. During the control condition, the participant was
presented with scrambled pictures divided into two
halves, and required to identify if the two halves were
identical. This control condition allowed us to subtract
the visuo-perceptual and decision-making aspects of task
performance. The session contained four blocks of scene
encoding and four blocks of the control condition, each
block for 28 s in duration. Each session started and
ended with a 28-second period of blank screen. For each
of the scene encoding and control blocks, 8 stimuli (e.g.,
scene/scrambled picture) were presented, each for 3 s,
interleaved with a 0.5 s of blank screen. The participant
discriminated indoor scenes from outdoor scenes (indoor
session), and vice versa in the other session (outdoor
session), with the order of sessions randomly
counterbalanced across participants. 60% of the stimuli
presented during the scene encoding blocks within that
session were the targets, and the rest (40%) were
nontargets; while, 60% of the stimuli presented during
the control blocks contained scrambled pictures (halves)
that were identically matched (to be referred to as targets
as well), and the other 40% were not (i.e., nontargets).
All visual stimuli were presented only once during the
entire study. The participants were instructed to press a
button with their index finger for target pictures and
another button with their middle finger for non-target
pictures. Performance features (accuracy and reaction
time) were monitored and collected during fMRI
scanning.

Task activation

N-back task

See Supplementary Table 6 and Supplementary
Figure 2.

Verb Generation
See Supplementary Table 8 and Supplementary Figure 3.
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Scene Encoding Memory
See Supplementary Table 7 and Supplementary
Figure 3.

Difference in brain activity between younger and
older participants

We computed the effect size for each functional
measure (Cohen’s D) between younger and older
participants (Supplementary Figure 4). For both VG
and N-back tasks, older participants showed lower
activation, while for the SEM task, older showed
higher activation, than the younger participants. For
the FNC measures, older participants showed a large
majority of lower FC, compared to the younger
participants.

Sparse canonical correlation analyses (SCCAs)

Non-imaging dataset vs. sSMRI dataset
See Supplementary Tables 1 and 2.

Non-imaging dataset vs. fMRI dataset
See Supplementary Table 3.

Reliability analyses

See Supplementary Figure 1.
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Supplementary Figures
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Supplementary Figure 1. Distribution of the redundancy-reliability (RR) score for each sCCA, over the 5,000 simulations.
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Supplementary Figure 2. Working memory network identified in the 2back-Oback contrast across all participants, during the
n-back fMRI task. (A) Activation map, (B) 12 nodes reflecting the activation peaks (coordinates are provided in Supplementary Table 6).

Supplementary Figure 3. Activation Maps for the Verb Generation (A) and Scene Encoding Memory Task (B).
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Effect Size between younger and older participants: Peak Activation
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Supplementary Figure 4. Effect size between younger and older participants for each functional variable. A positive score

reflects higher activation/connectivity in the older than in the younger participants.
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Supplementary Tables

Supplementary Table 1. Canonical weights of the non-imaging variables to the sMRI variate.

Non-imaging Variable SCCA Waights - ACEA Werghts O SECA Weights
Semantic fluency (animal name) r=0.53 r=0.34 r=0.44
Perceived stress (emo_psff t) r=0.51 r=0.11 r=0.22
Anger-Hostility (emo_ahff t) r=0.44 r=0.003 r=0.32
Sadness (emo_sff t) r=0.43 r=0.23 r=0.23
Block_Design r=043 r=-0.29 r=0.39
2_back_ACC r=0.42 r=-0.12 r=0.03
Apathy (emo_aff t) r=0.36 r=043 r=0.21
Loneliness (emo_Iff t) r=0.35 r=0.08 r=0.22
Perceived hostility (emo_phff t) r=0.34 r=0.05 r=0.13
0_back_ACC r=10.34 r=-0.08 r=0.07
Matrix_Reasoning r=033 r=-0.11 r=0.1
Apathy (emo_aff t) r=0.32 r=0.06 r=0.18
Fear-Affect (emo_faff t) r=031 r=-0.06 r=0.28
SEM_Scramble ACC r=03 r=-0.28 r=0.2
Crystalized intelligence (cog_cc t) r=0.25 r=0.37 r=-0.19
Physical activity r=0.21 r=0.13 r=-0.27
Testosterone r=0.21 r=-0.01 r=0.03
Perceived rejection (emo_prff t) r=02 r=0.36 r=-0.18
Oral reading recognition (cog_orr t) r=0.2 r=0.03 r=-0.04
Verbal fluency (total FAS) r=02 r=-0.1 r=0.22
Weekend night sleep r=0.18 r=0.07 r=0.15
Sex r=0.17 r=0.34 r=-0.02
MMSE_Total r=0.16 r=-0.14 r=0.21
Fear-Somatic arousal (emo_fsaff t) r=0.15 r=-0.19 r=-0.21
Similarities r=0.09 r=-0.28 r=02
Vocabulary r=10.09 r=-0.17 r=0.17
SEM_Scramble RT r=0.08 r=0.32 r=0.27
Anger-Physical aggression _ _ _
(emo apaff 1) r=0.06 r=-0.12 r=-0.23
FSIQ r=0.06 r=-0.31 r=0.21
Picture sorting memory (cog_psm_t) r=0.06 r=-0.22 r=-0.15
Estradiol r=0.04 r=-0.01 r=—-02
Weeknight sleep r=0.04 r=0.01 r=0.05
Number of alcoholic drinks r=0.01 r=-0.34 r=0.06
Picture vocabulary (cog pv t) r=10.002 r=0.21 r=-0.23
BMI r=-—0.01 r=047 r=0.15
o) card change sort r=-0.06 r=-0.26 r=-0.04
SEM_Scene_RT r=-0.07 r=0.38 r=0.16
Pattern comparison (cog_pcps_t) r=—0.08 r=-0.38 r=-0.06
SEM_Scene_ACC r=-0.09 r=-0.36 r=0.12
Fluid intelligence (cog_fc t) r=-0.12 r=-049 r=-0.21
Flanker inbibitorycontrol and
EAG r=-0.16 r=0.25 r=0.05
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HBA1C

Friendship (emo_fff t)

List sorting working memory
(cog_Iswm_t)

Positive affect (emo_paff t)
High blood pressure

0_back RT

Pegboard RH

2_back_RT

Instrumental support (emo_isff t)
Pegboard LH

Social satisfaction (emo_sss t)

Self-efficacy (emo_secat t)

Domain life satisfaction
(emo dslsff raw)

Emotional support (emo_esff t)
Meaning and Purpose (emo_mpff t)
General life satisfaction (emo_glsff t)
Age

r=-0.16
r=-0.21
r=-0.26
r=-0.27
r=-0.31
r=-0.32
r=-0.33
r=-0.34
r=-0.36
r=-0.37
r=—-04
r=-0.42
r=-0.42
r=-0.42
r=-0.42
r=-0.55
r=-0.74

r=0.25
r=-0.5
r=-0.51
r=-0.04
r=-0.11
r=0.22
r=20.39
r=0.19
r=-0.38
r=-0.03
r=-045
r=-0.31
r=-0.48
r=-0.51
r=-0.19
r=-0.26
r=0.15

r=0.04
r=-0.37
r=-0.12
r=-0.32
r=-0.37
r=0.08
r=-0.02
r=-0.17
r=-0.03
r=-0.09
r=-0.2
r=-0.23
r=-0.3
r=-0.22
r=-0.37
r=-0.51
r=-0.57

Variables are described in Supplementary Table 5. Top contributions shown in the main text are highlighted in bold.

Supplementary Table 2. Canonical weights of the sMRI variables to the non-imaging variate.

Region All Subj ects: Younger Participants Only: Older Participz&nts Only:
sCCA Weights sCCA Weights sCCA Weights
Right Superior Frontal Thickness r=10.74 r=048 r=10.51
Left Superior Frontal Thickness r=0.72 r=0.39 r=0.48
Left Pars Opercularis Thickness r=0.7 r=0.21 r=10.51
Right Pars Opercularis Thickness r=0.64 r=0.17 r=04
Right Insula Thickness r=0.63 r=0.07 r=032
Right Superior Temporal Thickness r=10.63 r=-0.03 r=0.48
Left Precentral Thickness r=10.62 r=-0.05 r =0.46
Left Pars Triangularis Thickness r=0.6 r=0.19 r=041
Left Superior Temporal Thickness r=0.58 r=0.19 r=0.31
Right Paracentral Thickness r=0.58 r=0.01 r=10.51
Right Pars Triangularis Thickness r=0.58 r=0.01 r=032
Left Bankssts Thickness r =0.55 r=0.28 r=0.29
Left Caudal Middle Frontal Thickness r=0.55 r=0.37 r=0.24
Right Precuneus Thickness r=0.54 r=0.31 r=0.38
Right Precentral Thickness r=0.52 r=-0.25 r=0.45
Right Caudal Middle Frontal Thickness r=10.52 r=0.18 r=0.26
Right Superior Parietal Thickness r=0.52 r=0.01 r=0.53
Left Inferior Parietal Thickness r=0.5 r=0.35 r=0.34
Right Supramarginal Thickness r=0.49 r=0.07 r=0.28
Ifleftc ll(ili)esst;al Anterior Cingulate r=0.49 =022 =013
Left Insula Thickness r=0.49 r=0.09 r=0.06
Left Postcentral Thickness r=0.47 r=-0.07 r=0.62
Right Inferior Parietal Thickness r=0.47 r=02 r=0.25
Left Thalamus Volume r=047 r=-0.1 r=0.1
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Left Supramarginal Thickness r=0.46 r=0.1 r=0.16
Left Accumbens Volume r=045 r=0.02 r=0.22
Right Putamen Volume r=0.44 r=0.09 r=0.05
Left Middle Temporal Thickness r=0.44 r=-0.03 r=0.17
Left Pallidum Volume r=043 r=-0.19 r=0.39
Left Superior Parietal Thickness r=0.42 r=0.28 r=0.47
Left Amygdala Volume r=0.42 r=-0.03 r=0.34
Right Middle Temporal Thickness r=042 r=-0.21 r=0.01
Left Precuneus Thickness r=041 r=0.19 r=04
Right Rostral Middle Frontal Thickness r=0.41 r=0.33 r=0.17
Left Putamen Volume r=0.39 r=0.01 r=0.21
Right Pallidum Volume r=0.38 r=-0.1 r =045
Left Rostral Middle Frontal Thickness r=0.38 r=0.13 r=0.29
Left Posterior Cingulate Thickness r=0.36 r=-0.06 r=-0.04
Right Thalamus Volume r=0.33 r=-0.1 r=0.12
Right Postcentral Thickness r=0.33 r=-0.17 r=0.44
Right Posterior Cingulate Thickness r=033 r=0.02 r=0.04
Right Lateral Orbitofrontal Thickness r=0.32 r=0.27 r=-0.06
I%}llgiilltqizztral Anterior Cingulate =032 =021 =008
Right Accumbens Volume r=031 r=0.09 r=0.09
Right Amygdala Volume r=0.31 r=20.02 r=0.2
Left Lateral Orbitofrontal Thickness r=0.31 r=0.24 r=-0.04
Right Pars Orbitalis Thickness r=03 r=0.06 r=0.03
Left Isthmus Cingulate Thickness r=03 r=-0.17 r=0.11
Left Paracentral Thickness r=03 r=0.12 r=0.29
Iﬁelfz lgnaéls(ial Anterior Cingulate =029 =027 =022
Left Caudate Volume r=0.28 r=-0.01 r=-0.17
Left Hippocampus Volume r=0.28 r=-0.05 r=0.17
Right Bankssts Thickness r=0.28 r=0.11 r=0.28
Right Cerebellum Cortex Volume r=0.27 r=0.13 r=0.01
Left Pars Orbitalis Thickness r=0.27 r=-0.28 r=0.17
Right Hippocampus Volume r=0.27 r=-0.12 r=0.27
Left Cerebellum Cortex Volume r=0.25 r=0.11 r=-0.02
Left Parahippocampal Thickness r=0.24 r=-0.05 r=0.26
Left Medial Orbitofrontal Thickness r=0.24 r=0.09 r=-0.02
Right Inferior Temporal Thickness r=0.24 r=-0.1 r=10.06
Left Inferior Temporal Thickness r=0.21 r=-0.05 r=0.03
Left Frontal Pole Thickness r=0.21 r=0.02 r=0.36
Right Entorhinal Thickness r=0.2 r=0.12 r=-0.1
Left Lateral Occipital Thickness r=0.19 r=-0.01 r=0.35
Right Frontal Pole Thickness r=0.19 r=0.53 r=-0.04
Left Transverse Temporal Thickness r=0.18 r=0.07 r=0.07
Right Parahippocampal Thickness r=0.15 r=0.04 r=0.08
Right Caudate Volume r=0.15 r=-0.03 r=-0.21
Right Temporal Pole Thickness r=0.15 r=-0.03 r=0.16
Left Fusiform Thickness r=0.13 r=0.01 r=0.02
Right Cuneus Thickness r=0.12 r=0.03 r=0.11
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Right Transverse Temporal Thickness
Right Isthmus Cingulate Thickness

Right Lateral Occipital Thickness

Right Caudal Anterior Cingulate
Thickness

Left Pericalcarine Thickness
Left Entorhinal Thickness

Left Temporal Pole Thickness
Right Fusiform Thickness
Right Lingual Thickness

Left Cuneus Thickness

Right Pericalcarine Thickness
Left Lingual Thickness

Right Medial Orbitofrontal Thickness
Right Lateral Ventricle Volume
Left Lateral Ventricle Volume

r=0.12

r=0.11
r=0.1

r=0.08

r=0.07
r=0.04
r=0.04
r=0.01
r=-0.03
r=-—0.04
r=-0.04
r=-0.08
r=-—0.13
r=-0.58
r=-0.6

r=-0.08
r=-0.05
r=-0.13

r=10.34

r=0.13
r=-0.13
r=0.06
r=-0.1
r=-0.34
r=0.03
r=0.16
r=0.03
r=0.16
r=-0.08
r=-0.04

r=0.1
r=0.22
r=0.19
r=-0.18
r=-0.03
r=0.15
r=0
r=0
r=-0.07
r=0.01
r=-0.04
r=-0.28
r=-0.47
r=-0.37
r=-—0.48

Top contributions shown in the main text are highlighted in bold.

Supplementary Table 3. Canonical weights of the non-imaging variables to the fMRI variate.

Non-imaging Variable

All participants:  Younger participants only:

Older participants only:

sCCA Weights sCCA Weights sCCA Weights

2_back_ACC r=0.68 r=0.08 r=0.5
Perceived stress (emo_psff t) r =0.68 r=0.42 r=0.48
Matrix_Reasoning r=0.56 r=-0.05 r=0.59
Block_Design r=0.56 r=0.04 r=0.26
Anger-Hostility (emo_ahff t) r=0.55 r=023 r=043
Loneliness (emo_Iff t) r =0.49 r=0.34 r=0.48
Perceived hostility (emo_phff t) r=0.46 r=0.23 r=03
Sadness (emo_sff t) r=0.45 r=0.26 r=0.23
Perceived rejection (emo_prff t) r=043 r=0.19 r =0.69
Fear-Somatic arousal (emo_fsaff t) r=0.42 r=0.26 r=0.18
Anger-Affect (emo_aff t) r=04 r=0.31 r=0.25
Fear-Affect (emo_faff t) r=04 r=0.26 r=0.22
Physical activity r=0.39 r=-0.14 r=0.17
0_back_ACC r=0.39 r=0.004 r=-0.02
SEM_Scramble ACC r=0.36 r=-0.16 r=0.17
Oral reading recognition (cog_orr_t) r=0.32 r=0.4 r=0.002
Picture sorting memory (cog_psm_t) r=0.31 r=0.11 r=0.26
Testosterone r=03 r=0.25 r=0.02
Apathy (emo_aff t) r=03 r=0.15 r=0.37
Anger-Physical aggression =028 =022 r=0.14
(emo_apaff t)

Semantic fluency (animal name) r=0.25 r=0.15 r=-0.32
Estradiol r=0.24 r=0.46 r=0.09
Crystalized intelligence (cog_cc t) r=0.23 r=0.18 r=0.12
FSIQ r=0.2 r=-0.06 r=0.36
Vocabulary r=0.19 r=0.13 r=0.24
Pattern comparison (cog_pcps_t) r=0.18 r=0.23 r=0.22
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Fluid intelligence (cog_fc t) r=0.14 r=0.09 r=-0.06

Similarities r=0.13 r=-—0.01 r=-0.01
MMSE_Total r=0.12 r=0.14 r=-0.13
Verbal fluency (total FAS) r=0.11 r=0.01 r=-0.31
Number of alcoholic drinks r=0.09 r=0.1 r=-0.01
Weekend night sleep r=0.09 r=-0.31 r=0.04
Sex r=0.07 r=0.07 r=-0.07
Flanker inibiery contrl nd
Weeknight sleep r=0.05 r=-0.22 r=0.25
Picture vocabulary (cog_pv_t) r=0.01 r=-0.07 r=0.21
SEM_Scramble MeanRT r=-0.02 r=0.17 r=0.31
SEM_Scene_ACC r=-0.03 r=-0.02 r=0.07
Dimensional card change sort r=—0.04 r=—-0.15 r=—025
(cog_dccs t)

Friendship (emo_fff t) r=-0.06 r=-0.28 r=-042
High blood pressure r=-0.14 r=0.12 r=-0.01
SEM_Scene_MeanRT r=-0.24 r=0.01 r=0.14
List sorting working memory _ _ _
(cog lswm. ) r=-0.26 r=-02 r=-0.59
2 _back_MeanRT r=-03 r=0.19 r=0.26
BMI r=-0.31 r=-0.12 r=-0.11
Emotional support (emo_esff t) r=-033 r=—0.11 r=-0.39
z‘r’n“(:fa‘;lls‘gfeijggﬁfa““’“ r=-033 r=-0.04 r=—0.49
Positive affect (emo_paff t) r=-0.34 r=-041 r=-0.34
HBAI1C r=-—0.35 r=0.0008 r=-0.16
EAG r=-0.35 r=20.00001 r=-0.17
Self-efficacy (emo_secat_t) r=—04 r=-0.3 r=-02
Instrumental support (emo _isff t) r=-0.42 r=-0.15 r=-0.39
Social satisfaction (emo_sss t) r =-045 r=-0.29 r=-0.63
Meaning and Purpose (emo_mpff t) r=-0.46 r=—04 r=-0.38
0_back MeanRT r=-0.46 r=0.05 r=0.02
General life satisfaction (emo_glsff t) r=-047 r=-0.07 r=-0.38
Pegboard_LH r=-0.5 r=-0.37 r=-0.2
Pegboard RH r=-0.6 r=-0.06 r=-0.33
Age r=-0.89 r=-—05 r=-03

Variables are described in Supplementary Table 5. Top contributions shown in the main text are highlighted in bold.

Supplementary Table 4. Demographic and cognitive information for each study group.

Variables Young?; I;azl';i)cipants Older(lll’ir;ig)ipants P-value
Sex (Females, n [%]) 14 [51.9%)] 17 [65%] 0.5160
Age (years) 25.54 (3.42) 61.85 (4.37) 0.0000
Body Mass Index (BMI) 24.34 (3.67) 26.63 (3.79) 0.0300
HBAI1C 5.26 (0.28) 5.48 (0.33) 0.0130
EAG 104.20 (8.00) 110.5 (9.36) 0.0130
Estradiol 1.42 (0.91) 1.18 (0.7) 0.2810
Testosterone 126.477 (87.55) 84.16 (55.65) 0.0420
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High Blood Pressure (n [%]) 2 [7.4%)] 6 [23%)] 0.2040
Number of Alcoholic Drinks 4.07 (1.73) 3.65 (2.56) 0.4860
Physical Activity 4.33 (0.76) 3.48 (1.2) 0.0030
Weeknight Sleep 7.96 (1.15) 7.9 (0.86) 0.8330
Weekend Night Sleep 8.43 (1.22) 8.09 (1.03) 0.2800
MMSE _total 28.96 (1.43) 28.46 (1.77) 0.2610
Block_design 53.89 (10.17) 41.31 (8.24) 0.0000
Vocabulary 41.63 (3.66) 40.81 (3.52) 0.4090
Matrix_reasoning 24.11 (2.15) 21.54 (3.1) 0.0010
Similarities 35.93 (3.63) 34.85 (3.44) 0.2710
FSIQ 114.15 (9.31) 111.92 (7.63) 0.3470
Verbal fluency (Total_FAS) 47.96 (11.45) 43.23 (10) 0.1160
Semantic fluency (Animal_name) 24.41 (3.78) 21.15 (4.52) 0.0060
(cog_orr_t) 54.85 (7.96) 51.12 (4.38) 0.4000
cog pv_t 52.67 (8.51) 53 (5.43) 0.8660
cog_lswm_t 51.70 (8.82) 52.85 (8.08) 0.6250
cog_pcps_t 59.33 (12.74) 57.08 (13.32) 0.5310
cog_psm_t 57.78 (12.98) 51.23 (12.57) 0.0680
cog_fica t 47.33 (11.28) 46.88 (7.5) 0.8660
cog_dces_t 57.11 (10.39) 55.88 (9.24) 0.6520
cog _fc t 57.04 (9.98) 53.88 (9.8) 0.2510
cog cc t 55.19 (9.32) 52.27 (4.42) 0.1540
pegboard_rh 18.40 (1.93) 21.74 (2.94) 0.0000
pegboard_lh 19.75 (1.74) 22.31 (3.21) 0.0010
emo_ahff t 57.67 (8.10) 48.81 (9.43) 0.0010
emo_aaff t 55.74 (8.07) 49.92 (9.16) 0.0170
emo_apaff t 52.22 (11.19) 47.73 (7.45) 0.0930
emo_phff t 53.81(8.32) 47.42 (6.26) 0.0030
emo_Iff t 58.07 (10.16) 50.54 (11.07) 0.0130
emo_prff t 52.63 (9.03) 48.62 (9.22) 0.1160
emo_secat_t 47.89 (6.38) 53.38 (8.86) 0.0120
emo_psff t 55.85(8.43) 43.42 (9.54) 0.0000
emo_faff t 52.67 (10.38) 45.88 (8.74) 0.0130
emo_fsaff t 50.41 (8.54) 44.23 (6.54) 0.0050
emo_glsff t 50.22 (5.92) 56.92 (9.85) 0.0040
emo_dslsff raw 50.59 (8.11) 53.96 (7.38) 0.1200
emo_mpff t 47.19 (9.45) 53.77 (10.15) 0.0180
emo_paff t 48.15 (8.71) 51.62 (8.80) 0.1560
emo_sff t 52.78 (10.69) 44.19 (9.14) 0.0030
emo_aff t 46.78 (8.50) 43.73 (6.16) 0.1420
emo_esff t 47.48 (9.89) 51.77 (7.60) 0.0840
emo_fff t 49.67 (10.42) 47.04 (10.49) 0.3650
emo_isff t 47.63 (8.80) 53.96 (9.89) 0.0170
emo_sss_t 45.74 (10.08) 50.85 (9.57) 0.0640
SEM_Scene_MeanRT (ms) 920.37 (115.09) 1007.11 (141.53) 0.0180
SEM_Scene ACC 98% (2%) 98% (3%) 0.5780
SEM_Scramble_MeanRT (ms) 1741.41 (221.36) 1823.94 (267.77) 0.2270
SEM_Scramble_ACC 92% (5%) 85% (11%) 0.0120
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0_back_MeanRT (ms)
2_back_MeanRT (ms)

0_back_ACC
2_back_ACC

799.80 (137.06) 1106.51 (320.97) 0.0000
1050.99 (182.55) 1250.59 (217.79) 0.0003
94% (10%) 81% (16%) 0.0010
95% (5%) 81% (12%) 0.0000

All continuous variables are shown as mean (std). All variables are described in Supplementary Table 5. P-values reflect group
differences from either a t-test or a chi-squared test as appropriate.

Supplementary Table 5. Description of the 59 behavioral variables.

Variable Name

Variable Description

Sex

Age

BMI

HbAlc

EAG
Estradiol
Testosterone

High Blood Pressure
Number of Alcoholic Drinks

Physical Activity

Weeknight Sleep

Weekend Night Sleep

MMSE total

Block design
Vocabulary

Matrix_reasoning
Similarities
FSIQ

Total FAS

Animal name

cog orr t

cog pv_t

cog lswm t

cog pcps_t

Male and Female

Age in years

Current Body Mass Index

Hemoglobin A1C

Estimated average glucose measured (mg/dl)

Mean of two results of the same sample (pg/ml)

Mean of two results of the same sample (pg/ml)

Personal history of high blood pressure. Yes or No

Average number of alcoholic drinks consumed/month. Computed to Likert scale
score (0—8, with 0: no drinks, and 8: daily drinks)

Composite score reflecting the degree of intensity and frequency of exercise
activity. Computed scale score ranging (0—6, with 0: no activity, 6: daily
exercise with high intensity).

Average hours of sleep on a weeknight
Average hours of sleep on a weekend night
Total score for the Mini-Mental Status Exam

Raw score for the block design section on the WASI-II. Participants are asked to
re-create the block pattern they are shown as quickly as they are able.

Raw score for the vocabulary section on the WASI-II. Participants are asked to
define the meaning of words they are given.

Raw score for the matrix reasoning section on the WASI-II. Participants are
asked to identifying the design to complete the pattern shown.

Raw score for the similarities section on the WASI-II. Participants are asked to
identify the similarity between two words.

Full Scale 1Q score taken from sum of T-Scores on the WASI-II combining the
block design, vocabulary, matrix reasoning, and similarities sections

Verbal Fluency. Sum of total number of words participant verbalizes starting
with a F, A and S in one minute each.

Semantic Fluency. Sum of total number of animals participant verbalizes in one
minute.

Oral reading recognition T-Score. Participant is asked to read and pronounce
letters and words as accurately as possible. Completed via NIH Toolbox.

Picture Vocabulary T-Score. Participant selects the picture (out of four pictures
presented) that most closely matches the meaning of the word. Completed via
NIH Toolbox.

List Sorting Working Memory T-Score. Participant is asked to verbally repeat
back objects that were shown with an auditory explanation, but re-order them by
size from smallest to largest. The list of objects continually becomes longer.
Completed via NIH Toolbox.

Pattern Comparison Processing Speed T-Score. Participant is asked to
indicate whether two pictures are matching or not. Items are simple so as to
purely measure processing speed. They are asked to respond as quickly and
accurately as they are able to. Completed via NIH Toolbox.
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cog psm t

cog fica t

cog dccs_t

cog fc t

cog cc t

pegboard RH

pegboard LH

emo_ahff t
emo_aaff t
emo_apaff t
emo_phff t
emo Iff t

emo_prff t

emo_secat t
emo_psff t
emo_faff t

emo_fsaff t
emo_glsff t

emo_dslsff raw

emo_mpff t
emo_paff t
emo_sff t
emo_aff t
emo_esff t
emo_fff t
emo_isff t

emo_sss_t

Picture Sorting Memory T-Score. Participant views brief action activities
presented as pictures with auditory explanation on a screen and attempt to place
the pictures back in the same order they were shown on the screen. Completed
via NIH Toolbox

Flanker Inhibitory Control and Attention T-Score. Participant must indicate
which direction the middle arrow is pointing in a row of five arrows as quickly
and accurately as they are able.

Dimensional Card Change Sort T-Score. Respondents are asked to indicate
either the matching color or shape of a target picture based upon the prompt they
were given as quickly and accurately as they are able. Completed via NIH
Toolbox.

The fluid (intelligence) composite T score for the NIH Toolbox including the
dimensional card change sort, flanker inhibitory, picture sequence memory, list
sorting, and pattern comparison measures.

The crystalized (intelligence) composite score for the NIH Toolbox including
picture vocabulary and oral reading recognition.

Participants are asked to place pegs, with their right hand, in holes one at a time
as quickly as they are able and then take them out of the holes one at a time as
they are able. Total time (sec). Completed with a physical peg board and the
NIH Toolbox.

Participants are asked to place pegs, with their left hand, in holes one at a time
as quickly as they are able and then take them out of the holes one at a time as
they are able. Total time (sec). Completed with a physical peg board and the
NIH Toolbox.

Anger and hostility questions. Computed T-Score. Completed via NIH
Toolbox.

Anger with affect questions. Computed T-Score. Completed via NIH Toolbox.

Anger with physical aggression questions. Computed T-Score. Completed via
NIH Toolbox.

Perceived hostility questions. Computed T-Score. Completed via NIH
Toolbox.

Loneliness questions. Computed T-Score. Completed via NIH Toolbox.

Perceived rejection questions. Computed T-Score. Completed via NIH
Toolbox.

Self-efficacy questions. Computed T-Score. Completed via NIH Toolbox.
Perceived stress questions. Computed T-Score. Completed via NIH Toolbox.
Fear with affect questions. Computed T-Score. Completed via NIH Toolbox.

Fear with somatic arousal questions. Computed T-Score. Completed via NIH
Toolbox.

General life satisfaction questions. Computed T-Score. Completed via NIH
Toolbox.

Domain-specific life satisfaction questions. Computed raw score. Completed
via NIH Toolbox.

Meaning and purpose questions. Computed T-Score. Completed via NIH
Toolbox.

Positive affect questions. Computed T-Score. Completed via NIH Toolbox.
Sadness questions. Computed T-Score. Completed via NIH Toolbox.

Apathy questions. Computed T-Score. Completed via NIH Toolbox.
Emotional support questions. Computed T-Score. Completed via NIH
Toolbox.

Friendship questions. Computed T-Score. Completed via NIH Toolbox.

Instrumental support questions. Computed T-Score. Completed via NIH
Toolbox.

Social satisfaction summary T-Score. Completed via NIH Toolbox.

WWWw.aging-us.com

192 AGING



SEM_Scene_MeanRT
SEM_Scene_ ACC
SEM_Scramble_MeanRT

SEM_Scramble_ ACC

0_back MeanRT

2_back_MeanRT

0_back ACC
2_back ACC

During the SEM fMRI task, mean reaction time (in ms) for accurate responses
only during the scene condition (participant is asked to determine if the picture
is an indoor or outdoor setting).

During the SEM fMRI task, total accuracy (in %) for the scene condition.

During the SEM fMRI task, mean reaction time (in ms) for accurate responses
only during the control condition (participant is asked to determine if the
scrambled picture has 2 identical halves).

During the SEM fMRI task, total accuracy (in %) for the control condition.

During the n-back fMRI task, mean reaction time (in ms) for accurate responses
only during the 0-back condition.

During the n-back fMRI task, mean reaction time (in ms) for accurate responses
only during the 2-back condition.

During the n-back fMRI task, total accuracy (in %) for the 0-back condition.
During the n-back fMRI task, total accuracy (in %) for the 2-back condition.

Supplementary Table 6. Activation peak for the N-Back task.

Region T X y z

Left Inferior Parietal Cortex 6.81 —38 =50 46
Right Inferior Parietal Cortex 6.78 38 —46 46
Left Middle Frontal Cortex 6.26 -22 6 54
Left Inferior Parietal Cortex 6.18 =50 —44 46
Right Middle Frontal Cortex 7.84 28 8 52
Left SMA 6.42 -6 12 50
Right Cerebellum 7.58 30 —58 —34
Right Precuneus 7.30 10 —60 56
Left Cerebellum 7.06 —42 —62 -36
Left Middle Frontal Cortex 5.63 =30 44 16
Right Thalamus 522 14 -8 10
Left Insula 4.92 =32 16 2

MNI Coordinates. Abbreviation: SMA: Supplementary Motor Area. Activation peaks are shown on Supplementary Figure 2B.

Supplementary Table 7. Activation peak for the scene encoding memory task.

Region T X y z
Right Fusiform Gyrus 18.01 26 —46 —-10
Left Fusiform Gyrus 17.22 —20 -36 -16
Right Lingual Gyrus 18.48 6 =76 —4
Right Retrosplenial Cortex 18.42 10 =52 8
Left Retrosplenial Cortex 18.18 -10 =56 10
Left Orbital MPFC 13.36 -6 20 —14
Left Middle Occipital Cortex 12.70 —46 =72 26
Right Middle Occipital Cortex 11.76 48 =76 2
Right Middle Temporal Cortex 9.73 56 -2 —22

MNI Coordinates. Abbreviation: MPFC: Medial Prefrontal Cortex.
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Supplementary Table 8. Activation peak for the verb generation task.

Region T X y z
Right Cerebellum 18.25 30 —60 =30
Left SMA 16.02 -8 4 64
Left Inferior Frontal Gyrus 15.27 —48 12 6
Left Cerebellum 13.07 —42 —64 —28
Right anterior Insula 11.94 42 16 —4
Left Inferior Parietal 10.10 -30 —62 42
Left Hippocampus 10.09 =32 -18 -10
Right Putamen 10.00 20 2 10

MNI Coordinates. Abbreviation: SMA: Supplementary Motor Area.
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