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ABSTRACT

Background: Evidence from research supports the significant role of alternative polyadenylation (APA) in the
development of cancer. The aim of this study is to explore the prognostic and therapeutic value of APA events
for patients with low-grade gliomas (LGG).

Methods: The gene expression and APA profiles of patients with low-grade gliomas were obtained from The
Cancer Genome Atlas database. All patients were sorted randomly into training and test sets. The prognostic-
associated events of alternative splicing were screened by univariate Cox regression. Subsequently, Least
Absolute Shrinkage and Selection Operator and multivariate Cox analysis were performed to construct a
prognostic signature. The patients were sorted into the high and low-risk groups based on their median risk score.
Bioinformatics methods were used to identify genetic variation, pathway activation, immune heterogeneity, and
drug response differences between the two groups.

Results: A prognostic signature was constructed shown to be capable of accurately predicting prognosis of
patients with LGG. Notable variations were observed in the tumor mutation burden and copy number
variations between the high-risk and low-risk patients. Besides, the high-risk group had enhanced immune cell
abundance and immune checkpoint gene expression. In terms of drug response, we further found that the
patients of high-risk group were more sensitive to immunotherapy, but chemotherapy was suggestively more
appropriate for the low-risk group patients.

Conclusion: Our findings give new insights and methods related to prognosis prediction and treatment methods
for LGG patients, and expand the understanding regarding the role of alternative splicing in LGG.

INTRODUCTION Health Organization (WHO), gliomas can be sorted

into grades I-IV, of which grades II and III are defined
Glioma is the most common primary intracranial tumor as low-grade gliomas (LGG) [3]. Although LGG is less
in the adult central nervous system with high malignant as compared to GBM, seemingly the
recurrence and mortality rates [1]. The age-calibrated recurrence of the tumor and malignant progression
incidence of gliomas ranges from 4.67%o0 to 5.73%o00 cannot be evaded completely even after standard
[2]. As per the classification system of the World treatment such as surgical resection, radiotherapy, and
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chemotherapy is received by the patient [3]. Because of
tumor heterogeneity, the prognosis of LGG patients
varies widely, with survival periods ranging from 1 to
15 years [4]. As a result of the heterogeneity of LGG
patients, there is a need for the development of
effective biomarkers that can be used to stratify
predictions based on patient prognostic risk, thereby
facilitating the development of precise treatment
regimens.

The alternative polyadenylation (APA) is a very
common RNA processing mechanism that occurs
during pre-mRNA maturation. Multiple mature mRNA
subtypes can be generated from the same pre-mRNA by
selecting different polyadenylation signaling sites
(PAS) in the 3’-UTR [5]. Whole-genome deep
sequencing indicates that at least 70% of multiple
transcripts coded by human genes are derived as a result
of APA [6]. The APA plays a significant function in
controlling the stability of mRNA, its localization and
translation, protein-coding, and the localization of
protein [7]. According to recent studies, the change of
APA is closely associated with the occurrence and
development of different tumor types, for instance, low
expression levels of PCF11 in neuroblastoma is related
to extensive APA in the transcriptome, good prognosis
of the patient, and spontaneous tumor regression, while
PCF11  knockdown  causes abnormal  neural
differentiation [8]. During glioblastoma, the down-
regulation of CFIm25 results in 3'UTR shortening and
the up-regulation of oncogenes such as CCNDI and
Pakl which increases tumorigenicity and enhances
tumor size [9, 10]. Though the biological significance of
APA in tumors is widely accepted, its prognostic value
and biological function in LGG are still largely
unknown.

In this research, a systematic analysis of APA events in
LGG patients was performed using The Cancer Genome
Atlas (TCGA) database and we identified numerous
overall survival (OS) related APA events. The potential
biological functions of these OS-related APA events
were explored in detail. Subsequently, a signature based
on multiple prognostic APA events was constructed to
predict the prognosis of LGG patients. Furthermore, we
analyzed the correlation between the signature and
tumor immunity, tumor mutation burden (TMB), and
copy number variations (CNVs). The value of this
signature in predicting the response of LGG patients to
various treatments was also evaluated. At the end of this
study, a core regulator (CR)-APA network was
constructed to disclose the underlying mechanism
through which the events of APA affect LGG
prognosis. The findings of this research may help in
understanding mechanisms involved in the occurrence
and development of LGG.

MATERIALS AND METHODS
Data collection and preprocessing

The expression profiles, mutations, CNVs, and clinical
information of LGG patients were downloaded from the
TCGA database. Moreover, data for APA events were
obtained from the UCSC Xena database (https://xena.
ucsc.edu). Patients were then randomly sorted into two
sets namely a training set and a test set in the ratio of
1:1 by the software. The percentage of distal polyA site
usage index (PDUI) value is an intuitive ratio from 0 to
1 that was used for the quantification of events related
to APA. A set of strict filtering criteria (Percentage of
samples with PDUI value >75%, mean PDUI value
>0.05 and standard deviation PDUI value>0.01) were
established for ensuring the reliability of the subsequent
analysis of APA events. Afterward, for the completion
of missing data regarding APA, we used the k-nearest
neighbor algorithm.

Identification of prognostic APA events and functional
enrichment analysis

For the determination of survival-related APA events,
univariate Cox regression analysis was performed to
evaluate the relation between APA events and the
overall survival period of patients with LGG. The APA
events with P-value <0.05 were chosen as survival-
related APA events. The web tool Metascape
(https://metascape.org/) was utilized for analyzing the
functional enrichment of parental genes for survival-
related APA events. Terms having a calibrated P-value
<0.05 were taken as substantially enriched. Bar plots
were used for visualizing key terms in the Kyoto
Encyclopedia of Genes and Genomes (KEGGQG)
pathways and Gene Ontology (GO) function enrichment
analysis (including biological process (BP), cellular
component (CC), and molecular function (MF).

Construction of prognosis signature for patients with
LGG based on APA events

At first, the least absolute shrinkage and selection
operator (LASSO) analysis was performed on the top 20
most prognostic-related APA events to further screen
key APA events and avoid overfitting of subsequent
models. Afterward, a stepwise multivariate Cox
regression analysis was carried out for the development
of a prognostic signature for APA events. The risk value
of each patient was measured as per the following
formula: B1 x Expl + 2 x EXP2 + B I x EXPi, where
B was the coefficient value and exp was the PDUI value
of APA time. The risk value was an indicator that
measured the prognostic risk of each LGG patient. All
patients were sorted into two groups: the high-risk and
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low-risk groups according to their median risk values.
The Kaplan-Meier survival analysis was carried out for
the verification of survival differences among the high-
risk and low-risk groups. The time-dependent receiver
operating characteristic (ROC) curves were drawn for
the evaluation of the predictive ability of APA signature.

Somatic mutation and copy number analysis

This study used the “maftools” package (version 2.10)
for calculating and visualizing the mutation data. TMB
was identified as the total number of somatic non-
synonymous mutations in the coding regions. For each
sample, mutation detection was done using the
preprocessed and annotated MAF data files generated
by the varscan platform for the calculation of the tumor
mutation burden. The GISTI is a tool that is widely used
for the identification of genes targeted for somatic copy
number changes that trigger the growth of cancer. In
this research, the GISTIC 2.0 software was used to
identify regions with significant gene amplification or
deletion in the CNV data of LGG [11]. The parameter
thresholds were defined as amplifying or missing length
>0.1 and P-value <0.05.

and

The evaluation of immune infiltration

immunotherapy response

Based on the expression profile information, the
estimation of stromal and immune cells in malignant
tumours using expression data (ESTIMATE) algorithm
was used to generate matrix and immune scores to
estimate the level of infiltrating matrix, immune cells,
and tumor purity in LGG tissues [12]. In addition, the
“GSVA” package (version 1.42) of Single-sample gene
set enrichment analysis (ssGSEA) algorithm was used
to quantify the enrichment scores of 16 immune cells
and 13 immune functions for every sample of LGG. 14
genes have previously been reported as hub targets for
immune checkpoint inhibitors [13]. Differences in the
therapeutic efficacy of immune checkpoint inhibitors in
malignancies are associated with differences in immune
checkpoint gene expression. Therefore, the correlation
between the expression levels of 14 immune checkpoint
genes and our signature was analyzed in depth. Tumor
immune dysfunction and exclusion (TIDE) is an
algorithm that predicts response to immunotherapy
based on mimicking tumor immune evasion
mechanisms [14]. The algorithm was performed to
preliminarily explore the possibility of each sample
responding to immunotherapy.

Clinical drug response prediction

Based on the Genomics of Drugs Sensitivity in Cancer
(GDSC) cell line dataset, the R package “pRRophetic”

(version 0.50) was used to predict the sensitivity of
patients to signature-targeted chemotherapy agents. The
R package can be evaluated by ridge regression for
IC50 of included drugs, and the prediction accuracy can
be observed by 10-fold cross-validation on the basis of
the GDSC training set [15, 16].

Establishment of the nomogram

The clinicopathological parameters of LGG patients
were added in wunivariate and multivariate Cox
regression analyses for the verification of the
independence of the risk scores based on the survival-
related APA signature. Afterward, a nomogram
signature was constructed using all independent
prognostic factors to develop a scoring system to
evaluate the OS of patients at 1-year, 3-year, and 5-year.
To demonstrate the effectiveness of the system, the C
index curve, calibration curves, and time ROC curves
were used for the evaluation of the recognition
performance of the system. The DCA cures were used
to assess the clinical applicability of the scoring system.

Construction of correlation network between CR
genes and APA events

A total of 22 CRs genes were obtained from previous
studies [17] and CRs gene expression profiles were
collected from the TCGA database. The Spearman
correlation method was performed for the calculation of
the correlation among the PDUI values and SF
expression levels of survival-related APA events. P-value
<0.001 and absolute values of correlation coefficient >0.5
were considered as thresholds. Lastly, to construct and
draw the interaction network between APA and SF, the
Cytoscape software was used in this study.

Statistical analysis

The R software (version 4.0.5) was used for all statistical
analyses, and P-value <0.05 on both sides was
considered statistically significant. The Kaplan-Meier
survival analysis was done by log-rank test. The
independent sample 7-test and Wilcoxon test were
performed to compare the two groups. The language was
polished by Bullet Edits Services
(http://www.bulletedits.cn).

RESULTS
Overview of APA events in patients with LGG

The general analysis flow chart of this study was
illustrated in Supplementary Figure 1. 511 LGG patients
in total were enrolled in the current research, and their
clinical data were compiled in Table 1. According to the
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Table 1. Clinical characteristics of the TCGA cohort.

Characteristics Groups Number (percentage)
<60 442 (86%)
Age
>60 69 (14%)
Male 283 (55%)
Gender
Female 228 (45%)
G2 246 (48%)
Grade
G3 264 (52%)
Astrocytoma 193 (38%)
Histology Oligodendroglioma 187 (36%)

Mixed glioma

131 (26%)

above screening criteria, 6,574 APA events were
identified from 6,214 genes, indicating that one gene
can produce one or more APA events.

Survival-related APA events and the analysis of
functional enrichment

For further investigation of the impact of APA on
prognosis, we randomized 511 LGG patients into either
a training set (n = 256) or a test set (n = 255). After the
analysis of all APA events in the training set by
univariate Cox regression, a total of 1,213 prognostic-
related APA events were screened out of 1,164 genes.
These APA events were shown in the volcanic map
(Figure 1A). Parental genes refer to genes involved in
APA events, and their functions and pathways may
reflect the potential role of APA events. To elucidate
the potential biological functions of these parent genes
related to the survival-related APA events in LGG, the
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GO enrichment and KEGG pathway analysis were
performed on these genes. The GO and KEGG analyses
highlighted that these genes were enriched in large
quantities in RNA processing, protein synthesis, cell
metabolism, and other processes, revealing the
correlation between APA and these basic biological
processes (Figure 1B—1E).

Construction of prognostic APA signature

The LASSO regression analysis was performed for
further screening of significant APA events from the top
20 most important prognostic APA events (Figure 2),
which were considered as candidate genes for the
construction of a prediction signature using the
multivariate Cox regression analysis. In the end, a
prognostic signature was constructed that consisted of
four APA events. The coefficients of the four events
were showed in Supplementary Table 1. The risk value
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Figure 1. Identification of the prognosis-related APA events and enrichment analysis of the corresponding genes of
prognosis-related APA events. (A) Volcano plot of prognosis-related APA events. The top 20 significant enrichment terms in BP (B), CC

(C), and MF (D) in the GO analysis. (E) KEGG pathway analysis.
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for individual LGG patients was measured by following
the formula, and all patients were classified into two
groups called the high-risk and low-risk groups
according to the median risk score (Figure 3A-3C).

According to

the

Kaplan-Meier

analysis  these

prognostic models successfully stratified patients with

A

19 19 19

18

different results, it was observed that the patients that

belonged to

the high-risk group had a substantially

shorter OS as compared to those in the low-risk group

(Figure 4A).

For the additional evaluation of the

predictive power of the signature in 1-year, 3-year, and
5-year, the ROC analysis was conducted. The outcomes
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Figure 3. Development and validation of a four-APA-based prognostic signature. The risk score distribution, gene expression, and
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indicated that the signature had good prognostic
performance in different years, with AUC values
ranging from 0.817 to 0.956 (Figure 4D). Moreover,
this study also verified the predictive power and
accuracy of the signature in the training set and the
whole set (Figure 3D-3I). The Kaplan-Meier survival
analysis confirmed a substantial decline in the OS in
high-risk groups of both datasets (Figure 4B, 4C). The
AUC values of test set and whole set at 1-year, 3-year,
and 5-year were 0.826, 0.830, 0.731 and 0.873, 0.839,
0.772, respectively (Figure 4E, 4F). According to the
PCA and t-SNE analyses, patients in the two risk groups
were distributed in two separate directions (Figure 4G,
4H). To confirm the general applicability of this
signature, patients were subdivided by age, sex, grade,
and pathological type. Considering the different
stratified analysis results, the OS duration of LGG

patients in the low-risk group was significantly longer
in comparison to that in the high-risk group (Figure 5).
As indicated by these findings, the signature can
accurately and effectively predict the prognosis of
patients with LGG.

TMB and CNVs analysis

We analyzed and visualized somatic mutation data in
LGG patients by distinguishing between the high-risk
and low-risk groups. The top 10 drive genes with the
highest variation frequency in the two risk groups were
shown in Figure 6A, 6B. TMB of the two risk groups
were calculated based on somatic mutation data, and the
outcomes indicated that the TMB of the high-risk group
was greatly enhanced as compared to that of the low-
risk group (Figure 6C). We then identified whether
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TMB was an independent biomarker for LGG patients.
LGG cohorts are split into high-TMB and low-TMB
groups as per the median TMB value. According to the
findings, the TMB cannot be used alone for predicting
patient outcomes (Figure 6D). However, when the risk
score and TMB were combined they could effectively
predict LGG patient outcomes (Figure 6E). We also
performed correlation analysis to explore the association
of signature with tumor stem cells, and the results
suggested that the risk score was negatively correlated
with DNAss (Figure 6F). Additionally, we analyzed
CNVs data using the GISTIC algorithm to find the gene
regions with apparent amplification or deletion. The
distribution of copy number changes in both the high
and low-risk groups was demonstrated in Figure 6G.
Overall, there were significant differences in the gene
and frequency of copy number changes between the two
groups. The frequency of gene changes, deletion, and
gain was elevated in the high-risk group as compared to
that in the low-risk group (Figure 6H, 61).

Analysis of immune function and immunotherapy

The materials and methods mentioned in the algorithm
were used to assess the immune status of each LGG
patient, as shown in the heatmap (Figure 7A). Moreover,
the Wilcoxon test was performed for the comparison of
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drugs, 29 drugs had IC50 values that differed among the Construction of prognostic nomogram
two groups, suggesting that low-risk patients showed more

sensitivity to these 29 drugs (Supplementary Figure 2). 16 Initially, the correlation between clinicopathological

drugs in particular, including Gefitinib, Lenalidomide, and indicators and the signature was explored. The bar chart

Axitinib, had great potential for the treatment of LGG. indicated prominent variations in gender, grade, and
Altered in 236 (95.93%) of 246 samples. B Altered in 221 (87.7%) of 252 samples. C
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pathological type among the high and low-risk groups
(Figure 8A). Subsequently, a nanogram was created on
the basis of outcomes of univariate and multivariate
Cox regression (Figure 8B, 8C), including pathological
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supported the actual outcomes (Figure 9B). The results
of the time ROC curve and C index curve showed that
AUC and C index at different times were the largest in
the nomogram (Figure 9C, 9D). Furthermore, as
compared with the risk score signature, the nomogram
had improved the net benefit of clinical patients even
more (Figure 9E-9G).

Potential regulatory network of APA

For a detailed analysis of the potential regulatory
mechanism of survival-related APA events in LGG
cohorts, an interaction network of APA events and key
regulators were designed. The Spearman test was used
to observe the correlation between PDUI values and
CRs gene expression levels of OS-related APA events.
Significant relationship pairs with the correlation
coefficient >0.5 and P-value <0.001 were selected to
create the correlation network. As demonstrated in
Figure 10, the expression levels of 17 CRs (shown as
the blue triangles) were greatly correlated with 180
survival-related APA events, including the 164 APA
events with good prognosis (shown as the purple
triangles) and 16 APA events with poor prognosis
(shown as the yellow triangles). Interestingly, it was
found that the ratios of SFs increased (shown as the red
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for both APA events with poor survival prognosis and
the APA events with good survival prognosis.

DISCUSSION

Heterogeneity in patients is a key contributing factor in
the poor prognosis of glioma, and multifaceted
evaluation can help in improving the precision of
prognosis prediction for such patients [18]. Therefore,
the latest version of gliomas’ classification by the WHO
incorporates molecular features into the classification
criteria, thereby improving the homogeneity of clinical
outcomes in patients with the same subtype [19].
Nevertheless, as one of the histological subtypes of
glioma, patients with LGG vary greatly in survival and
lack effective prognostic markers. APA is a common
post-transcriptional regulatory mechanism in eukaryotic
organisms. The differential expression of APA can be
caused by affecting the stability of transcripts, their
output to the cytoplasm, and their translation efficiency
[5]. Studies have found that extensive APA occurs in
the pathophysiological process of numerous diseases,
including cancer. In such diseases, APA events are
emerging as potential biomarkers that can be used in
clinical practice. The majority of the dysfunctional APA
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events result in the production of transcript isomers with
variable lengths of 3'UTRs. These are often associated
with various clinical traits. These APA events do not
depend on the commonly used molecular data, such as
gene expression and somatic mutations [20] and they
are associated with disease prognosis, recurrence, tumor
subtypes, and staging of multiple cancers [21-24].
However, there are few systematic studies on the
function of APA events in LGG.

In the current research, systematic identification and
analysis of survival-related APA events was performed
in LGG patients from the TCGA database and 1,213
survival-related APA events were discovered in 1,164
genes. By performing the GO and KEGG analysis of

parental genes of these prognostic APA events, it was
observed that these events were largely involved in
RNA processing, protein synthesis, cell metabolism,
and other processes, such as proteolysis involved in
cellular protein catabolic process, mRNA metabolic
process, and endocytosis. Meanwhile, we constructed a
correlation network of CRs-APA to reveal the potential
regulatory mechanism of prognostic APA events. For
identifying the prognostic importance of APA events, a
prognostic prediction signature was constructed for
LGG based on the screening of the top 20 survival-
related APA events. Patients were sorted into two
groups called the low-risk and high-risk groups on the
basis of the median risk score. The Kaplan-Meier
method indicated that the OS of the training set, test set,
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and whole set in the high-risk group was worse as
compared to that of the low-risk group. This
observation was consistent with the ROC curve
analysis. Nomogram contribute to visualization of
statistical models, calculation of predicted values and
graphical evaluation of important indicators [25]. It has
been widely used to predict prognostic risk and
therapeutic effect of patients. Here, a nomogram scoring
system was established by the combination of the
signature and independent prognostic indicators. The
signature has better predictive power than other
independent prognostic indicators (Figure 9C, 9D).
More importantly, nomogram presented the most
quantitative prognostic prediction power and net benefit
factor for clinical purposes (Figure 9C-9G). This
demonstrates the superiority of combining multiple
indicators to predict patient outcomes. All the parent
genes of APA in the signature were previously
confirmed to be related to tumors by external studies.
The CDIP1 has been considered as a target gene of P53,
which is upregulated in response to DNA damage and is
a key downstream effector of p53-dependent apoptosis.
CDIP1 induces apoptosis by providing a link between
internal apoptosis mediated by P53 and external
apoptosis mediated by death receptors [26]. Not

surprisingly, CDIP1 also plays an important role in
tumor cell apoptosis. Zhou et al. found that IL-33 plays
a carcinogenic role by inhibiting the expression of
CDIP1, thereby reducing apoptosis of non-small cell
lung cancer [27]. The most widely mutated gene in
fanconi anemia (FA) known as FANCA is a member of
the FA core complex that recognizes interchain cross-
linking and induces subsequent DNA repair [28, 29].
Previous studies have highlighted that FANCA gene
mutations are closely related to the occurrence and
development of different types of tumors. For instance,
mutations in the FANCA gene can increase cellular
activities including transcriptional basal efficiency or
transcriptional regulation, increasing breast cancer risk
[30]. The loss of FANCA function in the germline is
considered to be a pathogenic mutation in the
development of prostate cancer. FANCA-associated
DNA repair mutations occur more frequently in prostate
cancer with high Gleason grade as compared to the low
Gleason grade, and the prognosis is generally worse
[31]. SPARC is a major gene affecting cellular
interactions, extracellular matrix remodeling, and bone

mineralization [32]. It is wusually expressed by
mesenchymal cells and can inhibit or promote cancer in
different tumor types. Some researchers have
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Figure 10. Construction of a survival-associated CRs-APAs network. Blue triangles, purple triangles and yellow triangles were
CRs, good prognosis events and poor prognosis, respectively. Red/green lines represent positive/negative correlations between

nodes.
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discovered that SPARC is highly expressed in
pancreatic cancer (PC) tissues, and overexpression of
SPARC in PC cells can induce epithelial mesenchymal
transition (EMT) and stimulate the migration and
invasion of cancer cells [33]. In endometrial cancer
(EC), low SPARC expression is related to aggressive
EC phenotype and poor prognosis. In addition, down-
regulation of SPARC promotes the EMT process and
enhances EC cell proliferation and invasion [34]. The
AKAPI13 is an anchor protein found in the Rho
signaling pathway. AKAP13 is expressed increasingly
in hepatocellular carcinoma, but it is not expressed in
healthy adult liver. Its overexpression in hepatocellular
carcinoma cell lines promotes cell proliferation and
leads to increased levels of downstream ERK and cyclin
D1 [35]. AKAPI13 plays a major role in PKA-induced
phosphorylation of ER, which is a significant cause of
tamoxifen resistance in breast cancer cells and cancer
patients [36].

Recently, many studies have stressed the significance
of immunotherapy in glioma and it has become a
research hotspot [37]. Due to the heterogeneity of
gliomas, the therapeutic effect of gliomas is not
entirely satisfactory [38]. TMB 1is a potential
biomarker for predicting immunotherapy outcomes for
different types of cancers [39, 40]. At the same time,
CNVs may provide a better predictor of
immunotherapy response than traditional biomarkers.
These two molecular characteristics provide new
perspectives and good practical methods for
immunotherapy [41]. Consequently, we explored
variation in genetic mutations between the high-risk
and low-risk groups. The high-risk group had
substantially increased percentages of TMB and CNV
as compared to the low-risk group. The immune
infiltration level greatly affects the prognosis of tumor
patients. The tumor immune microenvironment
contains stroma and immune cells and is associated
with immunotherapeutic responses. Additionally,
targeting tumor immune checkpoints can serve as a
new technique for killing tumor cells, and the
expression of immune checkpoints is related to
immunotherapeutic responses [42, 43]. Considering
the importance of immune status in immunotherapy,
the relationship between the signature and immune cell
infiltration and immune checkpoint was identified in
this study. The ESTIMATE and ssGSEA algorithms
suggested that the high-risk group had a higher
proportion of immune and stromal cells, stronger
immune function, and lower tumor purity. Immune
checkpoint expression analysis yielded similar results
for immune cell infiltration, again with higher levels in
the high-risk group. Due to the lack of open data on
LGG patients receiving immunotherapy and APA
testing, the TIDE algorithm was used for preliminary

identification of the response of this cohort to
immunotherapy. The outcomes showed that the high-
risk group had a lower TIDE score and might have
increased sensitivity to immunotherapy.
Chemotherapy and targeted gene therapy have been
shown to have many advantages in prolonging survival
in LGG patients [44, 45]. Hence, it is important to
predict the treatment response of LGG patients to
chemotherapy agents and molecularly targeted
antitumor agents. The data in this research indicated
that patients in the low-risk groups were more
sensitive to 16 drugs, including Gefitinib,
Lenalidomide, and Axitinib, as compared to those in
the high-risk groups. These findings showed that the
APA signature had a close correlation with
immunotherapy and chemotherapy and it can be used
to select individualized treatment strategies for LGG
patients.

There are some deficiencies in this study that can be
highlighted. For instance, this research was based on
one study cohort only. Only internal validation was
performed in the absence of another dataset for external
validation. Moreover, this signature has not been
clinically validated with a large sample, so its clinical
practicality cannot be evaluated directly. Lastly, due to
the lack of in vitro or in vivo experiments, the specific
molecular mechanisms of these biomarkers remain
unclear. In future studies, we will conduct detailed
studies for the validation of our current results.

In conclusion, this study comprehensively analyzed the
specific role of APA events in LGG and identified
survival-related APA events for the first time.
Furthermore, we created prediction signatures based on
these events that can accurately stratify the risk and
predict the prognosis of LGG patients. In addition, APA
events in the signature are expected to be targets for
LGG treatment in the future.
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SUPPLEMENTARY MATERIALS
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Supplementary Figure 1. Flow chart of the present study.
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Supplementary Figure 2. Boxplots of estimated IC50 values of potential compounds between high-risk and low-risk groups.

*P<0.05; P <0.01; """P < 0.001.
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Supplementary Table

Supplementary Table 1. The coefficients of the four events.

Id Coef HR HR.95L HR.95H p value
"NM_013399|C160rfS|chr16]— 5.846687 346.0859 4.230633 28311.47 0.009273
"NM_000135|[FANCA|chr16|-" 7.129974 1248.845 11.95803 130423.9 0.002645
"NM_003118|SPARC|chr5]— —4.96019 0.007012 0.000385 0.127679 0.000808
‘NM_007200|AKAP13|chr15+ 1.243714 3.468473 0.671534 17.91467 0.13764
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