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ABSTRACT

Treacle ribosome biogenesis factor 1 (TCOF1) plays a crucial role in multiple processes, including ribosome
biogenesis, DNA damage response (DDR), mitotic regulation, and telomere integrity. However, its role in
cancers remains unclear. We aimed to visualize the expression, prognostic, and mutational landscapes of TCOF1
across cancers and to explore its association with immune infiltration. In this work, we integrated information
from TCGA and GEO to explore the differential expression and prognostic value of TCOF1. Then, the mutational
profiles of TCOF1 in cancers were investigated. We further determined the correlation between TCOF1 and
immune cell infiltration levels. Additionally, we determined correlations among certain immune checkpoints,
microsatellite instability, tumor mutational burden (TMB), and TCOF1. Potential pathways of TCOF1 in
tumorigenesis were analyzed as well. In general, tumor tissue had a higher expression level of TCOF1 than
normal tissue. The prognostic value of TCOF1 was multifaceted, depending on type of cancer. TCOF1 was
correlated with tumor purity, CD8+ T cells, CD4+ T cells, B cells, neutrophils, macrophages, and dendritic cells
(DCs) in 6, 14, 16, 12, 20, 13, and 17 cancer types, respectively. TCOF1 might act on ATPase activity, microtubule
binding, tubulin binding, and catalytic activity (on DNA), and participate in tumorigenesis through “cell cycle”
and “cellular-senescence” pathways. TCOF1 could affect pan-cancer prognosis and was correlated with immune
cell infiltration. “Cell cycle” and “cellular-senescence” pathways were involved in the functional mechanisms of
TCOF1, a finding that awaits further experimental validation.

INTRODUCTION regulation [13], and telomere integrity [14, 15].
However, little is known about its role in
The treacle ribosome biogenesis factor 1 (TCOF1) gene carcinogenesis. Given that TCOFI participates in
is located on the long arm of chromosome 5 at the several key cellular processes, in this study we aimed to
5q32-33.3 locus and encodes treacle phosphoprotein [1, investigate the part it plays in human cancers.
2]. TCOF1 was initially found as a gene related to
Treacher Collins syndrome (TCS), a rare genetic Cancer remains a major public-health problem
disorder characterized by severe craniofacial defects, worldwide and has been a leading cause of death in the
external ear deformation, and hearing impairment [3, 4]. past several decades [16, 17]. Emerging therapies that
The role of TCOF1 in TCS has been extensively studied include chemotherapy, radiotherapy, and immune
[5-7], and our previous works have identified novel checkpoint blockade targeting programmed death-1
TCOFI mutations in TCS [8, 9]. Recently, TCOFI has (PD-1) and cytotoxic T-lymphocyte—associated protein
been reported to play crucial roles in multiple processes, 4 (CTLA-4) have shown great success in the treatment
including ribosome biogenesis [10], deoxyribonucleic of several cancer types [18-20]. However, a
acid (DNA) damage response (DDR) [11, 12], mitotic considerable number of patients benefit little from
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available immunotherapies, and their prognoses remain
poor. This dilemma emphasizes the importance of
deeply understanding the mechanism underlying
tumorigenesis. With the emergence of large-scale,
multi-omics, and publicly accessible databases
containing sample data from different types of cancer, it
is now possible to analyze and evaluate the role of
certain genes of interest, namely TCOF! in this study,
at the pan-cancer level.

In this work, we visualized the expression and
prognostic landscapes of TCOFI in pan-cancer based
on published data. In addition, mutations to TCOFI and
the gene’s relationships with certain genomic signatures
were also explored. We further evaluated TCOFI’s
relationships with immune cell infiltration, immune
checkpoints, and immunotherapy responses. Finally,
potential pathways involving TCOFI in tumor
pathogenesis were also investigated.

RESULTS
Expression level of TCOF1 in various cancers

We examined TCOFI mRNA expression levels in
various cancer types by analyzing TCGA data via
Oncomine. The results showed that TCOFI expression
in tumors was significantly higher than in normal
tissues in many cancers, including bladder, breast,
cervical, colorectal, esophageal, gastric, head and neck,
liver, lung, and ovarian, as well as in melanoma and
lymphoma. However, in certain studies, 7TCOFI was
less expressed in brain, central nervous system (CNS),
head and neck, kidney, and lung cancers and in
lymphoma (Figure 1A).

To further evaluate differential expression of TCOFI in
pan-cancer, we compared RNA sequencing data from
TCGA using TIMER. As shown in Figure 1B, TCOF!
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Figure 1. TCOF1 expression levels in cancers. (A) Differential-expression data for TCOF1 in various types of cancer, compared with
corresponding normal tissues, in Oncomine. (B) TCOF1 expression levels in different tumor types from TCGA were analyzed using TIMER2.
(C) Comparisons of TCOF1 expression levels between tumor tissues from TCGA and normal tissues from GTEx. (D) TCOF1 protein (treacle)
expression levels in BC, CC, OC, CCRCC, LUAD, and UCEC. "P < 0.05; “"P < 0.01; """P < 0.001.
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expression was significantly higher in bladder urothelial
carcinoma (BLCA), breast invasive carcinoma (BRCA),
cervical squamous-cell carcinoma (CESCO),
endocervical adenocarcinoma (ECA),
cholangiocarcinoma (CHOL), colon adenocarcinoma
(COAD), esophageal carcinoma (ESCA), head and neck
squamous-cell carcinoma (HNSC), clear-cell renal-cell
carcinoma (CCRCC), papillary renal-cell carcinoma
(PRCC), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma  (LUAD), Iung  squamous-cell
carcinoma (LUSC), pheochromocytoma and
paraganglioma (PCPG), rectal adenocarcinoma
(READ), stomach adenocarcinoma (STAD), thyroid
carcinoma (THCA), and uterine corpus endometrial
carcinoma (UCEC). Notably, TCOF'] expression in skin
cutaneous melanoma (SKCM) metastatic tissue was
remarkably higher than in respective primary tumor
tissue. Lower expression of TCOF'I in tumor was found
only in glioblastoma multiforme (GBM). For certain
tumors lacking normal-tissue data in TCGA, we used
corresponding normal tissues from the GTEx dataset as
controls and compared differences in TCOFI
expression using GEPIA2. As shown in Figure 1C,
expression of TCOF'1 was upregulated in diffuse large
B-cell lymphoma (DLBCL), sarcoma (SARC),
testicular germ cell tumor (TGCT), and thymoma
(THYM). However, we did not see significant
differences in other tumors, including adrenocortical
carcinoma (ACC), acute myeloid leukemia (LAML),
brain lower-grade glioma (LGG), ovarian serous
cystadenocarcinoma (OV), and uterine carcinosarcoma
(UcCs).

Based on the CPTAC dataset, we then evaluated protein
expression of TCOF'I in pan-cancer via the UALCAN
portal. Compared with normal tissues, expression of
TCOF1 total protein was higher in breast cancer (BC),
colon cancer (CC), ovarian cancer (OC), CCRCC, and
LUAD, but not in UCEC (Figure 1D). We also
investigated TCOFI protein expression in 20 types of
cancer using the HPA cohort. IHC staining results
showed that high expression of TCOFI could be
observed in colorectal (36.4%), testicular (16.67%),
pancreatic  (11.11%), urothelial (10%), stomach
(9.09%), liver (8.33%), endometrial (8.33), ovarian
(8.33%), renal (8.33%), and skin cancers (8.33%;
Supplementary Figure 1).

TCOF1 expression and cancer patients’ prognoses

To understand how TCOF1 affects the prognoses of
cancer patients, we analyzed the relationship between
survival outcomes and TCOF1 expression levels via
PrognoScan. TCOFI expression was significantly
correlated with prognosis in seven cancer types: BC,
uveal melanoma (UVM), liposarcoma, renal-cell

carcinoma (RCC), glioma, meningioma, and colorectal
cancer (CRC; Figure 2A). Of these, high expression
levels of TCOF1 were detrimental to patient prognosis
in BC, UVM, liposarcoma, glioma, and meningioma,
but they played a protective role in RCC and CC.
Detailed data are shown in a forest plot (Supplementary
Figure 2).

We further investigated the association between
TCOF1 expression and cancer patients’ prognoses in
TCGA databases via GEPIA2. As shown in Figure 2B,
high expression levels of TCOFI were related to poor
prognosis for overall survival (OS) in kidney
chromophobe (KICH; P = 0.014), PRCC (P = 0.0027),
LIHC (P = 0.0037), and mesothelioma (MESO, P =
0.0091) in TCGA datasets. Disease-free survival
(DFS) analysis results, shown in Figure 2C, revealed
that high expression of TCOFI was correlated with
poor prognosis in BLCA (P = 0.031), KICH (P =
0.033), PRCC (P = 0.019), and LIHC (P = 0.05) in
TCGA datasets. However, lower expression levels of
TCOFI were linked to poor OS for STAD (P = 0.031,
Figure 2A).

Mutation profiles and genome-wide association of
TCOF1

Using cBioPortal, we investigated the mutation
frequency of TCOF'I in 10,967 samples from 32 TCGA
studies. As shown in Figure 3A, the highest alteration
frequency of TCOF1 (>6%) appeared in UCEC patients,
with  “mutation” as the primary type. The
“amplification” type of copy number alteration (CAN)
was the primary type in CCRCC cases, showing an
alteration frequency of >5%. Notably, all UVM cases
with genetic alterations (~2% frequency) had copy
number deletion of TCOF1 (Figure 3A). We detected
196 mutations (including 164 missense, 22 truncating, 2
inframe, 4 fusion, and 2 duplicate mutations in patients
with multiple samples) and located their sites between
amino acids 0 and 1412. Of these, L221F/I (from 4
UCEC samples) was the most frequent mutation site
(Figure 3B). The details of all mutation profiles are
summarized in Supplementary Table 1.

We then used the Regulome Explorer to further inspect
the genome-wide association between TCOFI[ and
certain genomic signatures. Expression of TCOF![ and
its correlations with other variables in cancers on the
chromosomal level (including DNA methylation,
somatic copy number, microRNA expression, somatic
mutation, and protein level) is displayed in Circos plots
(Figure 3C). Based on data from TCGA, associations
could be detected between TCOFI and other signatures
in ACC, BLCA, BRCA, COAD, READ, CRC, ESCA,
STAD, GBM, HNSC, CCRCC, LIHC, LUAD, LUSC,
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OV, STAD, and UCEC within the context of genomic
coordinates. Detailed data are listed in Supplementary
Table 2.

We next examined the relationship between TCOFI
expression and expression levels of four DNA-
methyltransferases (DNMTs) in pan-cancer. As shown
in Supplementary Figure 3, we observed a significant
and positive correlation between TCOFI and DNMTs
in almost all types of cancer except UCS and CHOL.
This indicated that upregulated expression of TCOF'I
in different cancers might contribute to DNA
methylation.

TCOF1

Relationship between and

immune cell infiltration

expression

We further investigated the correlation between
infiltration levels of different immune cells in pan-
cancer and TCOFI expression level. The results
indicated that high TCOFI expression was positively
related to tumor purity in six types of cancer (Figure

4A). Additionally, TCOFI expression level was
significantly associated with infiltration levels of
Cluster of Differentiation 8—positive (CD8+) T cells,
CD4+ T cells, B cells, neutrophils, macrophages, and
dendritic cells (DCs) in 14, 16, 12, 20, 13, and 17
cancer types, respectively (Supplementary Figure 4).
Cancer-associated fibroblasts (CAFs) are among the
most abundant stromal components of the tumor
microenvironment (TME), and they can build up and
remodel the extracellular-matrix (ECM) structure to
facilitate tumor invasion [21]. We observed a
significantly positive correlation of TCOF1 expression
and CAF infiltration level in ESCA, PRCC, and THCA,
but noted a negative correlation in BRCA, TGCT, and
THYM (Figure 4B). In addition, abundance of myeloid-
derived suppressor cells (MDSCs), which can inhibit T-
cell function and thus contribute to the pathogeneses of
various diseases, was found to be positively correlated
with TCOFI in almost all cancer types (Figure 4C).
Finally, hematopoietic stem cells (HSCs), had a
negative relationship with TCOFI expression in most
types of cancer (Figure 4D).
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Figure 2. Survival analysis based on expression level of TCOF1. (A) Survival curves with significance in eight cohorts from the GEO
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containing 2 (TMIGD?2), programmed cell death 1
ligand 2 (PDCDI1LG2), CD27, TIGIT, CD86, and tumor
necrosis factor receptor superfamily 9 (TNFRSF9). As
shown in Figure S5A, TCOFI had significant
correlations with most of the immune checkpoints in
KICH, CCRCC, and LIHC. Notably, in 20 of 33 types
of cancer, CD276 expression was remarkably associated
with TCOF 1. Based on these results, we hypothesized a
synergistic effect of TCOF1 and immune checkpoints in
cancers. However, based on the data from TISIDB, we
did not observe any significant difference in TCOF]
expression level between immunotherapy responders
and non-responders (Supplementary Table 3).

Microsatellites are short tandem repeat (STR) DNA
sequences distributed throughout the human genome
and prone to replication errors, which can normally be
repaired by the mismatch repair (MMR) system [22].

The MMR system is usually dependent on four key
genes: mutL homologue 1 (MLHI), postmeiotic
segregation increased 2 (PMS2), mutS homologue 2
(MSH2), and mutS 6 (MSHG6). The epithelial-cell
adhesion molecule (EPCAM) gene has also been
identified as a key MMR gene [23]. We analyzed the
correlation between TCOFI expression and MSI, a
strong mutator phenotype with a deficient MMR
system, in different types of cancers and found that
TCOF1 was significantly and positively correlated with
MLHI, MSH2, MSH6, and PMS?2 in almost all types but
negatively correlated with EPCAM in CESC, KICH,
and THYM (Figure 5B). In addition, high-MSI tumors
appeared to express higher levels of TCOFI than
genetically stable ones in CCRCC, LIHC, LUSC,
SARC, STAD, and UCEC (P < 0.001; Figure 5C).
TMB, the total number of mutations per coding area of
a tumor genome, is a biomarker of sensitivity to ICls.
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We analyzed the correlation between TCOFI
expression and TMB across various cancer types. The
results showed that TCOFI expression was positively
correlated with TMB in BRCA, LGG, LUAD, and
STAD (P < 0.001) but negatively correlated with TMB
in THCA and THYM cohorts (P < 0.001; Figure 5D).
However, all significant correlations coefficients of
TCOF1 with MSI or TBM were <0.5, which is
insufficient to predict a cancer patient’s response to
immunotherapy (Supplementary Table 3).

TCOF1I-related genes and potential pathways in
cancer

To further understand the mechanism of TCOFI in
tumor pathogenesis, we investigated genes and proteins

related to TCOF1 expression and conducted pathway
enrichment analyses thereof. Using STRING, we
identified TCOFI-binding proteins supported by
experimentally available evidence. The interaction
network of these proteins and 7TCOFI is shown in
Figure 6A. Then, we used GEPIA2 to determine the top
100 genes correlated with TCOF1 expression in tumor
data from TCGA projects. As shown in Figure 6B,
TCOF1 expression was most positively significantly
correlated to expression of deleted in azoospermia-
associated protein 1 (DAZAPI), heterogeneous nuclear
ribonucleoprotein  A/B  (HNRNPAB), Lyl antibody
reactive (LYAR), DNA topoisomerase I binding protein
1 (TOPBPI), interacting checkpoint and replication
regulator (T/CRR, also known as Cl50rf42), and polo-
like kinase 1 (PLKI). The corresponding detailed

] ] ] & BTLA
A [N N YN CD200
LR N N Y TN Y BT TNERSF14
NN e E AALRE L KRR LA AP
J o NV K,",“ E NN N 'éNFSF4
S = > D244 UVM,P=0.45 BLCAP=0.56 BRcA P=0.13
N N E | N LAG3 UCS,P=0.85 CESC,P=056
L N N a mﬁ CI%SOLG UCEC,P=1.3¢-06 0.44 CHOL,P=0.84
N *,t e AN &mn N N : :l §1[D;|Z/34 THYM,P=0.69 COAD,P=0.029
28
: t R} E a CD200R1 THCA,P=0.65 DLBC,P=0.29
S N (s o HAVCR2
| ) N :‘Sf Y Y ”K *a N ADORA2A TGCT,P=0.68 ESCA,P=0.024
AEMA A RKREREE RRREY  RINR [N U N E(:Eg:i)iu
hEYT E NN Y ~ . D80 STAD,P=0.00015 GBM,P=0.0089
NN 5 b h | N K PDCD1
SNhh b aﬂ | N | WY b LGALS9
N | N KOK KRN SN CD160 SKCM,P=0.24 HNSC,P-0.48
o | NN [ N | tﬂ TNOFSF14
2 - —
~ o CAAER R = NN NN ICOSLG SARC,P=0.00013 KICH,P=0.27
N Y S | N oK TMIGD2
NN | N K VTCN1 READ,P=0.21 KIRG,P=0.00026
ARRERL R SRR b N o
~ I~ x Wi 'Y NN A Pa(EEQLGZ PRAD,P=0.82 KIRPP=0.5
l . TNFSF18
n | § . BTNL2 PCPG,P=0.93 LAML,P=0.82
* kKK KKK
b \‘\ * ka * [y h S -?Rzglzg PAAD,P=0.02 LGG,P=0.18
s o TN N N & A b TNFRSF8 ov, LIHC,P=0.00052
| N NN SN | NN cD27 MESO P=0.003 ysc,p=5.76-24-UAD,P=0.0025
N | N WXy NN s B B TNFRSF25
b K s [ | N KUK W VSIR
W AR N NNN¥ wersra D
| N [ N | N b BNENEN CD40
N a N AEDK Y TNFRSF18 UVM,P=0.18 BLCAP=0.03 BRCA P=0.00071
» N = . W N TNFSF15 UCS,P=0.78 CESC,P=0.025
“ N Ls - R | NE ~ 'él[()izl;4 UCEC,P=0.0042 0.44 CHOL,P=0.75
g "¢ ;""?*g N B | ¢ . CD86 THYM,P=4.8e-07 COAD,P=0.71
NN A ’E Y 'Y N [N A RY CD44
NN ™ y [N b TNFRSF9 THCA P=2.5¢-05 DLBC,P=0.32
<<OA00< o J a >00a00n k< 173
89088(%0%85&;28%(880§8<<835005805
<m5808080§¥¥¥54433§ SOFrHSEhOFETS>> TGCTP=1 ESCA,P=0.24
Pearson's rho —log10(p value)
- I STAD,P=3.1e-07 GBM,P=0.39
-032 016 0 016 0325 518 537 555 573
B SKCM,P=0.0053 HNSC,P=0.11
L E ;h A MLH1 SARG,P=0.045 KICH,P=0.03
ke e e .*m*."um N **“.*m*."."*.m e
N AL.L" o N R AL ERRE kN WS conon
\ N CRRERLERRRRR | o
N t&k EFL Lh%& kkkka M S
PMS2
R - L- S ok ek PCPG,P=0.65 LAML,P=0.8
EPCAM
& - \ PAAD,P=0.024 LGG,P=8.7-06
§§§§gg§§§§5£&§8£ggﬁgggg%%gggééggé OMESOP-DUA? |.UADP-01§:002:?16
mmooQoqu:!!!S—'—‘_:_.E TOEHUSELCELEG>D LUSC,P=0.28
Pearson's tho -log10(p value)
| | -
-061 -03 0 03 0610 797 1594 239 31.87

Figure 5. Relationship of TCOF1 and immunotherapy. (A) Correlations between TCOF1 and confirmed immune checkpoints across
cancers. (B) Correlations between TCOF1 and five essential genes for MMR in multiple cancers. (C, D) Correlations of TCOF1 with (C) MSI
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and (D) TBM. "P < 0.05; **P < 0.01; ***P < 0.001.
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heatmap data of the various cancer types is displayed in
Figure 6C. Intersection analysis of STRING-based
TCOF1-binding proteins and GEPIA2-based TCOFI-
correlated genes showed three common members:
dyskerin pseudouridine synthase 1 (DKCI1), nucleolar
protein 56 (NOP56), and NOPS5S (Figure 6D).

Next, we used the identified genes to perform KEGG
and GO enrichment analyses. KEGG results (Figure 6E)
indicated that 7COFI might influence tumorigenesis
through  “cell cycle” and “cellular-senescence”
pathways. GO Molecular Function analysis suggested
most of the TCOF [-related genes were associated with
adenosine triphosphatase (ATPase) activity,
microtubule binding, tubulin binding, catalytic activity
(acting on DNA), and other functions (Figure 6F).
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A B @ B

DISCUSSION

The TCOFI gene, located on the long arm of
chromosome 5 at the 5q32-33.3 locus, is composed of
28 exons [2, 24]. In transcription, TCOFI is
alternatively transcribed and spliced into several
mRNA isoforms. Most of these isoforms contain exon
6A/treacle, a translational product of exon 6A—
contained TCOFI mRNA isoform [24], which is a
nucleolar phosphoprotein with 1488 amino acids and a
low-complexity three-domain structure [25]. TCOF1
and treacle are reported to regulate multiple key
cellular processes, including ribosome biogenesis,
mitosis, proliferation, cellular response to DNA
damage, and apoptosis [26]. While TCOF-related
mechanisms in TCS have been extensively studied,
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research focused on the role of TCOFI in

malignancies is limited.

In this work, we used integrated bioinformatics methods
to comprehensively analyze the role of TCOF] and its
corresponding protein treacle in different types of
cancers. According to the results of expression analysis,
TCOF1 was upregulated in most cancer types when
compared to corresponding normal tissues (Figure 1A—
1C). The expression level of treacle protein was
significantly higher in BC, CC, OC, CCRCC, and
LUAD, but not in UCEC (Figure 1D). As subsequently
confirmed in mutation profiles of TCOFI, UCEC
patients had the highest alternation frequency, with
“mutation” as the primary type (Figure 3A). Survival
analysis results then indicated that TCOFI! was
correlated with prognosis in several cancers, including
BC, UVM, liposarcoma, RCC, glioma, meningioma,
and CRC (Figure 2). Multifaceted, even contradictory,
prognostic values of TCOF1 in different types of cancer
might be attributable to distinct underlying mechanisms
in certain tumors; heterogeneous data collection
approaches; and other clinical factors such as gender,
ethnicity, and tumor stage. These results indicated the
potential prognostic value of TCOFI in different types
of cancer.

By using different algorithms, we found significant
correlations between 7COFI and infiltration levels of
several types of immune cells, including CAFs and
MDSCs (Figure 5). Immune cells interact with tumor
cells in the TME and therefore play vital roles in anti-
or pro-tumor incidents. For example, CAFs, the
prominent components of stromal cells, are reportedly
associated with poor outcomes, therapy resistance, and
tumor recurrence in various types of cancer [27]. Our
findings indicated that TCOF might exert an essential
effect on cancer development and it might serve as a
potential therapy target. However, a cause—effect
relationship could not be established in this study.
Additionally, pathway enrichment analyses showed that
TCOF1 might act mainly on ATPase activity,
microtubule binding, tubulin binding, and catalytic
activity (on DNA) and participate in tumorigenesis
through  “cell cycle” and “cellular-senescence”
pathways (Figure 6). This finding was partially in line
with those of existing TCOF [-related studies, as further
discussed below.

Treacle acts as a key regulator in the biogenesis of
ribosomes, one of the most important cell processes
and essential for nearly 95% of total transcription [28].
Ribosome biogenesis has three main stages:
transcription of ribosomal DNA (rDNA) into precursor
ribosomal RNA (pre-rRNA), post-transcriptional
processing from pre-rRNA to mature rRNA, and

ribosome assembly [28, 29]. The first stage starts with
the formation of the pre-initiation complex around the
rDNA promoter region in the nucleolus. The latter
consists of upstream binding factor (UBF),
transcription initiation factor 1 alpha (71FI-a),
selectivity factor 1 (SL/, also known as TIFI-f), and
DNA polymerase 1 (Pol I) [30, 31]. Treacle plays a
crucial role in ribosome biogenesis in that its different
domains can bind and recruit UBF, Pol I, and
Nopp140 to the rDNA promoter [10]. In addition,
treacle is an activator of UBF, an important regulator
in the transcription of rDNA [32]. Insufficient treacle
leads to the dispersion and dysfunction of UBF and
Pol I and the resulting inhibition of rRNA
transcription [11, 32]. During the second stage, treacle
interacts with ribonucleoprotein NOP56 (Figure 6D) to
regulate post-transcriptional pre-rRNA modifications,
including methylation; this ensures the flexibility of
RNA strands, protects RNA from hydrolysis, and
regulates translation in cells [33, 34]. In the cervical-
carcinoma HeLa cell line, silencing of TCOFI leads to
inhibition of rRNA transcription and attenuated cell
proliferation [32]. It also causes dysfunction of an
RNA helicase called DEAD-box RNA helicase 21
(DDX21) by relocating it from the nucleolus to the
nucleoplasm [35]. DDX2I has been reported to
promote gastric-cancer (GC) proliferation and tumor
growth [36].

Due to recombination between rDNA sequences from
different chromosomes, the genes encoding rRNA are
unstable and prone to damage [37]. DDR is a signal
transduction pathway involving multiple repair
mechanisms in cells, and it is closely associated with
tumorigenesis [38, 39]. The DDR repair process for the
reconstruction of double-stranded breaks is triggered by
ataxia telangiectasia mutated (ATM) and ataxia
telangiectasia and Rad3-related (ATR) kinases, and
transcriptional silencing is then induced to save energy
and to prevent collision between catalyzing complexes
of transcription and repair [40]. Treacle plays an
essential role in DDR mechanisms by recruiting nibrin
(NBS1) and TOPBPI, the key adaptor proteins of ATM
and ATR kinases, respectively [12, 37, 41].
Accumulation of NBSI mediated by treacle is crucial
for stopping rRNA transcription in the DDR process,
and NBSI overexpression is reportedly associated with
chemoresistance and with tumor development and
metastasis [11, 42—44]. Treacle can interact with NBS]
and thereby contribute to cancer development.
Furthermore, overexpression of 7TCOFI has been
associated with radioresistance in acinar progenitor cells
of rat salivary glands, but attenuated 7COF[ expression
can sensitize human osteosarcoma cells to irradiation
[41, 45]. Since treacle recruits TOPBPI in the DDR
process and the latter confers radioresistance in
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osteosarcoma [12], TOPBPI might mediate the effect of
treacle on sensitivity to radiotherapy. However, the
potential contribution of 7COF1 to cancer progression
and resistance to therapy needs to be elucidated in
future studies.

Although we integrated information from different
public databases to present a broad view of TCOFI in
pan-cancer, our study had some limitations. First, we
analyzed tumor tissue information mainly based on
microarray and sequencing data, meaning that cellular-
level analysis results might be systemically biased.
Future studies using high-resolution methods, such as
single-cell RNA sequencing [46], should be performed
to overcome or minimize such bias. Second, via
multiple databases, we conducted bioinformatic
analyses of TCOF] expression and patient prognosis
only, but in vivoNvitro experimental evidence on the
cellular or molecular level is still needed to help clarify
the role of TCOFI in tumors. Third, although we found
significant correlations among immune cell infiltration
levels, survival outcomes, potential pathways, and
TCOF1, we failed to identify TCOFI as friend or foe in
cancers due to conflicting results from different
databases. Since tumorigenesis is a complex process
involving multiple pathways, our study provided only
preliminary findings on the oncogenic role of TCOFI,
its exact role in certain type of cancers should be
evaluated and validated more precisely and
comprehensively.

In summary, we presented a broad view of TCOFI’s
role in pan-cancer. TCOFI was upregulated in most
types of cancers, and we believe it might serve as a
prognostic biomarker depending on cancer type.
Infiltration levels of several types of immune cells,
including CAFs and MDSCs, were highly correlated
with TCOFI expression, suggesting underlying
mechanisms involving TCOFI and immunity in
tumorigenesis that should be further explored. Future
studies should focus on potential regulation of TCOF1
by multiple oncogenic-signaling pathways.

MATERIALS AND METHODS
Databases

The Cancer Genome Atlas (TCGA; http://cancer
genome.nih.gov) is a prestigious cancer genomics
project funded by the National Cancer Institute (NCI;
Bethesda, MD, USA), which has characterized >20,000
primary cancer and matched normal-tissue samples
from various cancer types [47]. The Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo) is a
publicly available genomics-data repository containing
array- and sequence-based data [48]. The Genotype-

Tissue Expression Project (GTEx; http://common
fund.nih.gov/GTEx) is a commonly funded data
resource and tissue bank containing tissue-specific gene
expression data [49]. The Clinical Proteomic Tumor
Analysis  Consortium (CPTAC; https://proteomics.
cancer.gov/programs/cptac), also funded by the NCI, is
a comprehensive database that aims to identify proteins
in cancer genomes and related biological processes and
that provides genomic and proteomic data from >1100
cancer patients [50]. Analyses in our study were
conducted based on the data from TCGA, GEO, GTEXx,
and CPTAC.

Expression analysis

Oncomine is a cancer microarray database and web-
based data-mining platform aimed at facilitating
discovery from genome-wide expression analyses [51].
In this study, we recorded differential-expression data
of TCOFI between various cancer samples and
corresponding normal tissues from Oncomine.
Thresholds of P-values and fold change (FC) were 0.01
and 1.5, respectively. Next, we used the “Gene DE”
module of Tumor IMmune Estimation Resource 2
(TIMERZ2; http://timer.cistrome.org), an online tool for
systematical analysis of immune infiltrates across
diverse cancer types [52], to visualize expression
differences of TCOFI in pan-cancer from TCGA data.
For certain cancer types without normal-tissue data, we
matched and compared them with -corresponding
normal-tissue data from GTEx via the “Expression
DIY” panel of Gene Expression Profiling Interactive
Analysis 2 (GEPIA2; http://gepia2.cancer-pku.cn), a
portal for analyzing ribonucleic acid (RNA) sequencing
expression data from the TCGA and GTEx projects
[53]. Cutoffs of P-values and [Log2FC| were 0.01 and 1,
respectively. TCOF1 protein expression analysis in six
cancer types based on CPTAC data was conducted on
UALCAN (http://ualcan.path.uab.edu), a web portal for
analyzing cancer omics data [54].

The Human Protein Atlas (HPA; https://www.
proteinatlas.org/) is an online portal that contributes to
the mapping of human proteins in tissues. We obtained
protein expression levels and immunohistochemical
(IHC) staining results of TCOF'I protein in 20 types of
cancer samples from HPA.

Survival analysis based on TCOF'1

PrognoScan http://dna00.bio.kyutech.ac.jp/PrognoScan/
index.html is a publicly accessible and powerful
platform for evaluating the association between a gene
and clinical outcome in cancers [55]. We conducted
survival analysis of different cancer types and explored
its relationship with TCOF'I expression on PrognoScan.
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We used the “forestplot” package in R studio (version
1.4.1103; R Foundation for Statistical Computing,
Vienna, Austria) to summarize the results and drew a
forest plot of them. In addition, given that PrognoScan
is a collection of cancer microarray datasets, we then
performed survival analysis based on TCGA data
using the “Survival Analysis” panel of GEPIA2. The
significance level was set to 0.05.

TCOFI’s mutational landscape and correlation
with genomic signatures

We employed cBioPortal (http://www.cbioportal.org),
an open-access resource for interactive exploration of
multidimensional cancer genomics datasets [56], to
investigate the mutation profiles of TCOF in different
tissues. We chose data from 10,967 samples in 32
studies from TCGA and determined the frequency,
types, and sites of TCOF I mutations in multiple kinds
of cancer. Regulome Explorer (http://explorer.
cancerregulome.org) is an online tool to search, filter,
and visualize analytical results generated from TCGA
data. We used this tool to explore the correlation
between TCOFI expression and certain genomic
signatures. The filter of associations was set as
follows: —Log10(p) >2; Correlation >0.4; Max results
= 200. We calculated the relationship between TCOF'I
expression and  four  DNA-methyltransferases
(DNMTs) and presented the results as a circular plot
using SangerBox (http://www.sangerbox.com/tool), a
powerful computerized online tool for bioinformatics
analysis.

Immunity-related analysis

We used TIMER2 to explore the relationship between
TCOF'] expression and immune cell infiltration levels.
The “Gene” module, as indicated on the TIMER2
website, allows users to select any gene of interest and
visualize the correlation of its expression with immune
infiltration levels in diverse cancer types. The
association analysis is adjusted for tumor purity and
calculated by multiple algorithms, including TIMER,
xCell (https://xcell.ucsf.edu/), MCPcounter
(https://github.com/ebecht/MCPcounter),

CIBERSORT (https://cibersort.stanford.edu/),
Epigenomics of Plants International Consortium
(EPIC; https://www.plant-epigenome.org/), and
quanTIseq (http://icbi.i-med.ac.at/software/quantiseq/
doc/index.html). We analyzed the associations among
microsatellite instability (MSI), tumor mutation
burden (TMB), and TCOFI expression using
SangerBox. Finally, we evaluated mutational and
expression  differences of TCOFI  between
immunotherapy responders and non-responders using
the Tumor and Immune System Interaction Database

(TISIDB; http://cis.hku.hk/TISIDB), a web portal for
such interactions [57].

TCOFI-related gene identification and functional-
enrichment analysis

The Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING; https://string-db.org) is a
database of functional protein association networks
[58]. We used STRING to identify and visualize a
TCOFI-binding protein network based on the
experimental evidence, with a minimum interaction
score of 0.15. In GEPIA2, the “Similar Genes
Detection” pane was used to search for the top 100
genes similar to TCOFI in TCGA tumors. We
computed the correlations between TCOFI and the top
5 similar genes in all types of cancers and presented
them in scatter plots using the “Correlation Analysis”
pane in GEPIA2. The results were also presented as a
heatmap plot using the “Gene Corr” module of
TIMER?2. Intersection analysis results of STRING and
GEPIA2 results were displayed as a Venn diagram
using the “VennDiagram” package in R studio. Next,
we combined two sets of data to conduct Kyoto
Encyclopedia of Genes and Genomes (KEGGQG)
pathway analysis and Gene Ontology (GO) enrichment
analysis. For both types of analyses, we used the
“GO/KEGG clusterProfiler” module in Hiplot
(https://hiplot.com.cn), a comprehensive web platform
for wvisualizing scientific data. P- and Q-value
thresholds were set at 0.01 and 0.05, respectively.
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SUPPLEMENTARY MATERIALS
Supplementary Figures
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Supplementary Figure 1. (A) Chart of different expression levels of TCOF1 protein in pan-cancer. (B) Representative IHC staining results
of TCOF1 protein in different cancer tissues.
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Please browse Full Text version to see the data of Supplementary Figure 2.
Supplementary Figure 2. Forest plot of survival analyses of TCOF1 in pan-cancer.
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Supplementary Figure 3. Correlations of TCOF1 expression with four DNA-methyltransferases.
959

Supplementary Figure 4. Correlation of TCOF1 expression with infiltration levels of CD8* T cells, CD4* T cells, B cells,

Please browse Full Text version to see the data of Supplementary Figure 4.
neutrophils, macrophages, and DCs.
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Supplementary Tables

Please browse Full Text version to see the data of Supplementary Tables 1 and 2.

Supplementary Table 1. All 196 mutations of TCOF1 in TCGA studies.

Supplementary Table 2. Genome-wide association of TCOF1 mRNA in cancer.

Supplementary Table 3. Comparison of the expression of TCOF1 between immunotherapy responders and non-

responders.
Log2 (Fold
No PMID Cancer type Group Drug #Res # NRes Change) P value
1 26997480 Melanoma all Anti-PD-1 (pembrolizumab 12 0.03 0.921
and nivolumab)
2 26997480 Melanoma MAPKi ~ Anti-PD-1 (pembrolizamab ¢ 5 0.196 0908
and nivolumab)
3 26997480 Melanoma non-MAPKi ~ Anti-PD-I (pembrolizumab ¢ 7 ~0.101 0943
and nivolumab)
4 28552987 Urothelial cancer all Anti-PD-L1 (atezolizumab) 9 16 0.142 0.605
5 28552987  Urothelial cancer smoking Anti-PD-L1 (atezolizumab) 5 9 0.088 0.972
6 28552987  Urothelial cancer non-smoking  Anti-PD-L1 (atezolizumab) 4 7 0.215 0.948
7 29033130 Melanoma all Anti-PD-1 (nivolumab) 26 23 0.31 0.384
8 29033130 Melanoma NIV3-PROG Anti-PD-1 (nivolumab) 15 11 0.103 0.947
9 29033130 Melanoma NIV3-NAIVE Anti-PD-1 (nivolumab) 11 12 0.568 0.739
10 29301960 Clear cell renal cell all Anti-PD-1 (nivolumab) 4 8 0.451 0.714
carcinoma (ccRCC)
11 29301960 Clearcellrenalcell = ypapp, Anti-PD-1 (nivolumab) 2 0 0 1
carcinoma (ccRCC)
12 29301960 Clearcellrenalcell o VypGERI  Anti-PD-1 (nivolumab) 2 8 0.645 0.722
carcinoma (ccRCC)
13 29443960  Urothelial cancer all Anti-PD-L1 (atezolizumab) 68 230 —0.015 0.829
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