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ABSTRACT

The functions of stem cells decline progressively with aging, and some metabolic changes occur during the
process. However, the molecular mechanisms of stem cell aging remain unclear. In this study, the combined
application of metabolomics and transcriptomics technologies can effectively describe the possible molecular
mechanisms of rat bone marrow mesenchymal stem cell (BMSC) senescence. Metabolomic profiles revealed 23
differential metabolites which were abundant in “glycerophospholipid metabolism”, “linoleic acid metabolism”
and “biosynthesis of unsaturated fatty acids”. In addition, transcriptomics analysis identified 590 genes with
enormously differential expressions in young and old BMSCs. KEGG enrichment analyses showed that
metabolism-related pathways in BMSC senescence had stronger responses. Furthermore, the integrated
analysis of the interactions between the differentially expressed genes (DEGs) and metabolites indicated the
differential genes related to lipid metabolism of Scd, Scd2, Dgat2, Fads2, Lpinl, Gpat3, Acaa2, Lpcat3, Pcyt2 and
Pla2gd4a may be closely associated with the aging of BMSCs. Finally, Scd2 was identified as the most significant
DEG, and Scd2 over-expression could alleviate cellular senescence in aged BMSCs. In conclusion, this work
provides a validated understanding that the DEGs and metabolites related to lipid metabolism present more
apparent changes in the senescence of rat BMSCs.

INTRODUCTION [3, 4]. Based on the “theory of stem cell aging”, adult
stem cells are primarily in charge of age-related loss of
Along with social progress and rapid development of cellular functions and aging [5]. A large number of
economy, a graying society faces inevitable changes, and studies have shown that aging is one of the greatest risk
aging is one of the most important reasons for its factors associated with an array of morbidities including
occurrence [1]. Aging is an unavoidable physiological diabetes, cardiovascular diseases, musculoskeletal,
process that caused by senile tissues and cells and declined neurodegenerative conditions and various malignancies
organ functions [2]. The complexity of aging is partly [6]. Therefore, in-depth exploration on activating senescent
reflected in the diversity of its hallmarks, which can be stem cells is the basic and bottleneck for delaying
condensed into the following three categories: primary, individual aging and preventing age-related diseases.
or causes of age-associated damage; counteractive, or
responses to the damage; and integrative, or consequences Aging is closely related to disturbance in the
of the responses and culprits of the aging phenotypes maintenance of metabolism. With cellular senescence, a
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large number of neutral amino acids such as valine,
isoleucine and glycine may be used as alternative
energy sources to maintain energy homeostasis [7].
Some studies reported that the anti-aging mechanisms
of C. elegans and rats may be related to the regulation
of lipid metabolism [8, 9], and lipids can modulate the
biological characteristics of stem cells by influencing
energy storage, plasma membrane composition, signal
transduction and gene expression changes [10]. In
recent years, a study revealed the important role of age-
related lipid metabolism in abnormal differentiation of
BMSCs by integrating lipidomics and transcriptomics
[11]. Therefore, it is vital to understand the aging
process and make a comprehensive and systematic
study on metabolic pathways. Our understanding of
metabolic networks and biological systems can be
greatly boosted by integrating metabolomics and
transcriptomics [12].

The concept of metabolomics was proposed by
Nicholson et al. in 1999, and it is an omics technology
that developed rapidly in the 1990s after genomics,
transcriptomics and proteomics research [13]. It is a
discipline in which qualitative and quantitative
detection of all low molecular mass metabolites of a
certain organism or cell is carried out to analyze the
alterations of metabolite spectrum in living cells [14].
Lawton et al. found that extraordinary changes in
relative concentrations of more than 100 metabolites
were associated with aging, and Yi et al. demonstrated
that the differential metabolites in human umbilical
vein endothelial cells (HUVECs) from passage 3 to 18
were principally involved in 14 significantly altered
metabolic pathways [15]. Although the mechanisms of
aging cannot be fully revealed through the use of
metabolomics, it is a promising tool in aging research
[16]. Transcriptomics is a high-throughput technology
that can measure the whole genome and identify new
candidate pathways and targets. It has been
successfully applied to identify the pathways and
networks that control the complicated biological
process of aging [17]. In recent years, there have been
some reports on the metabolic regulation of MSC
aging, but the specific mechanism has not been fully
elucidated.

BMSCs have the merits of low immunogenicity,
strong vitality, uniform biological characteristics and
no ethical controversy [18]. Therefore, the
metabolomics and transcriptomics of BMSCs derived
from young and aged rats were conducted to shed
light on the underlying molecular mechanisms in
stem cell senescence. Then the potential biomarkers
and related genes in old BMSCs could be screened by
using high-throughput technologies and powerful
bioinformatics.

RESULTS
Multivariate statistical analysis

Based on the data of non-targeted metabolomics, we
established a multivariate statistical analysis model to
reveal the changes of metabolites in old BMSCs and
young BMSCs. Intensities were corrected for signal drift
and batch effect by fitting a locally quadratic (loess)
regression model to the median intensity of pooled QC
samples. After correction, the median area of all pooled
QC samples was now the same. Metabolites with a
coefficient of variation (CV) in QC samples >25% were
then filtered out, due to their unstable quantifiability. In
the end, a total of 1886 annotated metabolites were
obtained, including positive ion modes and negative ion
modes, as well as some details information such as m/z,
retention time and peak intensity.

Unsupervised principal component analysis (PCA) of
the metabolic data was used to observe grouping trends,
prominent outliers, and clustering between display
groups to provide an initial assessment of metabolic
disturbances. PCA score plots showed the distribution
between the old BMSCs and young BMSCs as well as
QC samples in two dimensions (Figure 1A). According
to Supplementary Figure 1, the QC samples were tightly
clustered within 95% confidence interval, which proved
that the method was steady and the instrument had good
repeatability.

We further developed a supervised OPLS-DA
methodological model (R2X = 0.946, R2Y =1, Q2 =
0.991) to better account for changes in metabolites
between the old and young cells (Figure 1B). A
permutation test of 200 random numbers was used to
verify the OPLS-DA model and the result showed that
all blue Q2-values to the left were lower than the
original points to the right (Figure 1C), which proved
the OPLS-DA model was effective and stable. Judging
by the OPLS-DA model, there was a distinct difference
between the two groups, indicating an apparent
disturbance in the senescent BMSCs.

Volcano plots were constructed to determine the
difference in metabolites between the old and young cell
groups (Figure 1D). In the diagram, each dot represents a
metabolite. As shown in the Figure 1D, a total of 130
metabolites showed visible alterations, 92 metabolites
were up-regulated (red dots), 38 metabolites were down-
regulated (blue dots), and most of the other metabolites
were not significantly changed (grey dots). In the
volcanic plots, the further away a point was from the
origin, the more it contributes to the distinction between
the two groups. Thus, the distant points from the origin
were candidate biomarkers for senescent BMSCs.
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Identification of candidate biomarkers

On the basis of the accuracy of MS data, the exact mass
of each feature was submitted to ChemSpider with 4
databases selected (BioCyc; Human Metabolome
Database; KEGG; LipidMAPS). According to the
predicted value of VIP in the OPLS-DA model and the
return p-value of the #-test, 23 metabolites with
significant changes were screened as candidate
biomarkers (VIP > 1 and p-value <0.05), which were
displayed using a heatmap (Figure 2). Details of 23
differential metabolites are shown in Table 1. As shown
in the heatmap, the differential biomarkers can
distinguish the old BMSCs group from the young
group, indicating that the biomarkers we have obtained
were reliable.

Metabolic pathway analysis

After identifying the candidate biomarkers, we enriched
15 disordered metabolic pathways by using
MetaboAnalyst 4.0: glycerophospholipid metabolism,
linoleic acid metabolism, biosynthesis of unsaturated
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fatty acids, arachidonic acid metabolism, caffeine
metabolism, taurine and hypotaurine metabolism,
phenylalanine  metabolism, alpha-linolenic  acid
metabolism, glycosylphosphatidylinositol (GPI)-anchor
biosynthesis, fructose and mannose metabolism,
sphingolipid metabolism, lysine degradation, cysteine
and methionine metabolism, glycine, serine and
threonine metabolism and pyrimidine metabolism
(Figure 3). Details of these disordered metabolic
pathways are shown in Table 2.

Transcriptomics profiling of the BMSCs

The results of the transcriptional group showed that
there was a remarkable difference in gene transcription
levels between the old BMSC group and the young
BMSC group. A total of 16205 RNAs were detected,
and 14574 meaningful RNAs (FPKM > 0.5) were
screened. We further confirmed the screening
conditions of [log2(foldchange)/> 1.5 and p-value <
0.05. Based on this condition, 590 RNAs with
significant differences were considered to be DEGs.
Compared with the young group, the expression of
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Figure 1. Results of multivariate statistical analysis of metabolomics. (A) Multivariate statistical analysis of metabolites-PCA. PC1
and PC2 represent the degree of interpretation of the model with the first and second principal component ranking in the principal
component analysis. (B) Multivariate statistical analysis of metabolites-OPLS-DA. The separation of the two classes of observations occurs
in the horizontal (t1) direction; The vertical (t1o) direction indicates intra-class variability. (C) Permutations Plot for OPLS-DA Model. For the
selected Y variable, the figure shows the R2 and Q2 values of the original model (far right) on the vertical axis; The horizontal axis shows the
correlation between the substituted Y vector and the original Y vector of the selected Y. (D) Volcano plots of metabolites. The red dots
represent up-regulated metabolites and the blue dots represent down-regulated metabolites, and the grey dots represent that the

metabolites were not significantly changed.
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Table 1. Identified metabolites in old BMSCs compared with young BMSCs.

mz/rt Hit name HMDB KEGG P_value vip_value
758.6286/1.7 Choline HMDBO0000097 C00114 0.006608 1.45253
759.5756/0.8 PC(16:0/18:1(9Z)) HMDB0007972 C00157 0.043813 1.45682
733.5621/1.2 PC(16:0/16:0) HMDB0000564 C00157 9.3E-05 1.35649
763.5515/1.1 PC(18:4(62,92,127,15Z)/P-18:1(11Z7)) HMDB0008260 C00157 0.014569 1.47597
751.5369/1.1 Arachidonic acid HMDB0001043 C00219 0.008712 1.41671
757.5616/0.8 Citicoline HMDB0001413 C00307 0.045412 1.44704
763.5146/1.2 O-Phosphoethanolamine HMDB0000224 C00346 0.015577 1.46811
717.5311/0.8 PE(16:0/18:1(92)) HMDB0008927 C00350 0.009709 1.32245
767.5459/1.1 PE(18:0/20:4(5Z2,82,11Z,147)) HMDB0009003 C00350 0.043893 1.4927
607.3775/1.3 Pipecolic acid HMDB0000070 C00408 0.000414 1.12903
585.363/2.6 Cytidine HMDBO0000089 C00475 0.001039 1.09283
842.5101/13.5 Cysteic acid HMDB0002757 C00506 0.007164 1.95638
817.5381/1.3 Oleic acid HMDB0000207 C00712 0.009268 1.83144
736.5279/1.8 Fructose 1-phosphate HMDBO0001076 C01094 0.019808 1.36175
97.9673/19.7 Hippuric acid HMDB0000714 C01586 4.93E-05 2.68782
555.3523/0.9 Linoleic acid HMDB0000673 C01595 0.00279 1.01919
95.9148/10.8 Pyrazinamide HMDB0014483 C01956 0.002584 2.52509
96.0317/2.4 Citraconic acid HMDB0000634 C02226 0.005057 2.54612
97.9753/1.3 cis,cis-Muconic acid HMDB0006331 C02480 0.00629 2.73208
90.031/2.6 Eriodictyol HMDBO0005810 C05631 0.029214 2.37657
767.5227/1.2 Palmitoleic acid HMDB0003229 C08362 0.003539 1.48757
626.5274/1.8 Ursolic acid HMDB0002395 C08988 0.016756 1.17649
849.2433/0.7 1-Methylxanthine HMDBO0010738 C16358 0.030485 2.01903
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Figure 2. Heatmap of metabolites with significant differences. Each row represents a sample and each column represents a metabolite.
Red is the high expression level, blue is the low expression level.
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Table 2. Disordered metabolic pathways.

Pathway name Total Hits p value —log10 (p value) Impact
Glycerophospholipid metabolism 36 5 6.96E-05 4.1575 0.26825
Linoleic acid metabolism 5 2 0.00163 2.7877 1
Biosynthesis of unsaturated fatty acids 36 3 0.01076 1.9682 0
Arachidonic acid metabolism 36 2 0.080362 1.095 0.33292
Caffeine metabolism 12 1 0.14845 0.82841 0.30769
Taurine and hypotaurine metabolism 8 1 0.10146 0.99368 0
Phenylalanine metabolism 12 1 0.14845 0.82841 0
Alpha-Linolenic acid metabolism 13 1 0.15983 0.79634 0
giloys‘;‘;ftfé’;;:Spha“dylmosml (GPT)-anchor 14 1 0.17106 0.76685 0.00399
Fructose and mannose metabolism 18 1 0.21458 0.66841 0.03037
Sphingolipid metabolism 21 1 0.24578 0.60945 0.0142
Lysine degradation 25 1 0.28556 0.5443 0
Cysteine and methionine metabolism 33 1 0.35922 0.44464 0
Glycine, serine and threonine metabolism 34 1 0.3679 0.43427 0
Pyrimidine metabolism 39 1 0.40967 0.38757 0.0068
311 RNAs were down-regulated and 279 RNAs were identified in the form of a heatmap (Figure 4B), and we
up-regulated in the old BMSCs group. The volcanic found that DEGs could separate the old BMSC group
plots visually showed the variation trend of these RNAs from the young group, indicating that the DEGs we
(Figure 4A). We proved further that the 590 DEGs obtained were reliable.
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Figure 3. The enriched pathway analysis of metabolites. There are five metabolic pathways with significant changes: (A)
Glycerophospholipid metabolism; (B) Linoleic acid metabolism; (C) Biosynthesis of unsaturated fatty acids; (D) Arachidonic acid metabolism;
(E) Caffeine metabolism.
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GO and KEGG enrichment analyses of DEGs

GO and KEGG enrichment analysis are based on
different angles to better explain and understand the
biological significance of DEGs. GO enrichment
analysis focuses on the functional enrichment of
DEGs. From the results of GO enrichment analysis, we
found that up-regulated DEGs were enriched in 270
significant items (Supplementary Table 1), and down-
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Figure 4. Results of statistical analysis of transcriptome differences.

B

regulated DEGs were enriched in 73 significant entries
(Supplementary Table 2). Among the GO items into
which up-regulated DEGs were enriched, we selected
the top 10 entries of BP (biological process), CC
(cellular component) and MF (Molecular Function) to
draw bar charts (Figure 5A). Among the GO entries
enriched by down-regulated DEGs, top 15 of BP, all
CC and all MF entries were drawn as bar charts
(Figure 5B).
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(A) Volcano plots of mRNAs. The volcanic map is drawn with

-log10 (p-value) as the vertical axis and log2 (Fold Change) as the horizontal axis, which shows the changes of mRNA expression in the old
BMSC group and the young BMSC group. The red dots represent up-regulated mRNAs and the blue dots represent down-regulated mRNAs,
and the grey dots represent that the mRNAs were not significantly changed. (B) Heatmap of DEGs. Each row represents a sample and each
column represents a mRNA. Red is the high expression level, blue is the low expression level.
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enrichment analysis of down-regulated DEGs. (C) KEGG enrichment analysis of up-regulated DEGs. (D) KEGG enrichment analysis of down-
regulated DEGs. Abbreviations: BP: Biological Process; CC: Cellular Component; MF: Molecular Function.
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KEGG enrichment analysis focuses on gene pathway
analysis. From the results of pathway enrichment, we
found that 279 up-regulated genes enriched in 170
KEGG pathways (Supplementary Table 3) and 311
down-regulated genes enriched in 240 KEGG pathways
(Supplementary Table 4). It was enriched in 38
significantly up-regulated pathways (Figure 5C) and 38
down-regulated pathways (Figure 5D).

Protein-protein interaction network

KEGG pathways related to lipid metabolism were
selected, and protein-protein interaction (PPI) network
was further constructed between the des enriched in
these pathways (Figure 6). Scd, Mboat2, Agpat5, Dgat2,
Fads2, Lpinl, Acaa2, Lpcat3, Pcyt2 and Pla2g4a were
strongly correlated with other proteins (connected with
>3 proteins).

Integrative transcriptomic and metabolomic molecular
profiling analysis

Furthermore, we analyze the changes of metabolic
pathways in the process of cellular senescence by

integrating metabolomic and transcriptome data, so as
to better understand the mechanisms of BMSCs
senescence from a metabolic point of view. 52 KEGG
metabolic pathways (Figure 7A) were enriched by
integrating data, of which 5 metabolic pathways (p-
value < 0.05 and Impact > 0.1) had visible changes in
the process of cellular senescence, and 29 metabolic
pathways (p-value > 0.05 but Impact > 0.1) were
potentially associated with cellular senescence. In order
to understand the metabolic response of senescent
BMSCs at the transcriptome level, correlation analysis
heat map of the connection between differential
metabolites and DEG was established (Figure 7B). The
DEGs involved in lipid metabolism exhibited the most
dramatic changes in BMSC senescence. The differential
metabolites in lipid metabolism were extremely
correlated and statistically significant with DEGS.

Age-associated changes in BMSCs and validation of
mRNA expression

In order to verify the results of data analysis, we first
obtained young and old BMSCs. With the aging of
BMSCs, the cells gradually changed from long spindle
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Figure 6. PPI network construction. Each node represents one differentially expressed protein. Each edge represents regulation. Red, up-
regulated expressed protein; blue, down-regulated expressed protein.
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to flat, lost vitality, and there were clear particles in the
cytoplasm (Figure 8A). The analysis results indicated
that compared with young BMSC:s, the cell aspect ratios
in old BMSCs decreased (Figure 8B) and the cell arcas
increased (Figure 8C). And the number and ratio of SA-
B-gal positive cells in old BMSCs were obviously
elevated by SA-B-gal staining (Figure 8D, 8E). Then the
classical aging evaluation marker pl6™*** mRNA was
up-regulated in old BMSCs (Figure 8F). These data
above displayed that old BMSCs presented senescent
alterations. Further, RT-qPCR results demonstrated that
consistent with the trend of high-throughput sequencing
analysis, the expressions of Scd, Scd2, Dgat2, Fads2,
Lpinl, Gpat3, Acaa2 and Pla2g4a in old BMSCs were
down-regulated compared with the young group, and
Scd2 decreased most significantly, while the
expressions of Lpcat3 and Pcyt2 were up-regulated,
which was opposite to the results of high-throughput
sequencing (Figure 8G).

Scd2 over-expression ameliorates the senescence of
BMSCs

Since Scd2 gene was identified to be most significantly
reduced in old BMSCs, further study was investigated
whether BMSC senescence could be influenced by
enforcing Scd2 expression. For this purpose, senescent
BMSCs were transduced with lentivirus expressing
Scd2 (LV-Scd2) and the lentiviral vector (LV-Vector).
Fluorescence microscopy showed that Scd2 was
successfully over-expressed in old BMSCs (Figure 9A).
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Scd2 expression at protein level was obviously up-
regulated in the LV-Scd2 group compared with that in
the LV-Vector group, which was confirmed by Western
blot (Figure 9B). Furthermore, SA-B-gal staining and
quantitative analysis demonstrated that SA-B-gal
activity in Scd2-suffficient BMSCs was dramatically
diminished in the LV-Scd2 group (Figure 9C). And
P16™%4 mRNA expression was markedly down-
regulated after Scd2 repletion (Figure 9D). Accordingly,
the above data manifested that Scd2 replenishment can
attenuate BMSC senescence.

DISCUSSION

Aging usually refers to the biological process that the
functional integrity and physiological function of
organism gradually decrease, leading to the decline of
the ability to resist internal and external damage, and
the increase of disease susceptibility and death risk [19].
With the growth of individual age, the number of MSCs
reduced, and their proliferation and survival ability also
weakened, which is one of the reasons for the decline of
organ function in elderly individuals, and also the main
factor restricting the efficacy of autologous stem cell
transplantation in elderly patients [20]. Thus, we
characterized the metabolomic and transcriptomic
changes of BMSCs from young and old rats in a parallel
and integrated way, clarified the comprehensive
molecular mechanisms of BMSC senescence, and
provided novel ideas and targets for the prevention and
therapy of age-related diseases.
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Through non-targeted metabolomics analysis, the
changes of 23 different metabolites such as eriodictyol,
citicoline, choline, hippuric acid, PC (16:0/18:1 (92)),
oleic acid and fructose 1-phosphoric were obvious
(Figure 2). Differential metabolites such as amino acids,
organic acids and fatty acids can be used as potential
biomarkers of aging. Eriodictyol can resist oxidative
stress and inflammation by activating Nrf2 antioxidant
pathway [21]. Citicoline decreased in the old group,
which can reduce the apoptosis effect of age-related
Macular Degeneration (AMD) RPE cells [22]. In
addition, Citicoline has been shown in numerous studies
to have a beneficial effect in slowing down neuronal
aging [23, 24]. And the specific mechanism for this may
be that Citicoline reduces reactive oxygen species
production, stabilizes cell membranes, mitigates

>

ischemic damage, which may provide neuroprotection
by eliminating inflammation via reducing free fatty acid
accumulation, blocking mitochondrial membrane
components of phospholipase A2 activation, and
stimulating glutathione synthesis to counteract oxidative
damage [25, 26]. Perhaps there is a similar mechanism
in rat BMSCs that needs to be further explored. Linoleic
acid, as a precursor of arachidonic acid, produces
inflammatory mediators, and it also serves as a direct
target of some peroxidases to produce 9- andl13-
hydroxy-octadecadienoic acid and down-regulates
inflammatory responses [27, 28]. Consistent with
previous studies, pipecolic acid content increased with
aging [29]. The levels of choline, PC and PE increased
in old BMSCs, possibly due to the elevation of reactive
oxygen species (ROS) that caused cell membrane
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Figure 8. Detection of age-related changes in BMSCs and verification of gene expression. (A) Morphological alterations were
observed under a phase-contrast microscope (scale bar = 100 um). (B) The cell areas were obviously increased in the old BMSCs, and (C) the
cell aspect ratios were clearly decreased. (D—E) SA-B-gal staining (scale bar = 100 um). Senescent cells are stained blue. Compared with
young cells, the proportion of positive cells in old BMSCs was significantly elevated. (F) RT-gPCR analyses of mRNA expression of the age-
related factor pl6'™**A, BMSCs obtained from aged rats expressed elevated levels of pl6"™Nk*A, (G)RT-qPCR detected the expression of the
DEGs. Data indicate the mean + SD, n= 3. "P < 0.05, ""P < 0.01, """P < 0.001 vs. Young (Y).
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damage. In brief, during the aging process of BMSCs,
the antioxidant capacity declined and the lipid
metabolism related metabolites changed significantly.

The role of lipid metabolism in the aging process of
BMSCs was further verified by transcriptome analysis.
Compared with the young cells, a total of 590 DEGs
(279 up-regulated and 311 down-regulated genes) were
identified in the old BMSCs. Gene ontology enrichment
analysis results clarified that, wound healing, response
to transforming growth factor beta, stress fiber and
integrin binding were mainly enriched in senescent
BMSCs, while xenobiological metabolic processes,
response to lipopolysaccharide and membrane region
were enriched in young BMSCs, that is, these biological
processes were down-regulated in senescent BMSCs.
These hypo-regulated processes may be associated with
slow metabolism and physiological degeneration during
aging. KEGG pathway enrichment analysis showed that
Wnt signaling pathway, vascular smooth muscle
contract, TGF beta signaling pathway and MAPK
signaling pathway were significantly enriched in
senescent BMSCs, while viral protein interaction with
cytokine and cytokine receptor, metabolism of
xenobiology by cytochrome P450, fatty acid
metabolism, biosynthesis of unsaturated fatty acids
were significantly enriched in young BMSCs. It has
been shown that tissue regeneration is impaired with
aging and biased towards tissue fibrosis in aged rats,

C

and these may be related to the enhanced Wnt signaling
pathway in aged rats, which may be due to increased
Wnt or Wnt-like molecules in the serum of aged
animals [30]. It has been shown that p38MAPK can act
as an anti-aging target downstream of mTORC 1 in gut
stem cells, and that activation of mTORC 1 induces p53
and pl16 expression in a p38MAPK-dependent manner
[31]. Cancer cells can grow rapidly and survive through
reprogramming of lipid metabolism [32]. Similar to
stem cells, most of lipids, such as polyunsaturated fatty
acids, were easily oxidized by oxygen free radicals,
resulting in cellular senescence.

After integration of transcriptome and metabolite
analysis, glycerophospholipid metabolism, taurine and
hypotaurine metabolism, glycerolipid metabolism, drug
metabolism-cytochrome P450, drug metabolism - other
enzymes were altered in senescent BMSCs, which
might be the targets of anti-aging. As described
previously, Ginsenoside (GRbl) can remarkably
attenuate the senescence induced by physiological
changes through slowing down the disorder of lipid
metabolism, in which phospholipid metabolism is the
most significant [33]. Our work and other studies have
shown that senescent cells show overall changes in lipid

composition, resulting in extensive morphological
alterations and remodeling of cell membranes.
Glycerophospholipids and glycerolipid metabolism
were involved in aging and age-related changes [17].
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Figure 9. Scd2 over-expression alleviates senescence-associated variations in BMSCs. (A) EGFP expression under the fluorescence
microscope (scale bar = 200 um). (B) Determination of Scd2 protein expression levels by Western blot to demonstrate the transduction
efficiency. (C) SA-B-gal staining (scale bar = 100 um) and quantification of B-gal positive cells. (D) Gene expression of the senescence-related
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Besides, taurine, as one of the intracellular antioxidants,
plays an important role in oxidative stress during aging
[34]. And the activity of the cytochrome P450 enzyme
remains unchanged in the normal aging process, and the
genetic effect is more obvious than the age effect.
However, in our study, we found that the drug
metabolism-cytochrome P450 pathway has changed
significantly, which fully indicates that its mechanism
in the aging process is more complex and needs to be
further explored [35].

More interestingly, the correlation analysis between
genes and small molecule metabolites showed that some
genes related to lipid metabolism such as Scd2, Fads2,
Lpcat3, Fadsl, Scd, Pcyt2, etc. were correlated with
Citraconic acid, Fructose 1-phosphate, PC(16:0/16:0),
PC(16:0/18:1(92)), Hippuric acid, Cysteic acid,
Choline, cis, cis-Muconic acid metabolites had an
extremely strong positive correlation; InppSa, Itprl,
Cds2, Agpat5, Echsl and Hippuric acid, PC(16:0/16 :0),
cis, cis-Muconic acid, and Citicoline metabolites had a
very obvious negative correlation. And it was confirmed
by the analysis of lipid metabolic pathway by KEGG
Pathway. This suggests that some genes related to the
regulation of lipid metabolism such as Scd, Lpcat3 and
AgpatS may influence the changes of energy
metabolism and thus promote or delay the aging process
by regulating the related lipid metabolic pathways.
Considering this, we concluded that in the aging process
of rat BMSCs, the changes of lipid metabolism related
genes and metabolites are more obvious, and further
experiments may be performed to verify the relevant
pathways to delay aging. All in all, lipid metabolism is
closely related to BMSC senescence, and displays
obvious changes in many genes, such as Scd, Scd2,
Dgat2, Fads2, Lpinl, Gpat3, Acaa2, Lpcat3, Pcyt2,
Pla2g4a and so on.

Scd, Scd2, Dgat2, Fads2, Lpinl, Gpat3, Acaa2, Lpcat3,
Pcyt2 and Pla2gda have been reported to be closely
associated with cancer. For example, Dgat2 can affect
the progression of hepatocellular carcinoma by
regulating the cell cycle, and overexpression of Lpinl
can promote the proliferation and migration of ovarian
cancer cells [36]. When RT-qPCR was performed for
validation, we found that Lpcat3 and Pcyt2 expression
increased with aging. Although the experimental
validation results were inconsistent with the histological
sequencing data, the possible reason for this is that the
sequencing method of gene splicing is subject to errors.
An article clearly indicates that the development of
atherosclerosis is closely associated with high
expression of Lpcat3 [37]. The similarly senescence
indicator gene SIRT 1 is a NAD+-dependent protein
deacetylase and belongs to this enzyme family. Pcyt2
expression is up-regulated in liver-specific SIRTI-

deficient mice [38], so we hypothesized that Lpcat3 or
Pcyt2 knockdown may delay aging. The process of
senescence was accompanied by changes in energy
metabolism. Aging may be associated with changes in
energy metabolism during MUFA and PUFA synthesis,
and the correlated genes that regulate this process, Scd,
Fads 1, and Fads 2 also showed significant dysregulated
expression in aged mice [39], which was consistent with
our sequencing results. It has been reported in the
literature that overexpression of Scd in patients with
diabetes and femoral head necrosis promoted osteogenic
differentiation [40, 41]. The results showed that Scd2
was most significantly downregulated in senescent
BMSCs, suggesting that Scd2 may play an important
role in aging and age-related diseases. Scd2 is a gene
that catalyzes the rate-limiting step of monounsaturated
fatty acid formation, which is important for lipid
synthesis during development. The monounsaturated
fatty acids are required for the maintenance of normal
epidermal permeability barrier function and lipid
biosynthesis [42]. The construction of some biological
membrane systems such as cell membrane, mitochondrial
membrane and endoplasmic reticulum membrane are
closely related to lipid metabolism. In this study, we
found that Scd2, a gene related to lipid metabolism, was
closely associated with cellular senescence and Scd2
over-expression can ameliorate BMSC senescence. The
improvement of biomembrane system has been
speculated. As a key regulatory gene of lipid
metabolism, Scd2 may be involved in the process of
alterations in the structure of biological membrane in
senescent cells. Although these differential genes have
been reported to be closely related to many age-
associated disorders, their role and mechanism in MSC
aging are rarely reported. Therefore, it is important to
explore the mechanisms related to lipid metabolism and
aging of BMSCs.

Our research has some limitations. First of all, we only
studied young and old BMSCs. Because of the
heterogeneity and limitations of samples and
techniques, the metabolites analyzed may not be
complete, and not all aging studies are applicable.
Secondly, due to the aged rats are difficult to obtain, the
sample size of our analysis is relatively small, and more
samples should be included. Finally, the exploration of
BMSCs should be verified in clinical practice.

In summary, we used the method of metabolomics and
transcriptome analysis to study the related mechanism
of aging and metabolism with the cell samples of
natural aged rats. 130 kinds of differential metabolites
and 590 significantly differential RNAs were detected
in the BMSCs from aged rats. Among them, 23 kinds of
metabolites including lipids, fatty acids and amino acids
were identified by non-targeted metabolomics. The

WWWw.aging-us.com

1024

AGING



changes of metabolites caused the alterations of 16
metabolic pathways, 3 metabolic pathways were
significantly altered, and 2 metabolic pathways were
potentially related to BMSC senescence. Metabolomics
and transcriptomics jointly revealed that the changes of
genes and metabolites related to lipid metabolism were
more obvious in the aging process of rat BMSCs.
Moreover, our study for the first time indicates that
Scd2 repletion can attenuate the senescence of BMSCs,
but further investigations are needed to unravel the
underlying mechanisms.

MATERIALS AND METHODS
Materials and reagents

Healthy male Wistar rats, SPF grade, purchased from
Animal Experimental Center, Basic Medical College of
Jilin University, P.R. China. Liquid chromatography-
mass spectrometry (LC-MS) grade ammonium acetate,
ammonium hydroxide and MeOH were purchased from
Sigma-Aldrich (USA). Acetonitrile was purchased from
J.T.Baker (USA). KAPA Stranded RNA-Seq Library
Prep Kit and TruSeq SR Cluster Kit v3-cBot-HS were
purchased from Illumina (USA). NEBNext® Poly(A)
mRNA Magnetic Isolation Module was purchased from
NEB (USA). RiboZero Magnetic Gold Kit (Human/
Mouse/Rat) was purchased from Epicentre (USA).

BMSC isolation and culture

Primary BMSCs, which were isolated from the bone
marrow of young (1-2 months, » = 3) and old (15-18
months, » = 3) male Wistar rats (Permit Number:
SYXK 2018-0001) by whole bone marrow attachment
method under aseptic conditions, were plated into 10-cm
culture dishes in complete medium containing 89%
Dulbecco's Modified Eagle Medium with nutrient
mixture F-12(DMEM-F12) (HyClone, USA)
supplemented with 10% FBS (Gibco, USA) and 1%
penicillin streptomycin (HyClone, USA) [43]. The
young and old BMSCs were incubated at 37°C with 5%
CO2 for 24 h in a humidified atmosphere, the medium
was replaced by half amount. After that, the liquid was
changed every 2-3 days. When reaching 80%
confluence, 0.25% trypsin-EDTA (Gibco, USA) was
added to digest the cells and the subculture was
continued at a ratio of 1:3 BMSCs at passage 3, young
BMSCs were used as the control group and old BMSCs
as the experimental group for subsequent experiments.

Sample preparation and intracellular metabolites
extraction

The culture media of young and old cells were removed,
and the cells were washed with pre-cooled PBS. Then a

small amount of PBS was added to the petri dish, and
the cells were carefully scraped and collected into the
centrifuge tube. After that, centrifugation was carried
out at room temperature, 1000 rpm, for 5 min. The upper
liquid was removed as far as possible without residue
and the lower cell was precipitated. H2O was added into
the cells at 4°C and ultrasound was performed for
10 min. MeOH and CAN were added in a 1:1 ratio to
extract the spare sample 200 mL, then eddy the sample
for 30s, ultrasound for 10 min. To remove the protein,
the sample was incubated at —20°C for 1 h, and then
centrifuged at 4°C at 20,000 rpm for 15 min. The
supernatant produced by centrifugation was discarded in
a vacuum concentrator and evaporated to dry. ACN and
H20 were added to the precipitation at the ratio of 1:1,
and then the mixture was mixed, eddy for 30s, and
ultrasonic for 10 min. The insoluble fragments were
removed by centrifugation at 20000 rpm at 4°C for 15
min. The supernatants were transferred to HPLC vials
and stored at —80°C prior to LC/MS analysis [44]. QC
samples were prepared by pooling 10 pL from each
sample. The extraction of QC samples was the same as
sample preparation.

LC-MS measurements

Samples were separated on an amide column, using
mobile phase A consisting of water mixed with 25 mM
ammonium acetate and 25 mM ammonium hydroxide
and mobile phase B ACN. The injection volume was 4
pL and flow rate was 0.4 ml/min. The generic HPLC
gradient was listed in Supplementary Table 5. Then, MS
analysis was carried out on the Q-Exactive MS/MS in
both positive and negative ion modes.

The relevant tuning parameters for the probe were set as
listed: aux gas heater temperature, 400°C; sheath gas, 40;
auxiliary gas, 13; spray voltage, 3.5 kV for positive mode
and negative mode. The capillary temperature was at
350°C, and S-lens at 55. A DDA method was built as
follows: Full scan range: 60 to 900 (m/z); resolution for
MS1 and ddMS2: 70,000 and 17,500 respectively;
maximum injection time for MS1 and ddMS2: 100 ms
and 45 ms; automatic gain control (AGC) for MS1 and
ddMS2: 3e6 and 2e5; isolation window: 1.6 m/z;
normalized collision energies (NCE): 10, 17, 25 or 30,
40, 50. Build a full scan method as follows: Full scan
range: 60 to 900 (m/z); resolution: 140,000; maximum
injection time: 100 ms; automatic gain control (AGC):
3e6 ions. TIC plots for sequentially selected QC samples
were displayed as bellow (Supplementary Figure 1).

Metabolomics analysis

Raw files were submitted to Thermo Compound
Discover 2.1, (CD), and processed with Untargeted
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Metabolomics workflow with minor modification to
find and identify the differences between samples.
The quantification and annotation results from CD
were analyzed with R script. In the analysis of
multivariate data, the normalized spectral data were
imported into SIMCA-P software (Version 12.0,
Umetrics AB, Umea, Sweden), and the importance of
low-level metabolites was increased by Pareto
scaling, while the noise was not significantly
amplified. ~ Unsupervised principal component
analysis (PCA) was used to observe grouping trends,
highlight outliers, and show clustering between
groups [45].

On this basis, the relative integral of significant
metabolites determined in the OPLS-DA model was
used to quantitatively analyze the metabolite levels.
Variations were statistically calculated by utilizing
one-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparison test with the Bonferroni
correction using the R software (Version x64 4.0.2)
and Rstudio (Version x64 3.6.2). Differential
metabolites were identified with statistical significances
of P <0.05.

RNA isolation and sequencing

When the growth of young and old cells converged
and fused to 80%-90%, the culture medium was
abandoned and cells were washed with PBS once or
twice; 1-2 ml Trizol was added to the adherent area
of 10-15 cm? cells. After repeated batting for several
times, the visible cell layer was completely dissolved
and transferred to the RNA-free EP tube. Agarose gel
electrophoresis was used to detect the integrity of the
total RNA in the sample, and quantitative analysis
was carried out using Nano DropNd-1000. After that,
RNA was inspected. Fragmented mRNA enrichment
or TRNA removal; The first strand of cDNA was
generated by reverse transcription, and the double
strand of cDNA was synthesized by adding dUTP.
Various polymerases were added to repair the ends of
the double-stranded c¢cDNA and A was added,
followed by ligase Illumina specific connector; The
final RNA sequencing library was obtained by PCR
amplification and purification. Agilent 2100
BioAnalyzer was used for quality control, and the
final quantification of the library was carried out
using qPCR method.

The sequencing library of the mixed samples was
deformed by Na OH to generate single stranded DNA,
which was diluted into 8p M concentration and
amplified in situ on Tru Seq SR Cluster Kit V3-C BOT-
HS. The end of the generated fragment was sequenced
for 150 cycles.

Transcriptomics analysis

The software StringTie was used to compare the
results to the known transcriptome, calculate the
transcriptional abundance. Differentially expressed
mRNAs were detected by using the Ballgown [46].
The unit of expression amount was expressed by
FPKM, and the threshold value of gene or transcript
expression amount was FPKM greater than or equal to
0.5. Genes or transcripts whose mean value of FPKM
exceeded 0.5 in each group are considered to be
expressed in the group for statistical analysis. In
addition, R packages were clusterProfiler (3.16.1) and
ggplot2(3.3.2) to perform Gene ontology (GO) and
KEGG pathway enrichment to describe the properties
of genes and gene products of various organisms, and
to determine the different biological pathways
involved in mRNAs [47]. The DEGs were analyzed
using STRING (http://string-db.org) database and a
protein-protein interaction (PPI) network was visualized
using Cytoscape (version 3.6.2).

Integration of metabolomic and transcriptomic
analysis

Metabolome and transcriptome data were visualized
and clarified by using the network analysis module of
online analysis software  Metaboanalyst 4.0
(https://www.metaboanalyst.ca/). In addition, the
metabolite differences and abundant pathways from
transcriptome data were able to be clearly observed and
identified.

Analysis of the expression levels of mRNAs using
RT-qPCR

The reliability of high-throughput RNA sequencing data
was further confirmed. The expression levels of the top
eight up-regulated mRNAs were measured using real-
time quantitative polymerase chain reaction (RT-qPCR)
with TransStart Top Green qPCR SuperMix (TRANS,
China) in a 7300 Real-Time PCR System (ABI, Vernon,
CA, United States). The primer sequences used are
shown in Supplementary Table 6. SYBR Green
Supermix was used for RT-qPCR. The expression was
determined using the threshold crossing point (Ct) as
calculated by AACt.

Detection of senescence-associated f-galactosidase
(SA-B-gal) activity

The young and old BMSCs in good growth condition
were detected with the Senescence PB-Galactosidase
Staining Kit (Beyotime Biotechnology, China). After
washing with phosphate buffered saline (PBS) and
fixing, the cells were stained overnight at 37°C in the
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staining solution containing X-Gal. The staining was
observed under inverted fluorescence microscope, and
the positive cell rate (number of blue stained cells/total
cells x 100%) in different areas of the culture dish was
calculated.

Lentiviral transduction of BMSCs

The optimal infection conditions of senescent BMSCs
were determined according to the cell density and virus
titer. The cells were inoculated at a density of 1.5x10°
cells/well in a 6-well plate. When about 50%
confluence reached, cell complete culture medium,
Scd2 over-expression lentivirus and virus infection
enhancement solution were added in a certain ratio.
After 12h incubation, the original medium was
discarded and replaced with new cell complete culture
medium. Then EGFP expression was monitored under a
fluorescence microscope and transduction efficiency
was determined by western blot after subsequent 48—
72 h.

Western blot analysis

After protein extraction using RIPA lysis buffer, the
total protein content was determined using the BCA
protein assay kit (Beyotime). Then, 30 pg of protein
extracted from each sample was resolved by 10% SDS-
PAGE gels and transferred by electroblotting onto
PVDF membranes (Millipore, Billerica, CA, USA). The
blotted membranes were incubated with 5% skim milk
for 1-2 h at RT and then detected overnight at 4°C with
anti-Scd2 (1:500 dilution, Santa Cruz, USA) and anti-f-
actin (1:2000 dilution, Proteintech, USA) diluted in
TBST. Incubation with horseradish peroxidase-
conjugated anti-rabbit IgG secondary antibody (1:2000
dilution, Beyotime Biotechnology, China) was
performed for 1-2 h followed by washing with TBST.
Finally, protein blots were visualized using an enhanced
Electro-Chemi-Luminescence detection system
(Amersham Biosciences, Inc., Piscataway, NJ, USA).
B-actin was used as an internal standard.
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SUPPLEMENTARY MATERIALS

Supplementary Figure
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Supplementary Figure 1. TIC for sequentially selected QC samples.
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Supplementary Tables
Please browse Full Text version to see the data of Supplementary Tables 1-4.

Supplementary Table 1. GO enrichment results of up-regulated DEGs.

Supplementary Table 2. GO enrichment results of down-regulated DEGs.

Supplementary Table 3. KEGG enrichment results of up-regulated DEGs.

Supplementary Table 4. KEGG enrichment results of down-regulated DEGs.

Supplementary Table 5. The generic HPLC gradient.

Time

A

0.0 min

1.0 min

11.0 min
14.0 min
16.5 min
18.5 min
20.5 min
25.0 min
25.1 min
34.0 min

10%
10%
13%
20%
30%
50%
80%
80%
10%
10%

90%
90%
87%
80%
70%
50%
20%
20%
90%
90%

Supplementary Table 6. Primers used for quantitative real-time PCR.

Gene Forward primers Reverse primers

B-Actin 5'-GGAGATTACTGCCCTGGCTCCTA 5'-GACTCATCGTACTCCTGCTTGCTG
P16/NK4A 5'-AACACTTTCGGTCGTACCC 5'-GTCCTCGCAGTTCGAATC

Sed 5'-CTCAGCGCTGGGAAAGTG 5'-GAACTGGAGATCTCTTGGAGCA
Scd2 5'-GCAGATGTTCGCCCTGAAATTA 5'-CAAATATGCAAAGAGGCAGGTGTAG
Dgat2 5'-CTTCCTGGTGCTAGGAGTGG 5'-GCCAGCCAGGTGAAGTAGAG
Fads2 5'-TTGCACAAGATTGCCCCA 5'-GGCTTCTCTTGGTATTCAATGCC
Lpinl 5'-TATGACACGGCTTGTTCC 5'-GTGGCTGCCCTGTATTTC

Gpat3 5'-TGGACTGATGGGGATCATTCAGAGA 5'-GCCCAGCTTGTCATTATCCGAA
Acaa2 5'-GCCGCCACACTATTAAGGCT 5'-CGCTTCGCAGCAACGATAAA
Lpcat3 5'-TTTCTGGTTCCGCTGCATGT 5'-CCGACAGAATGCACACTCCTTC
Pcyt2 5'-AGGCTGGGAGGTACAGAGAG 5'-AGGACATCTCCTGGCTGCTA
Pla2g4a 5'-5TGTTCAACAGAGTTTTGG 5'-AACAGAGCAACGAGATGG
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