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ABSTRACT

Sepsis, defined as a dysregulated host immune response to infection, is a common and dangerous clinical
syndrome. The excessive host inflammatory response can induce immediate and persistent cognitive
decline, which can be worse in older individuals. Sex-specific differences in the outcome of infectious
diseases and sepsis appear to favor females. We employed a murine model to examine the influence of age
and sex on the brain's microRNA (miR) response following sepsis. Young and old mice of both sexes
underwent cecal ligation and puncture (CLP) with daily restraint stress. Expression of hippocampal miR was
examined in age- and sex-matched controls at 1 and 4 days post-CLP. Few miR were modified in a similar
manner across age or sex and these few miR were generally associated with neuroprotection against
inflammation. Similar to previous work examining transcription, young females exhibited a better recovery
of the miR profile from day 1 to day 4, relative to young males and old females. For young males and all
female groups, the initial response mainly involved a decrease in miR expression. In contrast, old males
exhibited only upregulated miR on day 1 and day 4 and many of the miR upregulated on day 1 and day 4
were linked to neurodegeneration, increased neuroinflammation, and cognitive impairment. The results
emphasize age and sex differences in epigenetic mechanisms that likely contribute to susceptibility or
resilience to cognitive impairment due to sepsis.

INTRODUCTION AD/ADRD has been labeled sepsis-associated

encephalopathy and is commonly seen in older adults
Sepsis is defined as life-threatening organ dysfunction [7]. In fact, sepsis has been labeled ‘a disease of the
caused by a dysregulated host immune response to aged,” as 60% of septic individuals are older than 65
infection [1-4]. Sepsis is surprisingly common with years [8, 9]. Greater than 50% of sepsis survivors
nearly two million hospital admissions annually in the suffer from cognitive dysfunction after hospital
United States, [2, 3, 5]. Furthermore, sepsis can induce discharge, including issues with general memory,
immediate and persistent cognitive decline, with worse attention, verbal fluency, and executive function [10].
outcomes in older and Alzheimer’s Disease and Also, a recent nationwide population-based study
Alzheimer’s Disease Related Dementia (AD/ADRD)- revealed that dementia is commonly present in a
diagnosed patients [6]. Of note, sepsis-induced substantial proportion (>11%) of adults >65 years of
neurocognitive  pathology in patients without age hospitalized with sepsis [11].

www.aging-us.com 728 AGING



The response to sepsis and recovery from sepsis is
influenced by age and sex. Examination of the
molecular and physiological response to systemic
inflammation in males indicates that diminished
cogitation involves impaired synaptic function in the
hippocampus, including microglial-mediated synapse
elimination, early after a “cytokine storm” [12, 13].
Following this initial response, young animals exhibit
resilience and recovery of cognitive and synaptic
markers, which may be absent with advanced age [13—
15]. Furthermore, there is a sexual dimorphism in
response to sepsis with females exhibiting better outcomes
[16, 17]. Our recent work examining the hippocampal
transcriptome in age and sex-matched controls (i.e., no
sepsis day 0) and at 1 and 4 days post-cecal ligation and
puncture (CLP) confirmed age and sex differences in
gene expression [15]. In general, females were better
able to resolve sepsis induced gene changes. In addition,
older male mice exhibited a delayed and prolonged
response to sepsis. Hypothesized mechanisms for age
and sex related differences in the brain’s response to
sepsis include epigenetic regulation, with most of the
work focused on DNA methylation [18-24].

Epigenetic regulation can also occur through
microRNAs (miRs), a family of non-coding small
RNAs that can post-transcriptionally regulate protein
expression by inhibiting mRNA translation or
promoting mRNA degradation [25]. Expression of miRs
provides biomarkers of cellular senescence, aging
phenotypes, and disease [26—29]. Indeed, many of the
miRs involved in immune regulation are altered during
aging [30]. While sexually dimorphic differences in
brain miR have been described for development and
stroke [31], little is known about the role of miR in
mediating age and sex differences in the response to
sepsis. To examine the role of miR in mediating age and
sex differences, we characterized the expression of miR
in the hippocampus on day 1 and day 4 after sepsis in
young and aged male and female mice. In many cases,
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Male & Female) ~14 days
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the tissue was from the same mice used to describe gene
expression [15]. The miR expression results are
consistent with mRNA expression in that females,
particularly young females, resolve quickly and older
males exhibit a prolonged response. Examination of the
relationship between increased miR expression and
mRNA in older males indicated little predictability for
individual miR and mRNA on day 1, likely due to
changes in a number of factors associated with
fluctuating cytokines. In contrast, a decrease in mRNA
expression was more likely on day 4 and linked to
multiple miR, directed against specific mRNA. The
results emphasize age and sex differences in examining
the markers and mechanisms of the response and
recovery from sepsis, as well as the need for precision/
personalized therapeutics to address post-septic
cognitive decline.

MATERIALS AND METHODS
Animals

A schematic of the experimental paradigm is provided
in Figure 1. All animal experiments were approved by
the University of Florida Institutional Animal Care and
Use Committee and followed Animal Research
Reporting of In Vivo Experiments (ARRIVE) guidelines
(https://www.nc3rs.org.uk/arrive-guidelines). The animals
were cared for and used according to the Guide for the
Care and Use of Laboratory Animals [32]. Young (~4
months) and old (~20 months) adult C57BL/6J (B6)
mice of both sexes (young male = 12; old male = 12;
young female = 12; old female = 12) were purchased
from Jackson Laboratory (JAX; Bar Harbor, ME).
Mice were cared for by the University of Florida
Animal Care Services and housed in transparent cages
(three to four animals of same sex/age per cage) under
specific pathogen-free conditions in a single room.
Animals were provided standard irradiated pelleted
diet and water ad libitum for the duration of the
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—
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Figure 1. Schematic diagram of the experimental paradigm for sepsis induction, daily chronic stress (DCS), and tissue
collection. Young adult (¥4 months) and old (~20 months) male and female mice were purchase from Jackson Laboratory (JAX Bar Harbor,
ME). Prior to initiation of the experiment, mice were acclimated to a 12-hour light-dark cycle for a minimum of 14 days. Sepsis was induced
by employing cecal ligation and puncture (CLP) under isoflurane anesthesia. DCS was conducted by placing mice in weighted plexiglass
animal restraint holders (Kent Scientific; Torrington, CT) for 2 hours daily commencing the day after CLP. Mice were euthanized for tissue
collection either 24 or 96 hours post CLP+DCS. The hippocampus was dissected, flash frozen, and stored at -80, for miR isolation and
sequencing.
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study. Prior to initiation of the experiment, mice were
acclimated to a 12-hour light-dark cycle for a minimum
of 14 days. Due to the coprophagic nature of mice, this
assured that mice in the same cage would have similar
microbiota composition and structure [33]. Only
animals of the same sex, age, and treatment group were
housed together.

Intra-abdominal sepsis and daily chronic stress
model

In order to recapitulate the human condition of
abdominal sepsis, a murine model of sepsis and
persistent inflammation, previously described by our
laboratory, was utilized [34]. Briefly, general anesthesia
was induced with inhaled isoflurane and CLP was
performed via a midline laparotomy with exteriorization
of the cecum to induce a model of sepsis. The cecum
was ligated with 2-0 silk suture 1 cm from its tip, a
25-gauge needle was used to puncture the cecum, and
the laparotomy was closed in one layer with surgical
clips. Buprenorphine analgesia was provided for 48
hours post-surgery. Imipenem monohydrate (25 mg/kg
in 1mL 09% normal saline) was administered
subcutaneously 2 hours post-CLP and then continued
twice daily for 72 hours. Subsequently, we added a
component of daily chronic stress (DCS). DCS was
conducted by placing mice in weighted plexiglass
animal restraint holders (Kent Scientific; Torrington,
CT) for 2 hours daily commencing the day after CLP.
DCS was combined with CLP (CLP+DCS) to mimic the
stress that occurs in patients when residing in an
intensive care unit and better reflects human sepsis
relative to CLP alone [34, 35]. This model was
previously used to describe age and sex-related changes
in hippocampal transcription [15]. The CLP+DCS mice,
along with mixed-sex naive mice (no CLP, no DCS, no
antibiotics, and no fluid resuscitation) were euthanized
on day 1 or 4 post-CLP+DCS. Mice were anesthetized
with isoflurane (Halocarbon Laboratories, River Edge,
NJ) and swiftly decapitated.

The work consisted of young and old female (50%) and
male (50%) mice. Of note, the last restraint stress
occurred 1 hour prior to sacrifice, and mice that were
sacrificed 24 hours after CLP received restraint cone
stress 1 hour prior to sacrifice.

Tissue collection

Animals were sacrificed either 24 hours or 4 days
following CLP. Age and sex-matched control groups
were sacrificed directly from the home cage, without
receiving surgery or anesthesia. Mice were anesthetized
with isoflurane (Halocarbon Laboratories, River Edge,
NJ) and swiftly decapitated. The brains were rapidly

removed and the hippocampi were dissected. All brain
samples were flash frozen in liquid nitrogen and were
stored at —80°C. One whole hippocampus was used for
microRNA sequencing. In some cases, the other
hippocampus was used for mRNA sequencing and the
results have previously been reported [15].

RNA isolation

Hippocampus tissue miR was isolated using mirVana
miR Isolation Kit (ThermoFisher Scientific, Cat#
AM1560) according to the manufacturer’s
instructions. The quantity and quality of the RNA
was determined by University of Florida
Interdisciplinary Center for Biotechnology Research
using the Agilent RNA 6000 Pico Kit to determine
the concentration of total RNA, and a Small RNA Kit
was used to measure the concentration of tissue micro
RNA (miR) on the Agilent Bioanalyzer instrument
(Agilent Technologies).

Small RNA library preparation and sequencing

To perform miR profiles, sequencing libraries were
prepared using 48 samples (old and young adult males
and females) of 12 different groups. For males,
examination of miR expression was performed for the
same mice in which the mRNA response was
examined and included young male control (n = 4/4,
miR/mRNA), young male 24 hours post-sepsis (n =
4/4), young male 4 days post-sepsis (n = 4/4), old male
control (n = 4/4), old male 24 hours post-sepsis (n =
4/4), old male 4 days post-sepsis (n = 4/4). For
females, most of the miR samples were from the same
mice in which mRNA expression was measured,
particularly for older females. However, due to loss of
tissue, some younger females were replaced: young
female control (n = 4/2, miR/mRNA), young female
24 hours post-sepsis (n = 4/1), young female 4 days
post-sepsis (n = 4/3), old female control (n = 4/4), old
female 24 hours post-sepsis (n = 4/4), and old female 4
days post-sepsis (n = 4/3). Methods for miR library
preparation and sequencing have previously been
published [28, 36, 37]. Briefly small RNA libraries
were prepared using the Ion Total RNA-Seq Kit v2
(Thermo Fisher, catalog number 4475936). Each
library was barcoded with Ion Xpress RNA Seq-
Barcode 01-16 Kit (ThermoFisher, Cat# 4475485) to
enable multiplex sequencing. The concentration of the
libraries was quantified by the Qubit dsDNA HS
Assay (Thermo Fisher, Cat# Q32851). In addition, the
size distribution and molar concentration was
determined with the High Sensitivity D1000 Screen
Tape Kit (5067-5584) on 2200 TapeStation system
(Agilent Technologies, Cat#G2964A) according to the
manufacture’s protocol.
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Data acquisition, bioinformatics and statistical

analysis

Data acquisition and analysis for miR expression was
performed as previously described [28, 36, 37]. In brief,
on Partek Flow server FASTQ files were trimmed and
aligned to the mouse (mm10) genome using Bowtie
(version 1.0.0). Normalization was performed on total
counts in Partek and genes with an average total count
of less than 5 were removed, consistent with our
previously published work [28, 36-39]. Statistical
filtering was performed using a p-value set at p < 0.05.
Features list that passed the statistical filter were then
separated into upregulated or downregulated based on
fold change. The data for this study has been uploaded
to the Gene Expression Omnibus under the accession
number GSE188874.

RESULTS

Figure 2 illustrates the global pattern of differentially
expressed miRs (DEmiRs) in young and old adult male
and female mice, specifically 1 or 4 days following
sepsis compared to sex and age-matched controls. In
general, females and older animals exhibited a more
robust response on day 1, with an increased number of
DEmiR. Interestingly, the largest changes were for
downregulated miR with the exception on older males,
which exhibited only up regulated miR. Young females
exhibited considerable recovery on day 4, observed as a
marked decrease in the number of DEmiR. For the other
groups, there was an increase in DEmiR on day 4,
mainly for upregulated miR, except for older females,
which exhibited increased expression of up and
downregulated miR. The increase in upregulated miR
was particularly robust for older males, which exhibited

the greatest number of upregulated miR on day 1 and
day 4.

Young adult male mice

On day 1 following sepsis, young males exhibited 11
downregulated miRs compared to controls, in the
absence of upregulated miR (Figure 2). On day 4
following sepsis, the number of downregulated miRs
increased to 30 and included 2, miR-335-3p and miR-
let-7d-3p, which were also decreased on day 1.
Expression of miR-let-7d-3p has been linked the
regulation of the inflammatory response [40, 41] and
expression of miR-335-3p has been linked to the
response to stress [42] and regulation of neuroprotection
and neurodegeneration [43, 44]. In addition, elevated
expression of miR-335-3p has been associated with
poorer memory during aging [45] and inhibition of
estrogen receptor expression [46]. Upregulation was
observed for 24 miRs on day 4.

Old adult male mice

In contrast to young males, the response in old males
was limited to up regulation of miRs for both day 1 and
day 4. For older males, 36 miRs were upregulated on
day 1 and the number of upregulated miRs increased to
62 on day 4, with 22 increased on both days, relative to
controls (Table 1). Three of the miRs upregulated on
days 1-4 (miR-223-3p, miR-98-3p, miR-662-5p) are
linked to the X-chromosome. Examination of the
pattern of expression for these 22 miRs indicated that
19 continued to increase from day 1 to day 4. Although
expression was above baseline, 3 miRs exhibited
evidence of returning towards baseline. No miRs were
affected in the same direction on day 1 in young and
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Figure 2. The number of miRs differentially expressed for each age and sex group. Summary of the total number of miRs
increased (black) or decreased (white) expression in the hippocampus 1 or 4 days after sepsis relative to age-matched controls.
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Table 1. Mean * SEM fold change, relative to the mean of old control males, for normalized counts of 22 miRs
that increased expression on day 1 and day 4 of sepsis in old males.

miR Day 1 Day 4 Change Day 1 to Day 4
mmu-miR-381-3p 1.40 £ 0.04 1.46 £ 0.09 up
mmu-miR-872-3p 1.45+0.09 1.63+£0.24 up
mmu-let-7f-1-3p 1.51+0.23 1.39+0.12 down
mmu-miR-7a-1-3p 1.52+£0.07 1.49+0.17 down
mmu-miR-212-3p 1.52+0.10 1.58+0.23 up
mmu-miR-31-3p 1.60 £ 0.07 1.59+£0.19 down
mmu-miR-30b-5p 1.61 £0.15 2.10+0.35 up
mmu-miR-342-3p 1.61 £0.09 1.76 £ 0.31 up
mmu-miR-323-3p 1.64+0.11 1.86+0.46 up
mmu-miR-223-3p 1.65+0.26 2.50+0.70 up
mmu-miR-672-3p 1.66 £0.25 2.17+0.41 up
mmu-miR-15a-5p 1.71+£0.13 1.53+£0.19 down
mmu-miR-30¢-5p 1.72+£0.19 1.99+0.18 up
mmu-miR-33-3p 1.72+£0.13 1.53+£0.12 down
mmu-miR-15b-5p 1.74 £0.03 1.87+0.43 up
mmu-miR-98-3p 1.80 +0.35 1.65+0.19 down
mmu-miR-106b-5p 1.82+0.15 1.90 £ 0.30 up
mmu-miR-340-5p 1.84+£0.16 2.82+0.94 up
mmu-miR-672-5p 1.85+0.37 2.82+0.99 up
mmu-miR-467e-5p 1.96 +0.37 1.68 £ 0.36 down
mmu-miR-190a-3p 1.97+£0.18 2.05+0.34 up
mmu-miR-362-5p 2.80+0.58 3.88+0.72 up

older males. There were 6 miRs that exhibited an
increase on day 4, in young and old septic males. These
miRs have been linked to inhibition of inflammation
and neuroprotection (miR-223-3p, miR-544-5p, miR-
219a-5p, miR-15a-5p) [47-54] and neural development
and cognition (miR-190a-3p, miR-344-3p) [55, 56]. In
addition, 5 miRs, which were increased in older males
on day 4, exhibited downregulation in young males
on day 4. Again, these miRs are associated with
neuroprotection and reduced neuroinflammation,
including let-7¢-5p [57]. However, upregulation of
let-7b-5p [58, 59] and let-7a-5p [60] in older males may
be markers of metabolic stress consistent with a
delayed/prolonged response in older males during a
time when younger animals are exhibiting resolution of
inflammation.

Young adult female mice

For young females on day 1 following sepsis, the
number of DEmiRs was approximately 5 fold more than
young male; however, like males, most of the miRs, 43
out of 50, were downregulated (Figure 2). In addition,
while young males exhibited an increased number of

DEmiRs on day 4, young females exhibited a reduced
number of DEmiRs on day 4 (3 upregulated and 2
downregulated), consistent with increased rate of
recovery for young females over this time period [15].
The DEmiRs for young females were not common
across days, such that no miRs exhibited a similar
directional change on day 1 and day 4. Furthermore, the
DEmiRs were not the same as that observed for young
males, with no common up or downregulated miRs on
day 1 and only two miRNAs (miR-383-5p, miR-1249-
3p) were downregulated on day 4 in both young females
and young males. Downregulation of miR-383-5p may
provide a neuroprotection against inflammation and
associated oxidative stress [61]. Thus, for young
animals, the initial response on day 1 is mainly a
downregulation of miRs; although the specific miRs
differ across sex, suggesting a sexually dimorphic
response to sepsis. Furthermore, young females
exhibited considerable recovery from day 1 to day 4.

Old adult female mice

Similar to the age comparison for young and old males,
older females were more responsive than young
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Table 2. Mean + SEM fold change, relative to the mean of old control females, for normalized counts of 18 miRs
that decreased expression on day 1 and day 4 of sepsis in old females.

miR Day 1 Day 4 Change Day 1 to Day 4
mmu-miR-320-3p 0.44 +0.05 0.71 £0.10 up
mmu-miR-383-5p 0.53 +0.05 0.65+0.12 up
mmu-miR-135b-5p 0.54+0.06 0.53+£0.01 down
mmu-miR-495-5p 0.57+0.01 0.57+0.11 down
mmu-miR-409-5p 0.60 +0.06 0.57+0.04 down
mmu-miR-129-2-3p 0.63 £0.06 0.55+0.02 down
mmu-miR-322-5p 0.63 +0.06 0.35+0.02 down
mmu-miR-377-5p 0.64 £0.04 0.50£0.09 down
mmu-miR-671-5p 0.65+0.10 0.72+0.16 up
mmu-miR-370-3p 0.66 + 0.05 0.65+0.10 down
mmu-miR-324-5p 0.68 £0.05 0.72+0.11 up
mmu-miR-125b-1-3p 0.71 +£0.06 0.73 £0.06 up
mmu-miR-135a-5p 0.31+0.03 0.30+0.03 down
mmu-miR-130a-3p 0.39+£0.03 0.33+0.08 down
mmu-miR-873a-3p 0.39+0.04 0.41+£0.06 up
mmu-miR-26b-5p 0.48 £0.01 0.66 +0.10 up
mmu-miR-140-5p 0.56 £ 0.04 0.61 £0.03 up
mmu-miR-99b-3p 0.60 = 0.08 0.65+0.07 up

females, on day 1 after sepsis, exhibiting 22 upregulated
and 55 downregulated miRs (Figure 2). Three miRs
were upregulated in young and older females on day 1
(miR-190a-3p, miR-let-7a-1-3p, miR-3085-3p).
Interestingly, miR-190a-3p, which is neuroprotective
[62, 63] was also upregulated in old males on day 1 and
both young and old males on day 4. miR-let-7a is
induced by systemic inflammation and regulated by
estradiol [64]. Seven miRs were downregulated on day
1 in both young and old females (miR-127-3p, miR-
222-3p, miR-299a-3p, miR-221-3p, miR-337-5p, miR-
541-5p, miR-652-3p). Three are linked to the X-
chromosome (miR-222-3p, miR-221-3p, miR-652-3p).
In this case, downregulation has been linked to reduced
inflammation (miR-222-3p, miR-221-3p) [65-69].
Thus, on day 1 following sepsis, the expression of miR
in young and old females is suggestive of process for
neuroprotection and reduced inflammation. No miRs
were common for young and old females on day 4,
likely due to the considerable recovery of young
females.

For both day 1 and day 4 for older females, 18 miRs
were downregulated (Table 2) and 3 miRs were
upregulated (miR-669b-5p, miR-5121, miR-542-3p).
For the downregulated miRs, nine continued to decrease
on day 4, while 9 exhibited a return towards baseline.
When comparing older males and older females, older
females exhibit mainly downregulation of miR on day 1

and day 4, and older males exhibited only upregulated
miR. Across the two groups, five miRs (miR-190a-3p,
let-7al-3p, miR-362-5p, miR-31-3p, miR-7b-3p) were
up regulated on day 1 in older males and older females.
Five different miRs (miR-30c-5p, miR-30b-5p, miR-
143-3p, miR-384-5p, miR-380-3p) were up regulated on
day 4 across all older animals.

Relationship between increased miR and mRNA

Theoretically, expression of miR and associated mRNA
should be inversely correlated. In this case, we would
expect that for the 22 miRs that increased 1-4 days
following sepsis in old males, the associated mRNA
should exhibit decreased expression. We used mRNA
expression previously reported [15] for the same older
male animals (n = 12), to determine if genes that were
significantly (p < 0.05) upregulated or downregulated
on day 1 and day 4, were associated with the 22 miR
that were increased on both days. The predicted mRNA
for each of the 22 miRs was obtained using mirWalk
database [70].

Using the previously reported mRNA expression of
older males [15], the percent of significantly (p < 0.05)
differentially expressed genes, linked to each of the 22
miRs within each category (day 1 up 496 genes, day 1
down 701 genes, day 4 up 2932 genes, day 4 down
3508 genes) were determined (number of associated
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DEGs/total number of significant genes in each
category) (Figure 3). The percent of DEGs associated
with the miR was greatly increased on day 4. Due to
differences in the number of DEGs, we might predict
that the proportion linked to the miR would increase
from upregulated to downregulated on day 1 (701/496 =
1.41) and on day 4 relative to day 1 upregulated (day 4
up 2932/496 = 5.91; day 4 down 3508/496 = 7.07).
However, relative to upregulated genes on day 1, the
percent of day 4 upregulated mRNA was 63% of
predicted (13.2 observed/20.7 predicted) and the
downregulated mRNA was 120% of predicted (29.7
observed/24.7 predicted) (Figure 3). The results indicate
that the expected decrease in mRNA expression
associated with increased miR expression was more
prominent on day 4.

A mismatch between expression of miR and mRNA is
likely due to other transcriptional regulators, including
the downregulation of repressor genes that would
normally inhibit transcription [71, 72]. The ability of
miR to inhibit gene expression maybe enhanced by an
increase in the number of different miR that bind the
specific mRNA of interest. To examine the effect of
increasing number of different miRs that target
individual genes, we examined how many of the 22 miR
that were upregulated over days 1-4 in older males,
targeted each gene that exhibited a significant increase
or decrease in expression (Figure 4A). Most (>50%) of
the mRNAs were associated with 1-2 miR. However,
by day 4, there was a marked increase in the proportion
of mRNA that exhibited decreased expression, which

40
|:| Percent observed

H Percent predicted

[
>

—
=]

ml B

were associated with multiple (>2) miRs. Thus, the
proportion of decreased mRNA associated with 3 or
more miR went from 37% on day 1 to 49% on day 4
(Figure 4B). Together, the results suggest that by day 4,
multiple miR appear to gain increasing control over
expression of individual mRNA.

DISCUSSION

Variability in cognitive decline during aging is
associated with genetic factors, including sex, and
environmental factors, including the history of severe
inflammation, that act through epigenetic mechanisms
to modify the trajectory of cognitive decline [14, 25,
73]. Sex differences are observed for the response and
recovery of brain damage, infectious diseases, and
aging [15, 31, 74-76], possibly due to sex steroids, sex
chromosomes, and epigenetic differences. Our previous
work indicates sex and age differences in the
hippocampal transcriptional response and recovery from
sepsis [15]. The current study indicates a similar pattern
of expression for miR. Over all, females were the most
responsive group on day 1. In particular, females
exhibited more miR downregulated on day 1 and
several were common in young and old females.
Several common miRs, which were downregulated on
day 1 in young and aged females, are located on the
X-chromosome and have been reported to regulate
inflammation including miR-222-3p [65, 77], miR-
221-3p [69, 78-80], and miR-652-3p [81]. In contrast,
older males exhibited increased expression of three
different X-chromosome miR (miR-223-3p, miR-98-3p,

Percent DEGs Associated with miRNA
1]
[—}

=]

Day 1 Day 1
up down

Day 4 Day 4
up down

Figure 3. Direction of mRNA expression associated with increased miR expression on day 1 and day 4 post-sepsis. The open
bars represent the mean + SEM percent of total differentially expressed genes, associated with the 22 miRs that increased in older males
on day 1 and day 4, for each category (Day 1 and Day 4 up and downregulated genes). The filled bars represent the percent of differentially
expressed genes, relative to day 1 upregulated, which are expected due to an increase in the total number of differentially expressed
genes. Note that for day 4, the percent of upregulated differentially expressed genes is 68% of predicted and the percent of downregulated
differentially expressed genes is 120% of predicted, suggesting that upregulated miRs are gaining control (i.e., downregulating) the

associated mRNA.
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miR-662-5p). In this case, an increase in miR-223-3p
appears to protect against inflammation [47-49]. Anti-
inflammatory properties of the sex steroid, estrogen,
may contribute to the sexually dimorphic response to
inflammation and sepsis and sepsis induced changes in
miR may reflect a role for estrogen in recovery from
inflammation. For example, young males exhibited
downregulation of miR-335-3p on day 1 and day 4,
which could enhance expression of estrogen receptor
alpha [46]. Similarly, on day 1 young and older females
exhibited upregulation of miR-222-3p which could
increase estrogen receptor alpha expression [82]. On
day 4, young and older males exhibited increased

A 441

(8]
(]

Percent of each category
e 154
— [

1 2 3 4

expression of miR-15a-5p, which may regulate estrogen
signaling [83]. Indeed, for the 22 miRs that were
increased on day 1 and day 4 in older males, several
(miR-30b-5p, miR-342-3p, miR-30c-5p, miR-106b-5p,
miR-672-5p) have been linked to estrogen
responsiveness [84—88].

The marked decrease in miR expression on day 1 may
suggest a level of baseline control of gene expression by
miR, which is rapidly altered during the cytokine storm.
In contrast, the upregulated miR was more prominent
on day 4 in males and older females. Relatively few
miRs were altered in the same direction across days
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Figure 4. Increasing the number of miRs associated with an individual gene promotes mRNA downregulation. (A) Each bar
represents the proportion of mMRNAs (y-axis) that were upregulated on day 1 (blue bar) and day 4 (orange bar) or downregulated on day 1
(black bar) and day 4 (white bar) and were associated with 1 to 210 of the 22 miRs (x-axis) that increase in older males. (B) Collapsing the
data to show that the percent of gene expression associated with 1-2 or >3 miRs. Note that on day 4, mRNA associated with >3 miRs are

more likely to be downregulated.
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Table 3. A summary of biological functions related to neuroinflammation, neuroprotection, neurodegeneration,
and cognition for some of the 22 miRs, which were increased in older male mice.

miR Role in neuroinflammation, neuroprotection, neurodegeneration, and cognition
miR-106b-5p Upregulated during neuroinflammation and neurodegenerative disease models [105-109]
miR-15a-5p Can have pro- or anti-apoptotic activity [53, 54, 110]

miR-15b-5p Can have pro- or anti-apoptotic activity [110-113]

miR-190a-3p Biomarker for postoperative cognitive dysfunction [55]

miR-212-3p Downregulation is a biomarker for neurodegenerative disease [114-116]

miR-223-3p Inhibition of neuroinflammation [47—49, 117]. Biomarker of sepsis severity [102]

miR-30b-5p Upregulation is neuroprotective [118—120]

miR-30c-5p Can have pro- or anti-apoptotic activity [121-123]

miR-31-3p Role in conditioned place preference [124]

miR-323-3p Biomarker for cognitive impairment [125, 126]

miR-33-3p Neurogenesis [127]

miR-340-5p Anti-inflammatory and neuroprotective [128—130]

miR-342-3p Upregulated in neuroinflammation and neurodegenerative disease models [131-135]

miR-362-5p Nervous system development [136]

miR-381-3p Upregulation during encephalomyelitis [137] and HIV associated with cognitive impairment [138§]
miR-7a-1-3p Promotes generation of oligodendrocytes [139] and regulates excitatory synaptic transmission [140]
let-7f-1 Promotes IL-6 secretion in activated macrophages [141]

miR-98-3p Upregulated by caloric restriction [142]

and were mainly limited to older animals. Again,
differences across days may relate to the time course of
the cytokine levels (i.e., cytokine storm) and the ability
to recover from infection. For older females, 18 miRs
were decreased on day 1 and day 4; however, half the
miR exhibited evidence of recovery with expression
moving towards baseline from day 1 to day 4, consistent
with better recovery of females.

Very few miRs were similarly modified across age or
sex, particularly for day 1. For some miRs that were
consistently downregulated in young males on day 1
and day 4 (miR-let-7d-3p) or downregulated in young
males and females on day 4 (miR-383-5p), previous
research suggest that downregulation is neuroprotective
against inflammation and associated oxidative stress
[41, 42, 61]. Similarly, for miRs that exhibited an
increase on day 4, in young and old septic males (miR-
223-3p, miR-544-5p, miR-219a-5p, miR-15a-5p), the
increased expression has been linked to inhibition of
inflammation and neuroprotection [47—54]. Three miRs
were upregulated in young and older females on day 1
(miR-190a-3p, let-7a-1-3p, miR-3085-3p). Increased
expression of let-7a-1-3p [89] is associated with
reduced inflammation following spinal cord injury.
Increased miR-3085-3p may be responsible for the early
inhibition of NF«B signaling [90]. Interestingly, miR-
190a-3p, which is neuroprotective [62, 63], exhibited
increased expression across sexes, in that it was also

upregulated in old males on day 1 and both young and
old males on day 4. In contrast, three of the five miRs
that were up regulated on day 4 across older male and
female animals (miR-143-3p, miR-380-3p, miR-384-
5p) may contribute to neurotoxicity [91-96].

Severe systemic inflammation is a negative modifier of
the trajectory of cognitive decline [14, 97]. Furthermore,
elderly patients are more likely to suffer cognitive
impairment after sepsis-associated encephalopathy [6, 7].
Epigenetic changes over the course of aging or due to the
history of infection can either prime the brain to respond
to immune stimulation or result in immune tolerance [14,
98, 99]. In this way, epigenetics regulates transcriptional
responsiveness and susceptibility or resilience to stressors
of aging, including systemic inflammation [14, 25, 100,
101]. Table 3 provides a summary of biological
functions related to neuroinflammation, neuroprotection,
neurodegeneration, and cognition for some of the 22
miRs, which were increased in older male mice, and
may contribute to differences in transcription and
susceptibility or resilience to cognitive impairment. For
example, age-related differences in cognitive impairment,
associated with systemic infection, are linked to
decreased transcription of hippocampal synaptic genes
and an altered transcriptional response to inflammation
[13—15]. Thus, the increase in miR-7a-1-3p, miR-33-3p,
and miR-362-5p may contribute to decreased expression
of neuronal/glial and synaptic genes; while miR-15a-5p,
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miR-15b-5p, and miR-30c-5p may influence the
expression of apoptotic genes observed in older males on
day 4 [15]. Nevertheless, for most of the miRs, increased
expression is linked to neurodegenerative disease,
increased neuroinflammation, and cognitive impairment
(Table 3) consistent with enhanced vulnerability of older
brains. However, increased expression of miR-223-3p,
miR-340-5p, and miR-30b-5p has been linked to anti-
inflammatory  neuroprotection, suggesting possible
resilience mechanisms that may preserve cognition in the
face of neuroinflammation [73, 100].

One question we attempt to address is whether the
increase in miR expression on day 1 and day 4 in older
males contributes to the observed change in mRNA
expression. Theoretically, expression of miR and
associated mRNA should be inversely correlated. For
the 22 miRs that increased on day 1 and day 4 in older
males, the likelihood that the associated mRNA was
increased or decreased was equivalent on day 1. In
contrast, an increased propensity for mRNA to exhibit
downregulation was evident on day 4. The decrease in
mRNA on day 4 may relate to the fact that most of the
22 miRs continued to increase expression from day 1
to day 4. Interestingly, downregulation of mRNA was
largely observed for genes, which interact with multiple
miRs. The absence of a negative correlation between
individual miR and associated mRNA on day 1 may be
due other transcriptional regulators activated during or
immediately after the cytokine storm associated with
sepsis. Previous work suggests that despite an increase
in miR, expression of associated mRNA may be
increased, rather than decreased, due to ongoing
activation of transcription factors or the downregulation
of repressor genes, which would normally inhibit
transcription [71, 72]. On day 4, upregulated miR in
older males appears to gain influence on mRNA
expression. In particular, decreased expression is
observed for mRNA that can be bound by multiple
upregulated miRs.

The molecular mechanisms that underlie age and sex
differences in response to inflammation, disease, brain
damage, and aging are not fully understood. The results
emphasize age and sex differences in epigenetic
mechanisms that may contribute to differences in
vulnerability to sepsis. Few miR were modified in a
similar manner across age or sex; however, these few
miR were generally associated with neuroprotection
against inflammation. In contrast, older males exhibit
increased expression of several miRs linked to
neurodegeneration, increased neuroinflammation, and
cognitive impairment. The differences may contribute
to age and sexually dimorphic responses to sepsis, and
emphasize a need for precision/personalized therapeutics
to address post-septic cognitive decline. miRs isolated

from blood can provide diagnostic and prognostic
information concerning sepsis [102, 103] and cognition
[26, 28]. Furthermore, systemic delivery of miR may
protect against sepsis induced brain injury [104]. Thus,
it may be important for future studies to examine the
relationship between miRs detected in blood and brain.
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