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ABSTRACT

Cardiorenal syndrome (CRS), defined as acute or chronic damage to the heart or kidney triggering impairment
of another organ, has a poor prognosis. However, the molecular mechanisms underlying CRS remain largely
unknown. The RNA-sequencing data of the left ventricle tissue isolated from the sham-operated and CRS model
rats at different time points were downloaded from the Gene Expression Omnibus (GEO) database. Genomic
differences, protein—protein interaction networks, and short time-series analyses, revealed fibronectin 1 (FN1)
and periostin (POSTN) as hub genes associated with CRS progression. The transcriptome sequencing data of
humans obtained from the GEO revealed that FN1 and POSTN were both significantly associated with many
different heart and kidney diseases. Peripheral blood samples from 20 control and 20 CRS patients were
collected from the local hospital, and the gene expression levels of FN1 and POSTN were detected by real-time
quantitative polymerase chain reaction. FN1 (area under the curve [AUC] = 0.807) and POSTN (AUC = 0.767)
could distinguish CRS in the local cohort with high efficacy and were positively correlated with renal and heart
damage markers, such as left ventricular ejection fraction. To improve the diagnostic ability, diagnosis models
comprising FN1 and POSTN were constructed by logistic regression (F-Score = 0.718), classification tree (F-Score
= 0.812), and random forest (F-Score = 1.000). Overall, the transcriptome data of CRS rat models were
systematically analyzed, revealing that FN1 and POSTN were hub genes, which were validated in different
public datasets and the local cohort.

INTRODUCTION Microalbuminuria, a hallmark of renal dysfunction, is
widely accepted as a predictive factor of cardiovascular
Chronic heart and kidney disease often occur together events [5-7]. Additionally, patients with chronic heart
and promote each other, leading to progressive failure are prone to microalbuminuria and exhibit
deterioration of heart and renal function. The unfavorable clinical outcomes [8, 9]. In general, a
phenomenon in which acute or chronic impairment of bidirectional relationship between heart and renal
the heart or kidney causes dysfunction of another organ diseases has been confirmed.
was first defined as cardiorenal syndrome (CRS) by
Ronco et al. in 2008 [1]. Several evidence-based Several mechanisms have been proposed to explain
medicine studies have shown that renal insufficiency is CRS pathophysiology. From a hemodynamic
a vital prognostic predictor and risk factor for heart standpoint, the reduction of cardiac output caused by
diseases, while cardiovascular deaths account for the heart failure directly leads to a decrease in renal blood
largest  proportion of renal diseases [2-4]. flow, causing renal ischemia. The decrease in renal
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Table 1. The detailed information of the public datasets used in this study.

1D Platform Organism Tissue Disease type CO(I;:)ml Dizz;tse References
GSE98520  GPL14844  Sprague Myocardium  Cardiorenal syndrome 8 8 [17]
Dawley rat
GSE2240 GPL97 Human Myocardium Atrial fibrillation 20 10 [53, 54]
GSE161472 GPL11154 Human Myocardium Heart failure 37 47 [55]
GSE36961  GPL15389  Human Myocardium Hypertrophic 39 106  Unknown
cardiomyopathy

GSE66494 GPL6480 Human Kidney Chronic kidney disease 8 53 [56]

. Focal segmental
GSE125779  GPL17586 Human Kidney glomerulosclerosis 8 8 [57]
GSE37171 GPL570 Human Peripheral blood Uremia 40 75 [58]

blood flow could also activate the renin-angiotensin-
aldosterone system (RAAS), thereby impairing the heart
and renal functions [10]. From a physiological
perspective, inflammation and oxidative stress play
essential roles in CRS progression. The overactivation
of RAAS promotes the release of inflammatory factors,
such as interleukin 6, tumor necrosis factor o, and
transforming growth factor (TGF), causing kidney
fibrosis and ventricular remodeling [11, 12]. The
upregulation of RAAS could further advance the
production of reactive oxygen species (ROS), and
excessive ROS leads to necrosis of renal and cardiac
cells [13]. In addition to these classical hypotheses,
other factors such as activation of the sympathetic
nervous system, accumulation of uremic toxins, and
endoplasmic reticulum stress are known to impact CRS
[14, 15]. However, our current understanding of the
initiation and development of CRS remains insufficient.

The rapid development of gene sequencing technology
and big-data analysis has allowed further clarification of
the latent molecular mechanisms underlying CRS. Chen
et al. performed transcriptome sequencing of the right
ventricle and kidney isolated from CRS mouse models
and established IncRNA-miRNA-mRNA competing
endogenous RNA networks, thus clarifying the
comprehensive regulatory relationships of CRS [16].
Chuppa et al. utilized RNA-sequencing (RNA-seq) to
analyze the left ventricle tissue of CRS rat models. They
found that miR-21-5p could improve cardiac function
by regulating peroxisome proliferator-activated receptor
alpha [17]. These efforts broaden our horizons and
highlight potential therapeutic targets for CRS.
Nevertheless, the number of genome-wide studies on
CRS remains limited.

Herein, the transcriptome data of the rat ventricle tissue at
weeks 2, 4, 5, and 7 after subtotal nephrectomy were
retrieved from the Gene Expression Omnibus (GEO)
database. Genomic divergence, protein—protein interaction
(PPI) network, and time-series analyses were conducted to

identify the hub genes involved in CRS progression.
Transcriptome sequencing of different types of heart and
renal diseases downloaded from the GEO database was
used for preliminary verification. The peripheral blood of
the control and CRS subjects was also collected from the
Shunde Hospital of Southern Medical University, and real-
time quantitative polymerase chain reaction (RT-qPCR)
was performed to detect gene expression levels. Finally,
multiple machine learning algorithms were used to
improve the diagnostic ability based on these hub genes.

MATERIALS AND METHODS
Data collection

The GSE98520 dataset, including the RNA-seq data
with fragments per kilobase million format (FPKM) of
the left ventricle tissue isolated from the sham-operated
and treated rats at weeks 2, 4, 5, and 7 after the 5/6
nephrectomy, was directly obtained from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/) as the
training dataset. The GEO datasets GSE2240,
GSE161472, GSE36961, GSE66494, GSE125779, and
GSE36961, containing different heart disease or kidney
disease samples, were also downloaded. Detailed
information on the public datasets utilized in this study is
presented in Table 1. According to the platform annotation
files collected from the GEO database, all probe IDs were
transformed into gene symbols using R software (version
3.6.3). If multiple probes corresponded to a gene, an
average value was adopted. Probes corresponding to
multiple genes were excluded from analyses.

Genomic difference analysis and PPI network
construction

Genomic differences were analyzed to detect the
differentially expressed genes between the sham-
operated and subtotal nephrectomy rats at weeks 2, 4, 5,
and 7 using the limma package. The filtering threshold
to identify associated genes was set at P < 0.05. Genes
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Table 2. The primer sequence used in this study.

Gene Primer sequence (5'-3)

FNI1 Forward: CGGTGGCTGTCAGTCAAAG
Reverse: AAACCTCGGCTTCCTCCATAA

POSTN Forward: CTCATAGTCGTATCAGGGGTCG
Reverse: ACACAGTCGTTTTCTGTCCAC

GAPDH Forward: GGAGCGAGATCCCTCCAAAAT

Reverse: GGCTGTTGTCATACTTCTCATGG

exhibiting significant expression differences at all four
time points were selected and included in the PPI
network analysis [18]. The PPI network was based on
the STRING database (version 11.5, https://cn.string-
db.org/), and the confidence level was set to 0.4 [19].
The CytoHubba plug-in (version 0.1) in the Cytoscape
software (version 3.8.0) was used to measure the
importance of the genes in the network, and genes with
a degree >10 were considered as hub genes [20].

Time-series analysis

Time-series analysis was performed using the Short
Time-series Expression Miner (STEM, version 1.3.13).
The data were normalized to the expression values of
the sham-operated samples. The STEM clustering
method was utilized to conduct the clustering with the
following parameters: the maximum number of model
profiles = 50 and maximum unit change in model
profiles between time points = 2 [21]. The advance
options were all set to the default values.

Functional enrichment analysis

Gene Ontology (GO) functional annotation was conducted
using the clusterProfiler package after transforming the
gene symbols into Entrez IDs according to the
org.Rn.eg.db or org.Hs.eg.db package. Terms with P <
0.05 and Q < 0.05 were considered statistically significant.

Clinical samples

The study protocol was reviewed and approved by the
Ethics Committee of the Shunde Hospital of Southern
Medical University (Ethics Approval Number:
20210207). All participants signed an informed consent
form. Peripheral blood samples (2 mL) of 20 control
and 20 CRS subjects were collected within 24 h of
admission and stored in EDTA anticoagulant tubes at
4°C. CRS diagnosis was based on the latest clinical
guidelines [22, 23]. The control subjects were defined
as those without CRS, severe cardio or renal
dysfunction, malignant tumors, severe infection, or
other factors which could possibly influence the gene
expression level. The clinicopathological features of

patients, including age, sex, smoking, diabetes history,
left ventricular ejection fraction (LVEF), N-terminal
pro-B-type natriuretic peptide (NTproBNP), serum
creatinine (Scr), blood urea nitrogen (BUN), and uric
acid (UA), were also recorded.

RT-qPCR

Total RNA was extracted using the Trizol-chloroform
method (Trizol reagent, Sigma-Aldrich, China) after the
red blood cells of the whole blood sample were lysed
with erythrocyte lysis buffer (Sigma-Aldrich, Saint
Louis, MO, USA) for 15 min at room temperature. The
purity and concentration of the RNA were measured
using a Nanodrop2000 spectrophotometer (Thermo
Scientific, Waltham, MA, USA). Complementary DNA
was synthesized and amplified using the PrimeScript RT
Reagent Kit (Takara, Dalian, China) and SYBR Premix
ExTaq kit (Takara, China). The PCR experiments were
conducted on an Applied Biosystems 7600 thermocycler
(ABI, USA). Gene expression levels were normalized to
GAPDH, and the 2 24 method was used to calculate
the definite RNA expression values. The primer
sequences used in this study are listed in Table 2.

Construction of diagnostic models based on machine
learning algorithm

To improve the diagnostic ability of CRS, we
constructed diagnostic models based on the screened
core genes. Logistic regression was performed to
establish the diagnostic model, and a nomogram was
drawn to visualize the model using the rms package
[24]. The classification tree was constructed using the
rpart package [25], and the random forest model was
developed using the randomForest package with the
following parameters: 500 as the ntree and 3 as the mtry
[26]. The confusion matrices, accuracy, precision,
recall, and F-Score were used to measure the predictive
ability of each machine learning diagnosis model.

Identification of the functionally-related genes

The top 20 functionally related genes of the hub genes
were identified using the GeneMANIA database
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(http://genemania.org/search/homo-sapiens/). The number

of the maximum resultant genes was set to 20, and that
of maximum resultant attributes was set to 10. The
query-dependent weighting method was chosen
automatically by the website [27].

Statistical analysis

Statistical analysis were performed using R (version
3.6.3) and GraphPad Prism (version 8.4.3). Data are
presented as mean + standard deviation (SD). Student’s
t-test was used to compare gene expression differences
in the PCR experiments. The Welch-corrected #-test was
adopted to compare the differences in gene expression
levels between the control and disease groups obtained
from the GEO database and clinicopathological
parameters of the control and CRS subjects from the
Shunde Hospital of Southern Medical University. The
association between the hub gene expression level and

clinicopathological variables was measured using the
Spearman correlation test. The receiver operating curve
(ROC) and corresponding area under curve (AUC) were
obtained from the pROC package. Unless otherwise
specified, P < 0.05 was considered to be statistically
significant; "P < 0.05, “"P < 0.01, ""P < 0.001.

RESULTS

Genomic difference analysis and PPI network
construction

The workflow of the study protocol is shown in
Figure 1. The R code used in this study is presented in
Supplementary Material. The differentially expressed
genes between the sham-operated and CRS model rats
were analyzed. A total of 286 (Figure 2A), 593 (Figure
2B), 463 (Figure 2C), and 1182 (Figure 2D) genes
showing expression differences were screened in 2-, 4-,

GSE98520 (The RNA-seq data of left ventricle tissue
from the control and the treated rats in the week 2, 4,
5, and 7 after 5/6 nephrectomy)

]

v

Genomic
difference
analysis

Time-series
analysis

A

GO analysis

!

PPI network
analysis

L]

FN1 and POSTN are identified as hub genes in CRS

.

GSE2240 (20 control >
and 10 atrial —

FN1 and POSTN are associated with heart disease

GSE66494 (8 control

fibrillation patients)

!

r— and 53 chronic kidney
disease patients)

GSE161472 (37 control

FN1 and POSTN are associated with renal disease *L

GSE125779 (8 control

and 47 heart failure [
patients)

!

and 8 focal segmental
glomerulosclerosis

GSE36961 (39 control

Peripheral blood samples of 20 control and 20 CRS
patients are collected in the Shunde Hospital

patients)

and 106 hypertrophic
cardiomyopathy

!

GSE37171 (40 control
— and 75 uremia

patients)

Detecting the diagnosis ability of FN1 and POSTN to
CRS

patients)

v

/

(]

logistic
regression

classification

tree

random
forest

\ 4

Construction of a diagnosis model containing FN1
and POSTN in CRS

!

Identification of the functionally-related genes and
GO analysis
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5-, and 7-week old rats, respectively, and 35 genes were
found to overlap (Figure 2E). Subsequently, 35 genes
were included in the PPI network (Figure 2F). The
CytoHubba app revealed that the degrees of Collal,
FN1, POSTN, and Col3al were greater than or equal to
10, and thus, the four genes were selected for subsequent
analysis (Figure 2G, Supplementary Table 1).

Time-series analysis and functional annotation

The time-series analysis of the transcriptome
sequencing data of the CRS model rats at 4 time nodes
B

identified 11 different gene clusters (P < 0.05) (Figure
3A). A total of 1346 genes were included in these
clusters, of which fibronectin 1 (FN1) and periostin
(POSTN) were determined by PPI network analysis
(Figure 3B). Interestingly, FN1 and POSTN were both
members of cluster 41 (P < 0.001, Figure 3C). GO
enrichment analysis indicated that the genes in cluster
41 were mainly involved in cell cycle- and immune-
related pathways, such as negative regulation of
metaphase/anaphase transition of the cell cycle, spindle
checkpoint, and mast cell granules (Figure 3D). The
synthesis of pro-inflammatory mediators always
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Figure 2. Genomic difference analyses and PPI network construction. (A-D) The volcano plots showing the differentially-expressed
genes between the sham-operated and CRS model rats in week 2 (A), week 4 (B), week 5 (C), and week 7 (D). (E) A sum of 35 differentially
expressed genes were overlapped. (F) The PPI network of the 35 genes. (G) The Top 10 genes with the highest degree value in the network.
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increases in CRS, causing cell death and fibrosis [28].
In addition, cell cycle arrest plays essential roles in
pathological processes as the renal and cardiac cells
usually undergo cell cycle arrest to prevent possible
DNA damage from cell division when the cells undergo
cellular stress [29]. Generally, these findings correspond
to those of previous studies.

FN1 and POSTN are associated with many different
heart and renal diseases

To further verify the role of FN1 and POSTN in CRS,
transcriptome data of different heart and kidney

diseases were downloaded. We found that FN1 was
significantly upregulated in the atrial fibrillation (P <
0.05, Figure 4A), heart failure (P < 0.01, Figure 4B),
hypertrophic cardiomyopathy (P < 0.001, Figure 4C),
chronic kidney disease (P < 0.05, Figure 4D), focal
segmental glomerulosclerosis (P < 0.01, Figure 4E), and
uremia (P < 0.001, Figure 4F) samples compared with
control samples. Similar trends were also observed in
POSTN, as shown in Figure 4A—4F (P < 0.05). The
indirect evidence partly demonstrated that FN1 and
POSTN are strongly associated with many different
heart and kidney diseases, thereby influencing the
pathogenesis of CRS.
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Table 3. The baseline information of the 20 control and 20 CRS patients.

Parameters Control (n =20) CRS (n =20) P-value Significance
Male (n, %) 13 (65.0%) 15 (75.0%) 0.302 ns
Age (years) 59.1+16.8 55.1+16.8 0.450 ns
Smoking (n, %) 6 (30.0%) 11 (55.0%) 0.015 ’
Diabetes history (n, %) 4 (20.0%) 8 (40.0%) 0.068 ns
LVEF (%) 642+7.7 583+12.2 0.078 ns
NTproBNP (pg/ml) 1474.6 + 2457.9 1580.7 +2317.9 0.889 ns
Scr (umol/L) 52.1+20.3 168.4 +227.7 0.029 .
BUN (mmol/L) 48+1.2 9.6+6.9 0.004 -
UA (umol/L) 3094+ 81.6 419.7 + 143.6 0.005 -

Abbreviations: CRS: cardiorenal syndrome; LVEF: left ventricular ejection fraction; NTproBNP: N-terminal-pro-B-type natriuretic

peptide; Scr: serum creatinine; BUN: blood urea nitrogen; UA: uric acid; ns: not significance. "P < 0.05; P < 0.01;

FN1 and POSTN are promising diagnostic biomarkers

of CRS

RT-gPCR was used to measure the expression levels of
FN1 and POSTN in the peripheral blood of control and

kK

P<

0.001.

CRS patients. The original CT values of FN1, POSTN,

and GAPDH are listed in Supplementary Table 2. The
baseline clinicopathological information of the subjects

enrolled in this study is displayed in Table 3. Except for
smoking history (P < 0.05), Scr (P < 0.05), BUN
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(P < 0.01), and UA (P < 0.01), other parameters,
including age, sex, diabetes history, LVEF, and NT-
proBNP, revealed no significant differences between
the control and CRS groups. Compared with the control
subjects, the CRS cases exhibited higher expression
levels of FN1 (P < 0.01, Figure 5A) and POSTN (P <
0.05, Figure 5B). ROC analysis indicated that FNI
(AUC = 0.807, Figure 5C) and POSTN (AUC = 0.767,
Figure 5C) were both diagnostic biomarkers with high
efficacy. The association of the expression values of
FN1 and POSTN with routine laboratory tests was also
detected. FN1 was significantly associated with LVEF
(R =0.54, P <0.05, Figure SD), NT-proBNP (R = 0.49,
P < 0.05, Figure 5E), and Scr (R = 0.57, P < 0.01,
Figure 5F), but no significant association was observed
with BUN (R = 0.43, P = 0.057, Figure 5G) or UA
(R=0.38, P = 0.1, Figure 5H). POSTN was further

significantly correlated with LVEF (R = 0.54, P < 0.05,
Figure 5I) and BUN (R = 0.41, P < 0.05, Figure 5J),
while no significant association was observed between
POSTN and Scr (R = 0.33, P = 0.16, Figure 5K), NT-
proBNP (R = 0.43, P = 0.063, Figure 5L), and UA (R =
0.35, P = 0.13, Figure 5M). The association of CRS
with LVEF [30], NTproBNP [31], Scr [32], and BUN
[33] has been verified in multiple studies, which
strengthens the reliability of FN1 and POSTN.

Construction of the diagnostic models based on FN1
and POSTN

Diagnostic models containing FN1 and POSTN were
established using multiple machine learning algorithms.
The logistic regression model was constructed as
follows: logistic score = —2.10 + 1.58"EXP(FN1) +
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Figure 5. The diagnostic ability of FN1 and POSTN to CRS. (A, B) FN1 (A) and POSTN (B) were up-regulated in the peripheral blood
sample of CRS patients from the Shunde Hospital of Southern Medical University. (C) The ROC analysis showed that FN1 and POSTN could
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0.88"EXP(POSTN), where EXP represented the mRNA
expression level of FN1 or POSTN. A nomogram
including FN1 and POSTN was constructed to help
clinicians better understand the logistic model (Figure
6A). The confusing matrix of indicated that the logistic
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regression model could predict CRS with high efficacy
(Figure 6B). The classification tree is shown in Figure
6C. Compared with the logistic regression model, the
classification tree showed a higher predictive ability
(Figure 6D). Unexpectedly, it was found that only FN1
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(0]
2
|_
8
6
Control CRS
Predict
D
Classification Tree
15
Control
3 1
= 0
5
Control CRS
Predict
F
Random Forest
20
Control 15
3 1
= 0
5
0

CRS

Control
Predict

Figure 6. The machine learning models encompassing FN1 and POSTN to diagnose CRS. (A) A nomogram was drawn to visualize
the logistic regression model. (B) The confusion matrix showed the predictive performance of the logistic regression model. (C) The
classification tree was established to diagnose CRS. (D) The confusion matrix of the classification tree model. (E) The mean decrease
accuracy and mean decrease Gini of the features in the random forest model. (F) The confusion matrix exhibited that the random forest
model could distinguish the CRS samples with high efficacy. Abbreviation: CRS: cardiorenal syndrome.
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Table 4. The performance of the logistic regression model, the classification tree model, and the random forest

model.
Model Accuracy Precision Recall F-Score
Logistic regression model 0.725 0.737 0.700 0.718
Classification tree model 0.825 0.800 0.842 0.812
Random forest model 1.000 1.000 1.000 1.000

was included in the classification tree model, implying
that FN1 had better predictive ability than POSTN. In
the random forest model, the importance of FN1 and
POSTN was quantified as a mean decrease in accuracy
and Gini, which were previously described [34].
Compared with POSTN, FN1 exhibited higher mean
decreases in accuracy and Gini (Figure 6E), which was
in agreement with the classification tree analysis. The
random forest model could distinguish the CRS sample
with  the highest effectiveness (Figure 6F,
Supplementary Figure 1A and 1B), which is in
alignment with the results of several previous studies
that have provided proof of its strong performance [35—
37]. The accuracy, precision, recall, and F-score of each
model are listed in Table 4. In addition, the predictive
ability of CRS for clinicopathological features and
established diagnostic models were also compared
(Supplementary Figure 1A and 1B). Overall, compared
with the traditional biomarkers or single biomarkers like
FN1 and POSTN, the combination of FN1 and POSTN
through machine learning algorithms, especially random
forest, greatly improved the efficiency of CRS
diagnosis.

Functionally-related genes of FN1 and POSTN

The top 20 most strongly associated genes of FN1 and
their interaction relationships are illustrated in Figure
7A. The size of the gene nodes represents the
importance of the genes in the network, and the
thickness of the lines is positively correlated with the
interaction strength. GO analyses revealed that FN1 and
its associated genes mostly participate in extracellular
matrix-, immune-, and platelet-related biological
processes (Figure 7B). The top 20 POSTN-related genes
are shown in Figure 7C, and their functions were mainly
associated with the extracellular matrix, amino acids,
and TGF (Figure 7D). These findings indicate the
possible mechanisms by which FN1 and POSTN are
involved in the bidirectional interaction between the
heart and kidney.

DISCUSSION
CRS is a complex heart-kidney disease characterized

by high morbidity and mortality, resulting in a
tremendous social burden worldwide [38]. About 20—

40% of patients with acute heart failure suffer from
kidney dysfunction, and almost 40—60% of patients with
chronic heart failure experience chronic kidney disease
[39, 40]. Exploration of the molecular mechanisms in
CRS is critical and difficult. The advancement and
popularization of gene sequencing technology has
provided an opportunity to further elucidate the
pathological processes of this disease. Recently, many
novel biomarkers associated with CRS have been
reported, including cystatin 3, galectin 3, NGAL, and
KIM1 [31, 41]. These biomarkers not only provide the
clinical guidelines for CRS diagnosis and prognosis, but
also suggest the underlying cut-in points for
mechanistic studies. However, given the complexity of
CRS, the current findings are far from sufficient.

The present study systematically analyzed the
transcriptomic data of the rat ventricle tissue at weeks 2,
4, 5, and 7 after subtotal nephrectomy through genomic
difference detection, PPI network analysis, and time-
series analysis; FN1 and POSTN were ultimately
identified as hub genes associated with CRS. The
validation in different public datasets and local clinical
samples indicated that FN1 and POSTN were both
significant diagnostic biomarkers for CRS, which
verified the findings from the animal experiments. Here,
we report that levels of FN1 and POSTN were
obviously increased not only in the diseased heart and
kidney, but also in the plasma of CRS patients,
implying that FN1 and POSTN are underlying
cardiorenal connectors. FN1, encoding fibronectin, a
protein located in the plasma, cell surface, and
extracellular matrix, is mainly involved in cell adhesion
and migration [42]. POSTN is also located in the
extracellular space and regulates tissue development
and regeneration. The vital roles of FN1 and POSTN in
heart and kidney disease have previously been reported.
Wang et al. found that FN1 was associated with
immune infiltration in diabetic nephropathy [43], Su et
al. reported that FN1 could regulate the process of renal
fibrosis [44], Zhao et al. disclosed that FN1 was
involved in rat H9C2 cardiomyocyte growth by
regulating cell cycle arrest [45], and Patel et al.
discovered that the expression of FNI1 increased in
patients with sudden cardio death [46]. Cardiofibrosis
has a significant influence on the prognosis of heart
diseases, which can be regulated by POSTN [47, 48].

WWWw.aging-us.com

1360

AGING



POSTN was also found to be associated with renal proinflammatory cytokines in CRS patients [52]. In

diseases, including diabetic kidney disease [49], summary, FN1 and POSTN are latent cardiorenal
immunoglobulin A nephropathy [50], and polycystic connectors that may function by regulating the immune
kidney disease [51]. Hence, regardless of the absence of response in CRS.

a regulatory relationship of POSTN and FN1 with CRS,

FN1 and POSTN may exert important biological Another highlight of this study is the establishment of
functions in the pathogenesis of CRS. Time-series CRS diagnostic models comprising FN1 and POSTN.
analysis indicated that FN1 and POSTN were both To ameliorate the predictive ability, the diagnostic

members of cluster 41, and were thus mainly associated models were constructed using three different machine
with immune-related pathways, which corresponded to learning algorithms, namely logistic regression,
the enrichment results of their functionally related classification tree, and random forest. The ROCs
genes. Immune-mediated dysregulation is well known revealed that the random forest model could distinguish
for its vital role in CRS development, directly CRS samples from control samples with high efficacy.
evidenced by the strong upregulation of plasma Compared with traditional biomarkers, the performance
A o < B
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Figure 7. The functionally-related genes of FN1 and POSTN. (A) The Top 20 genes showing the highest association with FN1. (B) GO
functional analysis of the FN1-related genes. (C) The Top 20 genes most associated with POSTN. (D) GO enrichment analysis of the POSTN-
related genes. Abbreviation: GO: gene ontology.
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of the random forest model is more satisfactory. In
general, novel genetic diagnostic tools based on FN1
and POSTN are presented, providing new choices for
clinicians.

The limitations of this study should not be neglected.
First, we only performed the direct validation of the
diagnostic value of FNI1 and POSTN in the local
hospital, and external verification in other centers would
be beneficial to further clarify the clinical usefulness of
these biomarkers. Second, we revealed that FN1 and
POSTN serve as novel biomarkers of CRS in animal
experiments and different cohorts, but how they affect
the progression of CRS remains unclear. Further
experiments are needed to explore the processes by
which FN1 and POSTN affect the development of CRS.

In summary, the transcriptome sequencing data of the
CRS rat models at different time models were
systematically analyzed, and FN1 and POSTN were
thus identified as novel biomarkers in CRS. These were
externally validated in public datasets and local clinical
samples, providing novel insights into the molecular
mechanisms of CRS.
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SUPPLEMENTARY MATERIALS
The R code used in this study

#Genomic difference analysis
library(limma)
logFoldChange=0
adjustP=0.05
rt=read.table("GSE98520 Supplemental Table 1 5-6Nx_vs. Sham Wk2.txt",sep="\
t",header=T,check.names=F)
rt=as.matrix(rt)
rownames(rt)=rt[,1]
exp=rt[,2:ncol(rt)]
dimnames=list(rownames(exp),colnames(exp))
rt=matrix(as.numeric(as.matrix(exp)),nrow=nrow(exp),dimnames=dimnames)
rt=avereps(rt)
modType=c(rep("con",conNum),rep("treat",treatNum))
design <- model.matrix(~0+factor(modType))
colnames(design) <- c("con","treat")
fit <- ImFit(rt,design)
cont.matrix<-makeContrasts(treat-con,levels=design)
fit2 <- contrasts.fit(fit, cont.matrix)
fit2 <- eBayes(fit2)
allDiff=topTable(fit2,adjust="fdr',number=200000)
write.table(allDiff, file="All_limma.xls",sep="\t",quote=F)
#The volcano plot
library(ggpubr)
library(ggthemes)
deg.data <- read.table("score.cor.txt", header = T, sep = "\t")
head(deg.data)
deg.data$logp <- -log10(deg.data$FDR)
deg.data$group = "notsignificant"
deg.data$group[which((deg.data$FDR < 0.05) & (deg.data$logFC > 0))] = "up"
deg.data$group[which((deg.data$FDR < 0.05) & (deg.data$logFC < 0))] = "down"
table(deg.data$group)
deg.data$label =""
deg.data <- deg.data[order(deg.data§FDR),]
up.genes <- head(deg.data$gene[which(deg.data$group == "up")], 0)
down.genes <- head(deg.data$gene[which(deg.data$group == "down")], 0)
deg.top10.genes <- c(as.character(up.genes),as.character(down.genes))
deg.dataS$label[match(deg.top10.genes, deg.data$gene)] <- deg.top10.genes
pdf(file="volcano.pdf",
width =35,
height =4,
)
ggscatter(deg.data, x = "logFC", y = "logp", color = "group", palette = c("#4169E1","#BBBBBB","#E3170D"), size
= 1, label = deg.data$label, font.label = 8, repel = T, xlab = "Spearman Correlation", ylab = "-loglOP",) +
theme base() +

geom_hline(yintercept = 1.30, linetype = "dashed") + geom_vline(xintercept = ¢(0,0), linetype = "dashed")

dev.off()

#the differentially expressed genes between the sham-operated and subtotal nephrectomy rats in week 4, 5, and 7 are
obtained using the same algorithms.

#The protein-protein interaction network was constructed in STRING database.
#The time-series analyses were conducted by the Short Time-series Expression Miner software.
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#GO functional enrichment

library("org.Rn.eg.db")
rt=read.table("DEGs.txt",sep="\t",check.names=F header=T)
genes=as.vector(rt[,1])

entrezIDs <- mget(genes, org.Rn.egSYMBOL2EG, ifnotfound=NA)
entrezIDs <- as.character(entrezIDs)
out=cbind(rt,entrezID=entrezIDs)
write.table(out,file="id.txt",sep="\t",quote=F ,row.names=F)
library("clusterProfiler")

library("enrichplot™)

library("ggplot2")
rt=read.table("id.txt",sep="\t",header=T,check.names=F)

rt=rt[is.na(rt[,"entrezID"])==F,]

gene=rt$entrezID
kk <- enrichGO(gene = gene,
OrgDb = org.Rn.eg.db,
pvalueCutoff=0.05,
qvalueCutoff = 0.05,
ont="all",
readable =T)
write.table(kk,file="GO.txt", sep="\t",quote=F, row.names = F)

pdf(file="bubble go.pdf",width = 10,height = 8)
dotplot(kk,showCategory = 10,split="ONTOLOGY") + facet grid(ONTOLOGY~., scale='free')
dev.off()

#The calculation of the areas under the receiver operating curve.
library(pROC)

inputFile="input.txt"

outFile="ROC.pdf"

rt=read.table(inputFile,header=T,sep="\t",check.names=F,row.names=1)
y=colnames(rt)[ 1]
bioCol=c("#E3170D","#4169E1","#03A89E","#03 A89E")
if(ncol(rt)>4){

bioCol=rainbow(ncol(rt))}

pdf(file=outFile,width=4.5,height=4.5)
rocl=roc(rt[,y], as.vector(rt[,2]))
aucText=c( pasteO(colnames(rt)[2],", AUC=",sprintf("%0.3f",auc(roc1))) )
plot(rocl, col=bioCol[1])
for(i in 3:ncol(rt)){
roc1=roc(rt[,y], as.vector(rt[,i]))
lines(roc1, col=bioCol[i-1])
aucText=c(aucText, pasteO(colnames(rt)[i],", AUC=",sprintf("%0.3f",auc(roc1))) )

}
legend("bottomright", aucText, Iwd=2,bty="n", col=bioCol[1:(ncol(rt)-1)]) dev.off()

#The Spearman correlation analyses

library(ggplot2)

library(ggpubr)
rt <- read.table("pre_cor_log.txt", sep = "\t", header = T, check.names = F, row.names = 1)

rt <- t(rt)
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rt <- as.data.frame(rt)
class(rt)
str(rt)
genelname <- colnames(rt)[1]
gene2name <- colnames(1t)[2]
pdf(file="spearman_cor.pdf",
width =4,
height =4,

)

ggscatter(rt,

X = genelname,

y = gene2name,

add = "reg.line",

conf.int = TRUE,

cor.coef = TRUE,

cor.method = "spearman",

xlab = genelname,

ylab = gene2name,color = "blue")
dev.off()

#The logistic regression and nomogram

rt=read.table("input.txt",header=T, sep="\t",check.names=F, row.names=1)

mymodel <- glm(status~FN1 + POSTN,family=binomial(link = "logit"),data = rt)

ddist <- datadist(rt)

options(datadist="ddist")

mymodelSummary = summary(mymodel)

outTab=data.frame()

outTab=rbind(outTab,

cbind(coef=coefficients(mymodel),

OR=matrix(exp(coefficients(mymodel)))[,1],
OR.95L=exp(confint(mymodel))[,"2.5 %"],
OR.95H=exp(confint(mymodel))[,"97.5 %"],
pvalue=mymodelSummary$coefticients[,"Pr(>|z|)"])

)

outTab=cbind(id=row.names(outTab), outTab)

write.table(outTab, file="multilogit.xIs", sep="\t",row.names=F, quote=F)

rt<-read.table("input.txt" ,header=T,sep="\t",row.names=1)

ddist <- datadist(rt)

options(datadist="ddist")

mymodel<-lrm(status~., data=rt, x=T, y=T)

mynom<- nomogram(mymodel, fun=plogis,fun.at=c(0.3,0.5,0.7,0.9,0.99,0.999),1p=F,

funlabel="Risk of CRS")

pdf("Nom.pdf",8,7)

plot(mynom)

dev.off()

library(pROC)

train=read.table("pre.txt",header=T,sep="\t",check.names=F ,row.names=1)

ddist <- datadist(train)

options(datadist="ddist")

test=read.table("test.txt", header=T,sep="\t",check.names=F,row.names=1)

test=test[,colnames(train)]

rt=rbind(train,test)

mymodel <- glm(status~FN1 + POSTN, family=binomial(link = "logit"), data = train)

predict <- predict.glm(mymodel,type = "response",newdata = train)

predict =ifelse(predict>0.5, 1, 0)

www.aging-us.com 1369 AGING



train$predict = predict

write.csv(train, "train_predict.csv")

true_value = train[,1]

modelroc <- roc(true_value,predict)

pdf("ROC _train_LR.pdf",6,6)

plot(modelroc, print.auc=TRUE, auc.polygon=TRUE,legacy.axes=TRUE,
max.auc.polygon=TRUE, print.thres=TRUE,auc.polygon.col="#4169E1")

dev.off()

#Classification tree
library(rpart)
library(partykit)
library(caret)
rt <- read.table("input.txt",header=T,sep="\t",check.names = F,row.names = 1)
rt$status <-as.factor(rt$status)
tree.biop <- rpart(status ~ ., data = rt)
tree.biop$cptable
cp <- min(tree.biop$cptable[3])
prune.tree.biop = prune(tree.biop, cp <- cp)
plot(as.party(prune.tree.biop))
rparty.test <- predict(prune.tree.biop, newdata = rt,
type = "class")
table(rparty.test, rt$status)

#Random forest
library(ROCit)
library(randomForest)
library(rms)
library(pROC)

train_data = read.table("train.sva.txt" ,header=T,sep="\t",check.names = F,row.names = 1)

train_data$Group = as.factor(train_data$Group)
train_data$Group = as.factor(train_data$Group)
train_randomforest <- randomForest(Group ~.,
data = train_data,
ntree =500,
mtry=3,
importance=TRUE ,
proximity=TRUE)
train_randomforest$importance
library(pROC)
pre_ran <- predict(train_randomforest,newdata=train_data)
train_data$pre ran <- pre ran
train_data$pre ran <- as.numeric(train_data$pre ran)
obs_p_ran = data.frame(prob=pre_ran,obs=train_data$Group)
table(train_data$Group,pre ran,dnn=c("True value","Predicted value"))
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Supplementary Figure
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Supplementary Figure 1. The diagnosis ability of the clinicopathological parameters (A) and the established models (B).
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Supplementary Tables

Supplementary Table 1. The PPI network analysis via CytoHubba.

Node_name MCC DMNC MNC Degree EPC l;(;tct:(e EcCentricity Closeness Radiality Betweenness  Stress g:)l;::;cl;iecrilgt
Kif22 6 0.46346 3 3 2.349 1 0.125 3.5 0.625 0 0 1
Pil6 1 0 1 1 2.559 1 0.25 6 1.28571 0 0 0
FN1 314 0.47886 10 10 8.878 7 0.25 11.83333 2.19643 15.56667 42 0.53333
POSTN 318 0.49882 10 10 8.793 3 0.375 12 2.25 18.23333 54 0.55556
Plod2 6 0.46346 3 3 5.435 1 0.375 8.5 1.875 0 0 1
Timpl 288  0.58315 8 8 8.423 1 0.25 10.83333 2.08929 3.9 16 0.71429
LoxI1 168 0.5854 7 7 8.365 1 0.25 10.33333 2.03571 2.66667 10 0.7619
Tnfrsfl1b 2 0.30779 2 2 4.927 1 0.25 7.83333 1.76786 0 0 1
Vcan 120 0.64826 5 5 7.536 1 0.25 9.33333 1.92857 0 0 1
Thyl 24 0.56839 4 4 6.887 1 0.25 8.83333 1.875 0 0 1
ColBal 13 0.47366 4 5 6.563 2 0.375 9.5 1.98214 26.66667 54 0.5
Mmpl4 24 0.56839 4 4 6.898 1 0.25 8.83333 1.875 0 0 1
Ltbp2 24 0.56839 4 4 6.919 1 0.25 8.83333 1.875 0 0 1
Col3al 300  0.47886 10 10 8.711 3 0.375 12 2.25 19.73333 54 0.53333
Fstll 24 0.56839 4 4 6.665 1 0.25 8.83333 1.875 0 0 1
Collal 350  0.39597 13 13 9.283 2 0.375 13.5 2.41071 51.23333 112 0.39744
Prcl 12 0.47366 4 4 2.521 1 0.25 4 0.6875 0.66667 2 0.83333
Top2a 12 0.47366 4 4 2.523 1 0.25 4 0.6875 0.66667 2 0.83333
Racgapl 12 0.47366 4 4 2.59 1 0.25 4 0.6875 0.66667 2 0.83333
Cdkn3 6 0.46346 3 3 2.321 1 0.125 3.5 0.625 0 0 1
Supplementary Table 2. The raw data of the RF-qPCR experiments.

ID Group CT(FN1) CT(POSTN) CT(GAPDH)

2021016 CRS 22.714 21.62269 17.47264

2021035 CRS 21.62767 23.80968 17.20525

2021044 CRS 21.07704 22.63808 17.18994

2021045 CRS 21.36649 23.64455 16.87597

2021061 CRS 21.78654 22.12539 17.33394

2021072 CRS 19.53786 23.48876 16.93788

2021075 CRS 21.59798 22.45887 17.65224

2021079 CRS 20.83566 23.42787 16.70008

2021084 CRS 20.00147 23.39505 18.47383

2021087 CRS 21.25389 2297611 18.36617

2021088 CRS 21.53118 23.40699 16.77462

2021096 CRS 18.06519 24.10553 16.60071

2021097 CRS 22.15883 23.26074 17.02379

2021112 CRS 21.6212 24.72875 18.31842

2021119 CRS 21.28442 21.61209 16.47575

2021131 CRS 20.43167 23.94418 18.85962
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2021145 CRS 21.78432 23.92037 17.80561
2021157 CRS 20.9538 22.39475 18.02395
2021159 CRS 21.75587 22.55037 17.49426
2021165 CRS 21.72398 22.82194 17.40736
2021003 Control 22.04717 24.19026 13.92721
2021008 Control 22.29514 23.86475 16.58527
2021013 Control 22.21988 22.81359 15.47096
2021015 Control 22.8975 23.48162 16.10068
2021017 Control 22.17563 23.79683 15.873

2021021 Control 22.32354 23.76648 17.50554
2021022 Control 21.82626 23.32713 16.35305
2021026 Control 22.69801 22.79801 17.94128
2021029 Control 21.21703 23.83898 17.70134
2021031 Control 22.15845 24.01224 16.21806
2021032 Control 20.26998 21.77754 16.41206
2021034 Control 22.57254 23.01443 15.82979
2021036 Control 22.10823 254372 18.03494
2021038 Control 19.83442 24.09309 16.93175
2021039 Control 22.8405 23.61109 17.03301
2021040 Control 20.72439 24.23108 16.52985
2021041 Control 22.49104 22.74978 16.83147
2021042 Control 22.12857 23.5926 16.46831
2021046 Control 23.01731 22.66537 17.41212
2021047 Control 22.55935 22.80843 18.6565
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