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INTRODUCTION 
 

Over the last few decades, there has been an increase  

in the elderly population. Between 2015 and 2050  

the number of people aged 60 and over is expected  

to double worldwide (https://www.who.int/news-room/ 

fact-sheets/detail/ageing-and-health). The aging process 

is accompanied by numerous pathological changes and 

understanding them can help us improve the available 

treatments aimed at improving the quality of life. 
 

Specifically, in lipid metabolism, advancing age is 

associated with a gradual increase in plasma 

concentrations of triglycerides (TG), cholesterol and 

low-density lipoprotein (LDL) [1]. It is suggested that 

the reduction in the concentration of total cholesterol in 

some studies with long-lived elderly individuals is due 

to the death of those with the highest blood cholesterol 

[2, 3]. These changes may contribute to the increased 

risk of cardiovascular, neurological and liver disease 

observed in the elderly. 

 

Cholesterol is one of the main components of the cell 
plasma membrane, giving it its physicochemical 

properties, such as fluidity and stability, however 

cholesterol is not evenly distributed in the membranes. It 
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ABSTRACT 
 

In humans, aging, triggers increased plasma concentrations of triglycerides, cholesterol, low-density lipoproteins 
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Non-alcoholic fatty liver is associated with lower total brain volume in the Framingham Heart Study offspring 
cohort study. Furthermore, disorders of cholesterol homeostasis in the adult brain are associated with 
neurological diseases such as Niemann-Pick, Alzheimer, Parkinson, Huntington and epilepsy. Apolipoprotein E 
(apoE) is important in transporting cholesterol from astrocytes to neurons in the etiology of sporadic 
Alzheimer’s disease, an aging-related dementia. Desmosterol and 24S-hydroxycholesterol are reduced in ApoE 
KO hypercholesterolemic mice. ApoE KO mice have synaptic loss, cognitive dysfunction, and elevated plasma 
lipid levels that can affect brain function. In contrast to cholesterol itself, there is a continuous uptake of 27- 
hydroxycholesterol in the brain as it crosses the blood-brain barrier and this flow can be an important link 
between intra- and extracerebral cholesterol homeostasis. Not surprisingly, changes in cholesterol metabolism 
occur simultaneously in the liver and nervous tissues and may be considered possible biomarkers of the liver 
and nervous system aging. 
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focuses on specialized sphingolipid-rich domains called 

lipid rafts and caveolae, which are involved in important 

cellular functions such as signaling across membranes 

[4, 5], regulation of membrane traffic, and signal 

transduction pathways that initiate in the membrane by 

stimulation or dimerization of receptors [6]. 

 

In addition to structural functions, enzymatic and non-

enzymatic liver pathways give rise to several oxysterols, 

some of which are further metabolized into bile acids 

[7]. Oxidative cleavage of the cholesterol side chain 

generates pregnenolone, the common precursor to all 

other steroid hormones [8]. 

 

The body’s cholesterol content is influenced by  

its ingestion, absorption, synthesis and excretion. 

Coordinately, modifications in one of these components 

lead to responses from the others in order to maintain 

cholesterol homeostasis. For example, the approximately 

four-fold increase in dietary intake of cholesterol 

reduced its synthesis, assessed in plasma lymphocytes, 

by 34% [9]. 

 

In blood vessels, chylomicrons (CHY) undergo the 

action of the lipoprotein lipase (LPL) enzyme, which 

hydrolyzes triglycerides (TG) and phospholipids (PL) 

present in these lipoproteins, making them available to 

peripheral tissues. This process reduces the size of the 

CHY, forming remnant CHY, which are quickly taken 

up by the B-E receptors and proteins related to the 

hepatic LDL receptor (LRP). The liver, in turn, 

synthesizes very low-density lipoprotein (VLDL) by 

conjugating TG, PL and cholesterol to apolipoprotein 

(apo) B100. Analogously to CHY, VLDL undergo LPL 

action in the circulation, originating intermediate 

density lipoproteins (IDL) and, ultimately, low-density 

lipoproteins (LDL). In human blood, LDL is the main 

carriers of cholesterol to peripheral tissues (Figure 1). 

 

 
 

Figure 1. Chylomicrons (CHY) undergo the action of the lipoprotein lipase (LPL) enzyme, which hydrolyzes triglycerides (TG) 
and phospholipids (PL) present in these lipoproteins, making them available to peripheral tissues. This process reduces the size 
of the CHY, forming remnant CHY, which are quickly taken up by the B/E receptors and proteins related to the hepatic LDL receptor (LRP). The 
liver, in turn, synthesizes very low-density lipoprotein (VLDL) by conjugating TG (triglycerides), PL (phospholipids), and CHO (cholesterol) to 
apolipoprotein (apo) B100. Analogously to CHY, VLDL undergo LPL action in the circulation, originating intermediate density lipoproteins (IDL) 
and, ultimately, low-density lipoproteins (LDL). In human blood, LDL is the main carriers of cholesterol to peripheral tissues. 
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High-density lipoproteins (HDL) can be formed during 

the lipidation of apoA1, a protein synthesized in the 

liver and intestine, or during the metabolism of CHY 

and VLDL [10]. The main function of HDL is to 

promote the reverse transport of cholesterol, a process 

by which cholesterol is removed from peripheral tissues 

and sent to the liver for elimination in the feces. The 

excretion of cholesterol by the liver, in the form of bile 

acids, is the main form of elimination of cholesterol 

from the body (Figure 2). 

 

The liver is the main organ responsible for synthesizing 

and eliminating excess cholesterol from the body. 

Cholesterol synthesis involves several molecular 

reactions and an efficient feedback control mechanism. 

The main regulatory step in cholesterol biosynthesis is 

the reduction of 3-hydroxy-3-methylglutaryl coenzyme 

A (HMG-CoA) to mevalonate, a reaction catalyzed by 

HMG-CoA reductase, an enzyme incorporated in the 

membrane of the endoplasmic reticulum (ER). The 

activity of HMG-CoAR is regulated by different 

mechanisms. Most important is the control of the rate of 

synthesis of HMGCoAR mRNA by the family of sterol  

 

 
 

Figure 2. HDL promotes the reverse transport of 
cholesterol (CHO), a process by which cholesterol (CHO) is 
removed from peripheral tissues and delivered to the 
liver for elimination in the feces. The excretion of cholesterol 

by the liver, in the form of bile acids, is an important form of 
elimination of cholesterol from the body. 

regulatory element binding proteins (SREBPs). SREBP-

2 is abundant in the brain and liver, while SREBP-1 is 

restricted to the liver. Specifically, SREBPs induce 

transcription of the HMG-CoAR gene binding to the 

sterol regulatory element (SRE) in the DNA. When the 

cholesterol concentration is sufficient to maintain cell 

homeostasis, the SREBPs bind to the SREBP cleavage 

activating protein (SCAP) in the ER membrane. When 

the cellular cholesterol content decreases, the sterol 

leaves its binding site to SCAP and the SREBP-SCAP 

complex moves to the Golgi, where two proteases (S1P 

and S2P) release the amino terminal domain of the 

transcription factor. This amino terminal peptide enters 

the nucleus and binds the SREs. When the cytoplasmic 

concentration of cholesterol increases, the sterol 

molecules bind to SCAP and prevent the complex’s 

translocation to the Golgi, leading to a reduction in 

HMGCoAR transcription [8, 11]. 

 

Disturbances in cholesterol metabolism have been 

reported in several pathologies such as aging, diabetes 

mellitus, Alzheimer’s disease, multiple sclerosis, 

osteoporosis, lung cancer, breast cancer, and infertility 

[12, 13]. Furthermore, cholesterol metabolites may be 

more relevant than cholesterol itself in these pathologies 

[14–16]. 

 

Changes in lipid metabolism with aging 
 

The mechanisms of lipid metabolism alterations with 

aging are not fully understood. The loss of lean mass 

and the increase in adipose tissue stimulate insulin 

resistance and allow a greater flow of fatty acid to the 

liver, resulting in increased synthesis of VLDL [17] and 

diminished removal rate of these lipoproteins from the 

plasma [17–19]. This is due to impairments in the 

activity of lipoprotein lipase [20] and reduced 

concentration of the hepatic LDL receptor secondary to 

the increase in PCSK9 [21], a protein responsible for 

signaling LDLr degradation. The longer half-life of 

lipoproteins in plasma possibly exposes lipoproteins to 

greater chemical changes, which contribute to reducing 

their affinity for their receptor [22, 23]. 

 

Reverse cholesterol transport (RCT), carried out by 

HDL, is also diminished by aging. In vitro, it was 

observed that HDL isolated from elderly individuals had 

a lower capacity to remove cellular cholesterol when 

compared to HDL from 20-30 year old adults [24]. 

Recently, the in vivo RCT was evaluated in C57BL/6 

mice at 3 or 20 weeks of age [25]. For this, J774 

macrophages overloaded with labeled cholesterol were 

injected into the animals’ peritoneum. The recovery of 

cholesterol in plasma, liver and feces represented RCT. 

After 48 hours of macrophages inoculation, the authors 

observed that older animals had lower concentrations of 
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labeled cholesterol in the three compartments studied, 

showing less efficiency in the process of cholesterol 

removal and excretion with aging. It is important to note 

that there was no difference between the groups 

according to the HDLc concentrations. The two studies 

mentioned above attributed the results to the damage 

caused by aging or by HDL in the elderly on transporters 

ABCA1 and ABCG1 receptors involved in the delivery 

of cholesterol to HDLs. 

 

Cellular export of cholesterol by the liver and 

nervous system 
 

The liver is the only organ capable of metabolizing 

cholesterol into bile acids, representing approximately 

1/3 of the cholesterol eliminated from the body.  

The enzymatic conversion of cholesterol into bile  

acids by the microsomal cytochrome P450 system is the 

most important mechanism for the removal of 

cholesterol from the body, while the generation of 24-

hydroxycholesterol (24-HC) is the predominant form of 

cholesterol elimination by the central nervous system. 

The microsomal cytochrome P450 system is responsible 

for the enzymatic generation of oxysterols including  

7α- hydroxycholesterol catalyzed by 7α-hydroxylase 

(CYP7A1) in the liver, 24-HC in the brain and retina 

catalyzed by 24S-hydroxylase (CYP46A1), and mostly 

27-hydroxycholesterol (27-HC) of tissues catalyzed by 

27-hydroxylase (CYP27A1) [26, 27]. 

 

As in the brain, cholesterol synthesis in the liver is 

strongly regulated by the activity of HMGCoAR, while 

peripheral cholesterol catabolism is mainly carried out 

by CYP27A1, via the production of 27-HC as the main 

catabolite. In contrast to cholesterol itself, there is a 

continuous uptake of 27-HC into brain since it crosses 

the blood–brain barrier [28]. While there is an efflux of 

24-HC from the brain to the peripheral circulation, there 

is also an inflow of 27-HC to the brain [29]. The flux of 

27-HC into the brain may be an important link between 

intra and extracerebral cholesterol homeostasis [28]. 

 

In vitro conditions and in vivo experiments with 

different mouse models showed negative effects of the 

27-HC in brain that include memory defects [30], 

reduced production of the ‘memory protein’ Arc 

(activity-regulated cytoskeleton-associated protein) in 

hippocampus [31, 32] and reduced brain uptake of 

glucose [31]. 

 

Cholesterol metabolism in the liver is altered in 

more frequent pathologies such as aging and 

non-alcoholic fatty liver disease 
 

Other authors observed in human liver biopsies a negative 

correlation between age and 7α-hydroxycholestenone, a 

marker of bile acid synthesis, a result that was attributed 

to lower expression of the enzyme CYP7A1 [33]. Since 

less cholesterol is eliminated in the form of bile acids, 

bile cholesterol saturation increases with age, increasing 

the risk of gallstones. These results suggest a reduction 

in the export of the cholesterol content from the liver 

with aging. If, in humans, the low removal cell rate 

elevates hepatic cholesterol concentration, this could 

explain, at least in part, the reduction in hepatic LDL 

receptor concentration and plasma (and presumably also 

hepatic) cholesterol synthesis markers. 

 

At least in murine models, hepatic cholesterol 

concentration increases as a function of age [34–36]. In 

animals, aging is accompanied by increased expression 

of Niemann-Pick C1-like 1 (NPC1L1) in the enterocyte 

[37], probably increasing the absorption of intestinal 

cholesterol eliciting increased liver cholesterol uptake 

[36]. However, other authors reported that in human 

livers age was associated with reduced bile acids 

synthesis attributed to decreased expression of nuclear 

factor-4 and, consequently, to low cholesterol 7alpha-

hydroxylase activity [33]. 

 
The aging process predisposes to functional and 

structural hepatic impairment. The most common liver 

disease, which affects a third of the world’s population, 

is non-alcoholic fatty liver disease (NAFLD). This is 

characterized by the accumulation of fat in hepatocytes 

characterized as hepatic steatosis with active hepatic 

inflammation, known as non-alcoholic steatohepatitis. 

The prevalence of fatty liver disease has increased at 

alarming rates, along with obesity, diabetes and 

metabolic syndrome, becoming the second most 

common cause of cirrhosis after alcohol-related liver 

disease worldwide [38]. 

 
NAFLD patients present cholesterol metabolism 

alterations characterized by increased synthesis and 

decreased intestinal absorption of cholesterol [39] 

associated with liver fat content, regardless of body 

weight [39]. Alterations in cholesterol homeostasis 

pathways are linked to increased expression of 

HMGCR, and decreased expression of LDL receptors 

and bile acids synthesis [40]. 

 
NAFLD is a major health problem associated with 

obesity and metabolic syndrome, including insulin 

resistance and dyslipidemia. Lipid accumulation in 

hepatocytes causes liver damage and triggers 

inflammation, fibrosis and cirrhosis [41]. In addition to 

fatty acids and triglycerides, there is increased liver free 

cholesterol [42], with alterations in the cholesterol 

homeostasis pathways [40]. Measurements in mice 

livers indicate that cholesterol accumulates with both 

normal aging [36] and accelerated aging [34]. Other 



www.aging-us.com 1553 AGING 

authors investigated the relationship between aging and 

cholesterol metabolism in the liver of 6-, 12-, 18- and 

24-month-old male Wistar rats. They showed that the 

cholesterol concentration in the liver was not affected 

by aging, however, concentrations of the cholesterol 

precursors lanosterol and lathosterol increased, although 

desmosterol did not change [43]. 

 

Cholesterol metabolism in the nervous system 
 

The brain is the richest organ in cholesterol with 25% of 

the total body cholesterol. Cholesterol is synthesized in 

the central nervous system, as the blood-brain barrier 

prevents its entry into the brain in the form of 

lipoproteins [44, 45]. Cholesterol is present in 

exceptionally high amounts in the myelin sheaths 

surrounding neuronal axons representing 25% of the 

lipid molecules in the plasma membrane of brain cells, 

while various phospholipids, sphingomyelin and 

glycolipids make up the remainder. In addition to being 

a critical structural component for plasma membranes, 

cholesterol is able to regulate membrane trafficking and 

signal transduction pathways that start in the plasma 

membrane by stimulating or dimerizing receptors [6]. 

 

Importantly, disorders of cholesterol homeostasis in the 

adult brain are associated with different neurological 

diseases, such as Niemann-Pick [46], Alzheimer [47], 

Parkinson [48], Huntington [49] and epilepsy [50]. 

 

Since cholesterol-loaded lipoproteins cannot cross the 

blood-brain barrier, the brain has developed regulation 

of cholesterol based on synthesis and a specific 

catabolism by the enzyme CYP46A1. Cholesterol is 

cleared from the brain as 24S-hydroxycholesterol  

(24S-HC). The enzyme responsible for this oxidation  

is CYP46A1, located in cytochrome P450, and 

expressed in certain types of neurons, namely, pyramidal 

neurons of the hippocampus and cortex, Purkinje cells  

of the cerebellum, and hippocampal and cerebellar 

interneurons [51]. Due to the decrease in 

hydrophobicity, 24S-HC besides diffusing from the 

blood-brain barrier to be eliminated by the liver, is a 

potent bioactive molecule capable of modifying different 

cell functions. 24S-HC affects the cell survival rate [52–

54], n-methyl D-Aspartate (NMDA) receptor activity 

[55, 56], exocytosis of vesicles [57] and LXR-induced 

transcriptional activity [58]. In addition to being the 

main by-product of brain cholesterol catabolism, 24S-

HC is a potent bioactive molecule with therapeutic 

implications as well as a biomarker in different 

neurological disorders [59]. 

 

It is widely accepted that in the adult brain, cholesterol 

synthesis in neurons is extremely low. Therefore, to 

satisfy their physiological needs, neurons need to import 

cholesterol from astrocytes. These cells have the 

molecular mechanism to secrete cholesterol-enriched 

apolipoproteins, and neurons express surface receptors 

for families of proteins related to low-density lipoprotein 

(LRP) and low-density lipoprotein (LDL) receptors, 

which bind charged apolipoproteins and cholesterol [59]. 

 

Cholesterol metabolism in the central nervous 

system in aging 
 

As the brain ages, cognitive and motor performance 

decreases due to the accumulation of oxidative 

metabolism products. However, the aging brain contains 

few dead neurons, suggesting that aging must be 

accompanied by the activation or increase of neuronal 

survival mechanisms. Recent evidence points to the 

contribution of changes in membrane lipid composition 

to both age-dependent cognitive decline and robust 

neuronal survival [60]. 

 

Studies carried out in the human and rodent brain suggest 

that aging affects the cholesterol content in different 

regions, with the magnitude of variations depending on 

the analyzed sample, that is, total fraction, membrane 

fraction, lipid raft or synaptic fraction [6, 61, 62]. 

 

A moderate loss of brain cholesterol, both in vitro and 

in vivo, occurs in the hippocampal neuron membranes 

of elderly rodents [6, 63]. These findings agree with 

others reporting reduction in cholesterol levels from the 

age of 20 years onwards in the frontal and temporal 

cortices [64], and with a slight but significant reduction 

in the human hippocampus and cerebellum [62] or in 

brain synaptosomes derived from aged mice [6, 65]. 

Consistently, diminished cholesterol synthesis has been 

detected in the age-dependent human hippocampus [66] 

and increased levels of cholesterol 24-hydroxylase, the 

enzyme responsible for removing cholesterol in the 

brain [67] have been observed in the human brain and 

aged mice and in hippocampal neurons aging in vitro 

[63]. Furthermore, elevated levels of 24-HC were found 

in the plasma of elderly individuals [68]. 

 

Together, these results suggest that aging is 

accompanied by decreased synthesis and increased 

catabolism of cholesterol. However, changes in the 

amount of this lipid are highly variable during aging, 

ranging from no change to a 40% reduction [62]. 

 

The fluidity and asymmetry of cholesterol in the 

synaptic plasma membranes are altered in the aged mice 

with relative enrichment of cholesterol in the exofacial 

leaflet of synaptic membranes compared to young mice 

[69]. Increased cholesterol concentrations have been 

described in whole brain extracts from aged rats [70]. 

Together, these findings suggest that cholesterol levels 
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respond differently during aging, depending on the 

metabolic needs of specific brain areas. 

 

Relationship between aging and cholesterol metabolism 

in cortex and hippocampus, as well as in serum and 

liver of 6, 12, 18 and 24-month-old male Wistar rats 

showed that during aging the concentrations of the 

cholesterol precursors lanosterol, lathosterol and 

desmosterol do not change in the cortex, except for 

desmosterol which decreased 44% in 18-month-old rats. 

In the hippocampus, aging was associated with a 

significant reduction in lanosterol and lathosterol 

concentrations at 24 months (28 and 25%, respectively), 

as well as a significant decrease in desmosterol at 18 

and 24 months (36 and 51%, respectively) [43]. 

 

Although some studies have proposed an association 

between hypercholesterolemia and sporadic Alzheimer’s 

Disease, the assumption that high concentrations of 

peripheral cholesterol impair the brain function remains 

controversial. In fact, the estimated number of adults in 

the US with cholesterol concentrations of 200 mg/dL or 

more is 99 million, and of that 32 million people have 

cholesterol levels of 240 mg/dL or more [71] whereas it 

is estimated only 5 million have Alzheimer’s Disease 

[72]. Thus, if high serum cholesterol concentrations 

were a risk factor for Alzheimer’s Disease, the incidence 

and prevalence of Alzheimer’s Disease should be much 

higher. However, recent studies suggest that there may 

be a non-linear relationship between plasma cholesterol 

levels and cognitive functions [73–76]. 

 

The most abundant apolipoproteins in the brain are 

ApoE and ApoA1, while the liver produces and secretes 

a large set of apolipoproteins with specific functions. A 

study using human stem cell-derived astrocytes and 

neurons highlights the importance of apoE in 

transporting cholesterol from astrocytes to neurons in 

the etiology of sporadic Alzheimer’s Disease, an aging-

related dementia [77]. ApoE KO mice show synaptic 

loss, cognitive dysfunction, and high plasma lipid levels 

that can affect the brain function. In ApoE KO mice, 

plasma concentrations of cholesterol and phytosterols 

(campesterol and sitosterol) are high. Cholesterol 

precursors (desmosterol and lathosterol) not detected in 

the plasma of control mice, are measurable in ApoE KO 

mice. Amounts of brain cholesterol, desmosterol, 

campesterol and 24S-HC are significantly lower in 

ApoE KO mice compared to wild-type controls. These 

results demonstrate that brain cholesterol content, rate 

of synthesis (desmosterol) and 24S-HC export are 

reduced in ApoE KO hypercholesterolemic mice [78]. 

 
CYP46A1 KO mice develop a considerable reduction in 

the concentration of 24S-HC in the brain, without 

another cholesterol metabolite to compensate for this 

oxysterol. In these mice, cholesterol concentrations are 

similar to those in wild-type animals. However, the 

concentrations of desmosterol, the precursor of 

cholesterol, and its metabolite formed by the closure of 

the mevalonate, 24S, 25-epoxycholesterol pathway are 

reduced [79]. 

 

In a study aiming to elucidate the etiology of sporadic 

Alzheimer’s Disease, cholesterol and oxysterol 

concentrations were measured in the brain of ApoE  

Ԑ2, Ԑ3 and Ԑ4 humans and knock-in mice at 8 weeks  

and 1 year of age. No effect of ApoE genotype or  

age on cerebral cholesterol or on 24S-HC has been 

demonstrated. Concentrations of 27-HC were elevated  

in 1-year-old animals for all ApoE genotypes [80]. 

Interestingly, lathosterol, a marker of cholesterol 

synthesis, was significantly reduced in 1-year-old 

animals for all ApoE genotypes. In addition, ApoԐ4 

expressing mice exhibited lower concentrations of 

lathosterol compared to ApoԐ2 at both ages, and oxidized 

cholesterol metabolites were lower in ApoԐ2 mice 

compared to other genotypes at 8 weeks of age [80]. 
 

Cholesterol metabolism is simultaneously 

altered in the liver and nervous system in aging 
 

Aging induces changes in cholesterol metabolism in the 

brain and liver of rats. In an experimental model, there 

was an age-induced increase in cholesterol synthesis in 

the liver, demonstrated by an increase in the 

concentrations of lanosterol and lathosterol, and no 

change in the concentration of desmosterol. The 

amounts of these liver sterols were smaller than in the 

brain regions. In the cortex and hippocampus, 

desmosterol was the predominant precursor of 

cholesterol while in the liver, lathosterol was the most 

abundant precursor. This proportion remained stable 

during aging. This study showed that aging diminishes 

cholesterol synthesis in the hippocampus, demonstrated 

by a reduction in the concentration of desmosterol, 

which could reflect a reduction in age-related synaptic 

plasticity. The results showed that aging influences 

cholesterol synthesis in different ways in the brain and 

periphery, proving that cholesterol metabolism in the 

brain is autonomous [43]. 

 

Liver diseases, even in pre-cirrhotic stages, are also 

related to brain aging [81–87]. NAFLD was associated 

with poor cognitive performance independent of CVD 

and its risk factors when analyzing data from the Third 

National Health and Nutrition Examination Survey 

(NHANES III), covering a representative sample of the 

general US population investigating the relationships 
between NAFLD determined by ultrasound and 

cognitive impairment assessed by three computerized 

tests [84]. Decreased brain activity measured using 
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infrared spectroscopy was observed in 24 female 

NAFLD patients compared to 15 healthy control 

females [85] and healthy middle-aged adults (67±9 

years) in the descending cohort study of Framingham 

Heart Study NAFLD associated with lower total brain 

volume, independent of visceral adipose tissue and 

cardiometabolic risk factors, pointing to a possible link 

between hepatic steatosis and cerebral aging [86] 

Another study that evaluated the cross-sectional 

relationship of NAFLD and liver fibrosis with cognitive 

performance among Framingham Study participants 

aged 61±12 years, free from dementia and stroke and 

without excessive alcohol intake, showed that 

participants with high risk of advanced fibrosis had 

worse cognitive function compared with those at low 

risk [87]. 

 

NAFLD, characterized by accumulation of extra fat in 

liver cells that can lead to inflammation, liver fibrosis, 

cirrhosis, and liver cancer, is an obesity-related 

condition that has reached epidemic proportions [88, 

89], and coexists with classic CVD risk factors [90]. A 

study in participants CARDIA study (Coronary Artery 

Risk Development in Young Adults) [91] that 

evaluated cognitive function and computed chest and 

abdomen tomography scans as part of the 25-year 

follow-up examination, and with cognitive function 

reassessed in the 30-year follow-up examination, 

showed that the inverse associations between NAFLD 

and cognitive scores were attenuated after adjustment 

for CVD risk factors, with the last predictor of worse 

cognitive performance both at baseline and throughout 

follow-up [92]. 

 

Ethical and methodological limitations do not allow 

direct measurements of synthesis and cholesterol in the 

brain and liver in humans. However, in rats, aging 

simultaneously induces changes in cholesterol 

metabolism in the brain and liver [43]. While the results 

showed an increase in cholesterol synthesis in the liver, 

in the brain there was a decrease in the hippocampus of 

aged rats. This study corroborates those where NAFLD 

was associated with brain aging characterized by 

cognitive impairment, reduced brain activity, and 

decreased brain volume [81–87], confirming that aging 

influences cholesterol synthesis in different ways in the 

brain and periphery, as well as that cholesterol 

metabolism in the brain is autonomous. 

 

Alterations in the regulation of hepatic bile acid 

metabolism in metabolic syndrome [93, 94] and  

in non-alcoholic hepatic steatosis [95] have been 

reported in several investigations in humans, including 
in experimental models [96–98]. More recently, 

Alzheimer’s disease late onset has been suggested to be 

associated with metabolic syndrome [99]. In light of 

these results, it is not surprising that changes in 

cholesterol metabolism occur simultaneously with 

hepatic and neurological aging. Furthermore, in rats 

with aging, cholesterol accumulates in the liver, while 

the opposite occurs in the brain [43]. 

 

Neurological and hepatic alterations in cholesterol 

metabolism have been reported, the consequences of 

which for neurological diseases need to be explored. For 

example, bile acid metabolism appears to be decreased 

in dementia [100], and is related to Alzheimer’s disease 

[101]. Also, enzymes related to cholesterol metabolism, 

such as PCSK9, could be linked to Alzheimer’s disease 

[102]. Consequently, the connection of disorders of 

cholesterol metabolism in the liver and the central 

nervous system deserves investigation. 

 

Future research should look for blood markers that 

identify the simultaneity of liver and neuronal aging. 
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