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INTRODUCTION 
 

Sarcomas are a diverse group of rare and heterogeneous 

malignancies of mesenchymal origin [1, 2]. They 

comprise 50 histological types that can be broadly 

classified into bone sarcomas, including osteosarcoma, 

Ewing’s sarcoma, chondrosarcoma, and soft-tissue 

sarcomas, including liposarcoma, leiomyosarcoma, 

undifferentiated soft-tissue sarcoma, fibrosarcoma, and 
synovial sarcoma [3, 4]. In the USA, 13,460 new soft-

tissue sarcoma and 3,610 new bone sarcoma cases are 

reported annually [5]. In recent decades, great efforts 

have been made in sarcoma research. However, there 

have been no significant improvements in sarcoma 

treatment for nearly 30 years. In addition, the prognosis 

of sarcoma is not satisfactory due to local recurrence 

and distant metastases [6]. Therefore, it is imperative to 

develop reliable prognostic tools to accurately estimate 

patient outcomes and improve personalized therapy for 

patients with sarcoma. 

 
Oxidative stress is the result of excess reactive oxygen 

species (ROS) due to an imbalance between ROS 

production and antioxidant responses [7, 8]. ROS are 
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ABSTRACT 
 

Background: Oxidative stress plays a critical role in tumorigenesis, tumor development, and resistance to 
therapy. A systematic analysis of the interactions between antioxidant gene expression and the prognosis of 
patients with sarcoma is lacking but urgently needed. 
Methods: Gene expression and clinical data of patients with sarcoma were derived from The Cancer Genome 
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shrinkage, selection operator regression, and Cox regression were used to develop prognostic signatures for 
overall survival (OS) and disease-free survival (DFS). Based on the signatures and clinical features, two 
nomograms for predicting 2-, 4-, and 6-year OS and DFS were established. 
Results: On the basis of the training cohort, we identified five-gene (CHAC2, GPX5, GSTK1, PXDN, and S100A9) and 
six-gene (GGTLC2, GLO1, GPX7, GSTK1, GSTM5, and IPCEF1) signatures for predicting OS and DFS, respectively, in 
patients with sarcoma. Kaplan–Meier survival analysis of the training and validation cohorts revealed that 
patients in the high-risk group had a significantly poorer prognosis than those in the low-risk group. On the basis 
of the signatures and other independent risk factors, we established two models for predicting OS and DFS that 
showed excellent calibration and discrimination. For the convenience of clinical application, we built web-based 
calculators (OS: https://quankun.shinyapps.io/sarcOS/; DFS: https://quankun.shinyapps.io/sarcDFS/). 
Conclusions: The antioxidant gene signature models established in this study can be novel prognostic predictors 
for sarcoma. 
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implicated in tumor growth, invasion, and metastasis, 

and cellular resistance to therapy [9]. ROS are produced 

inside the cells from both endogenous and exogenous 

sources [10]. Although low levels of ROS can be 

beneficial, excessive accumulation can promote cancer 

[11]. It is becoming increasingly evident that ROS play 

crucial roles in the survival, proliferation, invasion, 

angiogenesis, and metastasis of tumor cells [12–14]. 

Under normal conditions, ROS production is balanced 

by ROS scavenging through the antioxidant defense 

machinery, resulting in redox homeostasis. Studies 

using preclinical and clinical models have indicated that 

antioxidants reduce cancer risk [15, 16]. Antioxidant-

related genes may be related to tumorigenesis as they 

play a major role in regulating oxidative stress and 

protecting against ROS [17]. Studying the relationship 

between antioxidant genes and tumorigenesis may 

facilitate the discovery of novel targets for predicated 

prognosis and treatment [18]. However, the prognostic 

values of antioxidant-related genes and their biological 

functions in sarcomas remain rudimentary and 

inconclusive. 

 

In the present study, we aimed to construct and validate 

prognostic antioxidant-related gene signatures for 

overall survival (OS) and disease-free survival (DFS) in 

sarcoma patients using gene expression profiling data 

from The Cancer Genome Atlas (TCGA) and Gene 

Expression Omnibus (GEO) databases. In addition, we 

performed functional analysis and compared tumor 

immunity between high- and low-risk groups. On the 

basis of the signatures and other risk factors, we 

constructed predictive nomogram models. For 

convenient clinical application, we built web-based 

calculators. 

 

RESULTS 
 

Establishment of prognostic signatures based on 

antioxidant genes 
 

To narrow down candidate antioxidant genes, we 

performed univariate Cox regression analysis and 

identified 27 and 26 OS-related antioxidant genes in 

the TCGA-Sarcoma (TGCA-SARC) and GSE17674 

datasets, respectively (Supplementary Table 2). 

Among these, five overlapping genes were selected for 

establishing the OS signature (Figure 1A). Similarly, 

we identified 18 and 48 DFS-related antioxidant  

genes in the TCGA-SARC and GSE30929 datasets 

(Supplementary Table 3), respectively; 10 overlapping 

genes were selected for establishing the DFS-related 

signature (Figure 1B).  
 

The five OS-related and 10 DFS-related antioxidant 

genes were subjected to tenfold cross-validated LASSO 

regression to generate the best gene model. The LASSO 

coefficients were plotted against the log(k) values, and 

five OS-related genes and seven DFS-related genes 

were selected (Figure 1C, 1D). On the basis of 

multivariate Cox regression analysis results, five genes 

(CHAC2, GPX5, GSTK1, PXDN, and S100A9) 
associated with OS and six genes (GGTLC2, GLO1, 

GPX7, GSTK1, GSTM5, and IPCEF1) associated with 

DFS were selected for establishing risk signatures 

(Figure 1E, 1F). The prognostic risk score formula was 

specifically constructed by the multivariate Cox 

regression analyses (Tables 1, 2). 

 

Evaluation of the signatures in the training and 

validation cohorts 

 

Based on the established OS and DFS risk signatures, 

the risk score for each patient with sarcoma was 

calculated. The median score was set as the cutoff value 

for categorizing sarcoma patients into low- (≤ median 

score) and high-risk (> median score) groups.  

 

The risk score distribution for OS prediction in the 

TCGA-SARC dataset is shown in Figure 2A, and the 

distribution of OS status ranked by risk score is 

presented in Figure 2B. The expression profiles of the 

five antioxidant genes in the two groups are shown in 

Figure 2C. Survival analysis revealed that patients in 

the low-risk group had a better OS than those in the 

high-risk group (Figure 2D). In time-dependent 

receiver operating characteristic (ROC) analysis, the 

areas under the ROC curves (AUCs) for 2-, 4-, and 6-

year OS were 0.678, 0.668, and 0.726, respectively 

(Figure 2E).  

 

The risk score distribution for OS prediction in the 

GSE17674 dataset is shown in Figure 2F, and the 

distribution of OS status ranked by risk score is 

presented in Figure 2G. The expression profiles of the 

five antioxidant genes in the two groups are shown in 

Figure 2H. Survival analysis revealed that patients in 

the low-risk group had a better OS than those in the 

high-risk group (Figure 2I). The AUCs in time-

dependent ROC analysis for 2-, 4-, and 6-year OS were 

0.649, 0.710, and 0.690, respectively (Figure 2J). 

 

The risk score distribution for DFS prediction in the 

TCGA-SARC dataset is shown in Figure 3A, and the 

distribution of DFS status ranked by risk score is 

presented in Figure 3B. The expression profiles of the 

five antioxidant genes in the two groups are shown in 

Figure 3C. Survival analysis revealed that patients in 

the low-risk group had a better DFS than those in the 
high-risk group (Figure 3D). The AUCs in time-

dependent ROC analysis for 2-, 4-, and 6-year DFS 

were 0.654, 0.668, and 0.743, respectively (Figure 3E).  
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The risk score distribution for DFS prediction in the 

GSE17674 dataset is shown in Figure 3F, and the 

distribution of DFS status ranked by risk score is 

presented in Figure 3G. The expression profiles of the 

five antioxidant genes in the two groups are shown in 

Figure 3H. Survival analysis revealed that patients in 

the low-risk group had a better DFS than those in the 

high-risk group (Figure 3I). The AUCs in time-

dependent ROC analysis for 2-, 4-, and 6-year DFS 

were 0.781, 0.793, and 0.688, respectively (Figure 3J). 

Gene mutation analysis and gene set enrichment 

analysis (GSEA)  

 

Gene mutation analysis of the 10 antioxidant genes 

included in the OS and DFS signatures showed that 

S100A9, GPX7, IPCEF1, PXDN, and GPX5 were the 

most frequently mutated genes. Notably, amplification 

was the most common type of mutation, and S100A9, 

IPCEF1, and GPX7 were frequently amplified in 

sarcoma (Figure 4A). Subsequently, we performed 

 

 
 

Figure 1. Establishment of prognostic antioxidant gene signatures in the training cohort. (A) Overlapping overall survival 

(OS)-related antioxidant genes in The Cancer Genome Atlas (TCGA) Sarcoma (TCGA-SARC) and Gene Expression Omnibus (GEO) 
GSE17674 datasets. (B) Overlapping disease free survival (DFS)-related antioxidant genes in the TCGA-SARC and GSE30929 datasets. (C) 
Least absolute shrinkage and selection operator (LASSO) regression analysis to screen the antioxidant genes for the predictive OS 
signature. (D) LASSO regression analysis to screen the antioxidant genes for the predictive DFS signature. (E) Forest plot of multivariate 
Cox regression analysis of the genes in the OS signature. (F) Forest plot of multivariate Cox regression analysis of the genes in the DFS 
signature. 
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Table 1. Overall survival-related antioxidant gene signature identified through LASSO and Cox regression. 

Gene symbol Coefficient Gene product 

CHAC2 0.103700036 ChaC glutathione-specific gamma-glutamylcyclotransferase 2 

GPX5 20.29092431 glutathione peroxidase 5 

GSTK1 –0.021559973 glutathione S-transferase kappa 1 

PXDN 0.00814439 peroxidasin 

S100A9 –0.002047307 S100 calcium-binding protein A9 

 

Table 2. Disease-free survival-related antioxidant gene signature identified 
through LASSO and Cox regression. 

Gene symbol Coefficient Gene product 

GGTLC2 –1.474979614 gamma-glutamyltransferase light chain 2 

GLO1 0.671088392 glyoxalase I 

GPX7 0.361529489 glutathione peroxidase 7 

GSTK1 –1.073983673 glutathione S-transferase kappa 1 

GSTM5 –0.572788673 glutathione S-transferase mu 5 

IPCEF1 –1.013381673 interaction protein for cytohesin exchange factors 1 

 

GSEA based on Gene Ontology (GO) functional 

annotation and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway annotation in the low- and 

high-risk groups. The top five GO terms and KEGG 

pathways that were significantly enriched in the high-risk 

group are shown in Figure 4B, 4C. 

 

Immune characteristics of sarcomas 

 

CIBERSORT was used to compare the level of 

infiltration of 22 immune cell types between the low- 

and high-risk groups in the TCGA-SARC samples. 

Figure 5A shows the tumor-infiltrating immune cell 

composition in each sample. Among the 22 immune 

cell types, the levels of infiltration of plasma cells, 

non-activated macrophages (M0), and cytotoxic CD8+ 

T cells were significantly different between the OS 

low- and high-risk groups (Figure 5B). For DFS, the 

levels of infiltration of memory CD4+ T cells and M0 

and proinflammatory (M1) macrophages were 

significantly different between the two groups (Figure 

5C). 

 

Development of individualized prediction nomograms 

and web-based calculators 

 

To construct the nomograms, independent OS and 

DFS prognostic factors were identified by Cox 

proportional hazards regression analyses and further 

analyzed using multivariate Cox regression. Based on 

the results, age, metastasis, margin status, multifocal 

indicator, and antioxidant gene signature were 

independent predictors of OS (Table 3), whereas 

metastasis, margin status, and antioxidant gene 

signature were independent predictors of DFS  

(Table 4). These factors were integrated into the 

nomogram.  

 

The OS nomogram that integrated the four 

independent factors is shown in Figure 6A. The 

predictive value of the nomogram was validated using 

ROC analysis, a calibration plot, and decision curve 

analysis (DCA). The AUCs of 2-, 4-, and 6-year OS 

prediction were 0.794, 0.779, and 0.862, respectively 

(Figure 6B). A calibration plot showed excellent 

calibration of the nomogram (Figure 6C). The results 

of DCA of the OS nomogram and other clinical 

features are presented in Figure 6D–6F. For the 

convenience of clinical application, we constructed a 

web-based tool (https://quankun.shinyapps.io/sarcOS/) 

for predicting the OS of patients with sarcoma  

(Figure 7A, 7B). 

 

The DFS nomogram that integrated the three 

independent factors is shown in Figure 8A. ROC 

analysis, a calibration plot, and DCA were used to 

evaluate the nomogram. The AUCs of 2-, 4-, and 6-year 

DFS prediction were 0.917, 0.814, and 0.808, 

respectively (Figure 8B). A calibration plot showed 

excellent calibration of the nomogram (Figure 8C). The 

results of DCA of the DFS nomogram and other clinical 

features are presented in Figure 6D–6F. A web-based 

tool (https://quankun.shinyapps.io/sarcDFS/) was 

established for predicting the DFS of sarcoma patients 

(Figure 9A, 9B). 

 

DISCUSSION 
 

Given the complex molecular regulatory mechanism of 

sarcoma, it is currently widely accepted that traditional 

https://quankun.shinyapps.io/sarcOS/
https://quankun.shinyapps.io/sarcDFS/
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tumor pathological staging cannot adequately predict 

the survival of patients with sarcoma [19–21]. Thus, 

there is a compelling need to develop novel prognostic 

biomarkers for sarcoma. A multitude of evidence 

suggests that increased ROS production plays an 

important role in tumor initiation and progression. The 

antioxidant system controls ROS production and 

consequently can modulate intracellular signaling 

pathways. Numerous antioxidant genes encode proteins 

involved in the antioxidant signaling pathway [22]. 

However, research exploring prognostic antioxidant 

gene signatures for sarcoma is currently lacking. 

 

 
 

Figure 2. The five-gene prognostic signature predicts the OS of patients with sarcoma. (A) Risk score distribution in the TCGA-

SARC dataset. (B) OS time distribution in the TCGA-SARC dataset. (C) Expression heatmap of the five genes in the TCGA-SARC dataset. (D) 
Kaplan–Meier analysis of OS based on the signature in the TCGA-SARC cohort. (E) Receiver operating characteristic (ROC) analysis of OS 
prediction in the TCGA-SARC cohort. (F) Risk score distribution in the GSE17674 dataset. (G) OS time distribution in the GSE17674 dataset. (H) 
Expression heatmap of the five genes in the TCGA-SARC dataset. (I) Kaplan–Meier analysis of OS based on the signature in the GSE17674 
cohort. (J) ROC analysis of OS prediction in the GSE17674 cohort. 
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In the present study, we thoroughly investigated the 

implications of antioxidant genes in OS and DFS in 

patients with sarcoma. We systematically analyzed 

antioxidant gene expression profiles and survival times 

by LASSO regression and identified a five-gene OS 

signature: CHAC2, GPX5, GSTK1, PXDN, and S100A9. 

Similarly, we constructed a six-gene DFS signature: 

GGTLC2, GLO1, GPX7, GSTK1, GSTM5, and IPCEF1. 

Kaplan–Meier survival and ROC curve analyses 

indicated that both signatures exhibited excellent fitting 

 

 
 

Figure 3. The six-gene prognostic signature predicts the DFS of patients with sarcoma. (A) Risk score distribution in the TCGA-
SARC dataset. (B) OS time distribution in the TCGA-SARC dataset. (C) Expression heatmap of the six genes in the TCGA-SARC dataset. (D) 
Kaplan–Meier analysis of OS based on the signature in the TCGA-SARC cohort. (E) ROC analysis of OS prediction in the TCGA-SARC cohort. (F) 
Risk score distribution in the GSE30929 dataset. (G) OS time distribution in the GSE30929 dataset. (H) Expression heatmap of the six genes in 
the TCGA-SARC dataset. (I) Kaplan–Meier analysis of OS based on the signature in the GSE30929 cohort. (J) ROC analysis of OS prediction in 
the GSE30929 cohort. 



www.aging-us.com 1413 AGING 

 
 

Figure 4. Gene mutation and gene set enrichment analyses. (A) Mutational profiles of the antioxidant genes included in the signature 

of sarcoma (obtained from cBioPortal). (B) Gene ontology (GO) functional annotation terms and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways enriched in the OS high-risk group. (C) GO functional annotation terms and KEGG pathways enriched in the DFS high-risk 
group. 
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Figure 5. Immune characteristics of sarcomas in the low- and high-risk groups. (A) Tumor-infiltrating immune cell composition in 
each sarcoma sample. (B) Distribution of 22 types of immune cells in the OS low- and high-risk groups. (C) Distribution of 22 types of immune 
cells in the DFS low- and high-risk groups.  
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Table 3. Overall survival based on the antioxidant gene signature and clinical data for sarcoma. 

 
Univariate Cox analysis  Multivariate Cox analysis 

HR 95%CI P  HR 95%CI P 

Age 1.020 1.005–1.036 0.010  1.040 1.017–1.062 0.000 

Sex (Female) 0.853 0.571–1.275 0.439     

Ethnicity (Asian)        

Black 1.085 0.132–8.924 0.939     

White 0.791 0.108–5.771 0.817     

Histological type (DLP)        

LMS 0.844 .513–1.389 0.505     

MFS 0.703 .328–1.507 0.365     

Other 0.739 .319–1.710 0.480     

UPS 0.901 .481–1.691 0.746     

Tumor site (Extremity) 0.813 0.524–1.260 0.354     

Metastasis (No) 3.009 1.831–4.946 0.000  3.702 2.089–6.562 0.000 

Margin status (R0) 2.553 1.668–3.909 0.000  2.356 1.351–4.111 0.003 

Multifocal indicator (No) 2.400 1.500–3.841 0.000  1.256 0.601–2.627 0.544 

Radiotherapy (No) 0.992 0.621–1.585 0.973     

Pharmacotherapy (No) 1.380 0.814–2.339 0.231     

Risk score 1.552 1.331–1.808 0.000  1.450 1.184–1.776 0.000 

HR, hazard ratio; CI, confidence interval; DLP, dedifferentiated liposarcoma; LMS, leiomyosarcoma; MFS, myxofibrosarcoma; 
UPS, undifferentiated pleomorphic sarcoma. 

 

Table 4. Disease-free survival based on the antioxidant gene signature and clinical data for sarcoma. 

 
Univariate Cox analysis  Multivariate Cox analysis 

HR 95%CI P  HR 95%CI P 

Age 1.010 0.998–1.023 0.112     

Sex (Female) 1.086 0.765–1.543 0.644     

Ethnicity (Asian)        

Black 2.125 0.265–17.053 0.478     

White 1.915 0.266–13.795 0.519     

Histological type (DLP)        

LMS 0.799 0.514–1.243 0.320     

MFS 0.735 0.378–1.429 0.364     

Other 0.702 0.345–1.430 0.330     

UPS 0.775 0.439–1.368 0.380     

Tumor site (Extremity) 0.977 0.675–1.414 0.902     

Metastasis (No) 4.915 3.126–7.728 0.000  3.942 3.942–6.524 0.000 

Margin status (R0) 2.085 1.422–3.056 0.000  1.971 1.971–3.306 0.010 

Multifocal indicator (No) 2.075 1.309–3.289 0.002  1.493 1.493–3.077 0.277 

Radiotherapy (No) 1.175 0.788–1.752 0.430     

Pharmacotherapy (No) 1.385 0.865–2.219 0.175     

Risk score 1.005 1.003–1.007 0.000  1.016 1.007–1.025 0.000 

HR, hazard ratio; CI, confidence interval; DLP, dedifferentiated liposarcoma; LMS, leiomyosarcoma; MFS, myxofibrosarcoma; 
UPS, undifferentiated pleomorphic sarcoma. 
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Figure 6. Prediction model of OS in patients with sarcoma. (A) Nomogram constructed based on the risk signature and other 

independent risk factors identified by Cox analysis. (B) ROC analysis of OS prediction in patients with sarcoma. (C) Calibration plot for 
evaluating the estimation accuracy of the nomogram. (D) Two-year decision curve analysis (DCA) comparing the model and other clinical 
features. (E) Four-year DCA comparing the model and other clinical features. (F) Six-year DCA comparing the model and other clinical 
features. 
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and predictive ability. These results may help develop 

new biomarkers for the prevention and diagnosis of 

sarcoma and provide clinical research ideas. 

 

Among the 10 antioxidant genes included in the OS 

and DFS risk signatures, few have previously been 

explored in terms of their association with sarcoma 

tumorigenesis. Liu et al. reported that S100A9 

expression was significantly increased in osteosarcoma 

and may be a potential marker for its diagnosis [23]. 

Chen et al. further investigated the underlying 

mechanisms and found that S100A9 inhibited 

 

 
 

Figure 7. Construction of a web-based tool (https://quankun.shinyapps.io/sarcOS/) for predicting the OS of patients with 
sarcoma. (A) Web OS rate calculator. (B) Confidence interval at 95% of the web OS rate. 

https://quankun.shinyapps.io/sarcOS/
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osteosarcoma cell proliferation, migration, invasion, and 

cell cycle by suppressing the mitogen-activated protein 

kinase and nuclear factor kappa B signaling pathways 

[24]. GLO1 expression reportedly is upregulated in 

several malignant tumors [25, 26]. Wang et al. explored 

the role of GLO1 in sarcoma development and 

progression and found that GLO1 knockdown inhibited 

cell proliferation and migration in fibrosarcoma [27]. 

 

 
 

Figure 8. Prediction model of DFS in patients with sarcoma. (A) Nomogram constructed based on the three independent risk factors 

identified by Cox hazards analysis. (B) ROC analysis of DFS prediction in patients with sarcoma. (C) Calibration plot for evaluating the 
estimation accuracy of the nomogram. (D) Two-year DCA comparing the model and other clinical features. (E) Four-year DCA comparing the 
model and other clinical features. (F) Six-year DCA comparing the model and other clinical features. 
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Although they did not evaluate the critical roles of other 

antioxidant genes in sarcoma development and 

progression, most of them are involved in malignant 

tumors [28–33].  

To clarify the molecular mechanisms underlying the 

risk score, we performed GSEA and found that poor 

prognosis of high-risk patients with sarcoma was 

associated with tumor initiation, proliferation, and 

 

 
 

Figure 9. Construction of a web-based tool (https://quankun.shinyapps.io/sarcDFS/) for predicting the DFS of patients with 
sarcoma. (A) Web DFS rate calculator. (B) Confidence interval at 95% of the web DFS rate. 

https://quankun.shinyapps.io/sarcDFS/
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metastasis. In recent years, increasing attention has been 

paid to immune infiltration of the tumor micro-

environment, which influences biological processes in 

the tumor. In the present study, the levels of infiltration of 

plasma cells, M0 and M1 macrophages, and CD8+ and 

CD4+ T cells were significantly different between the 

two risk groups. These immune cells may therefore be 

involved in the development of sarcoma, but this requires 

further investigation. A better understanding of their roles 

in sarcoma development may provide new prospects for 

immunotherapy of sarcoma.  

 

To improve the accuracy of the prediction model, we 

established nomograms based on the risk scores and 

other independent risk factors, and these models showed 

good calibration and discrimination. DCA indicated that 

the nomograms showed higher clinical benefit and 

utility than simple clinical features. In addition, the 

AUCs for 2-, 4-, and 6-year OS prediction were 0.794, 

0.779, and 0.862 for OS and 0.917, 0.814, and 0.808 for 

DFS, respectively. More importantly, to facilitate 

clinical application, we established two web-based tools 

to provide free services for OS and DFS prediction.  
 

To the best of our knowledge, this study was the first to 

construct antioxidant gene signatures for predicting the 

survival of patients with sarcoma. However, the study 

had some limitations. First, the demographic and 

clinical patient data were not comprehensive. Therefore, 

we could not evaluate additional possible prognostic 

factors. The limited numbers of factors included in the 

models may have, at least in part, affected the precision 

of the nomograms. Second, only two GEO datasets 

were used for validation; further validation using larger 

datasets is needed. Third, as the prognostic roles of 

most of the antioxidant genes were identified for the 

first time in this study, in vitro or in vivo studies are 

needed to elucidate their specific mechanisms. 
 

In summary, we established two antioxidant gene 

signatures and survival models to predict the prognosis 

of patients with sarcoma. These risk prediction models 

may serve as effective tools for designing personalized 

therapies and guiding medical decisions. 

 

MATERIALS AND METHODS 
 

Data collection  
 

Transcriptomic (HTSeq-FPKM), demographic, and 

clinical data of patients with sarcoma were collected 

from the TCGA-SARC database (training cohort, 

https://portal.gdc.cancer.gov/) and the GEO database 
(validation cohorts, https://www.ncbi.nlm.nih.gov/geo/). 

In the TCGA-SARC dataset, after excluding cases with 

incomplete survival status and follow-up time, a total of 

259 patients with sarcoma were included. Two GEO 

datasets, GSE17674 and GSE30929, comprising 44 and 

140 sarcoma patients, respectively, were used to 

validate the OS and DFS signatures, respectively. 

 

One hundred thirty antioxidant genes were obtained 

from four gene sets in the molecular signature database 

for GSEA (Supplementary Table 1). Data for the 

mutation analysis were derived from the cBioPortal for 

Cancer Genomics (https://www.cbioportal.org/). 

 

Establishment of the prognostic antioxidant gene 

signatures 

 

To narrow down candidate antioxidant genes, we 

conducted univariate Cox regression analysis based on 

the TCGA-SARC dataset. OS and DFS prognostic were 

selected for further study. Subsequently, tenfold cross-

validated LASSO regression was performed to identify 

potential predictors with nonzero coefficients using the 

R packages ‘glmnet’ and ‘survival’ [34, 35]. Finally, 

multivariate Cox regression analysis was performed to 

identify highly correlated genes and construct the OS 

and DFS gene signatures according to the following risk 

score model: 
 

i

0

Risk score ( xp ),
N

i

i

E
=

=   

 

where N represents the number of antioxidant genes 

included in the signature, Expi represents the mRNA 

level of the antioxidant genes included, and βi 

represents the regression coefficient obtained by Cox 

regression analysis. 

 

Validation and assessment of the antioxidant gene 

signatures 
 

To validate the antioxidant gene signatures and evaluate 

their prognostic value, patients with sarcoma in the 

TCGA-SARC and GEO datasets were classified into 

low- and high-risk groups according to the median 

value of the risk score calculated from the identified 

antioxidant gene signatures [36]. Survival analysis was 

then performed using the log-rank test to compare the 

difference in OS or DFS between the two risk groups. 

Furthermore, we investigated the time-dependent 

prognostic value of the signatures using time-dependent 

ROC curves by “survival” and “timeROC” R packages. 

 

GSEA 
 

The GSEA software ((v4.0.3; http://software. 

broadinstitute.org/gsea/index.jsp) was used to investigate 

the mechanism underlying the difference in survival 

between the low- and high-risk groups from the training 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.cbioportal.org/
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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set using the KEGG gene set (c2.cp.kegg.v7.1.symbols) 

and GO gene set (c5.all.v7.1.symbols) [37]. For each 

analysis, 1,000 gene-set permutations were performed. 

The top five terms in each analysis were employed in 

multiple GSEA gene sets to demonstrate the range of 

biological functions and signaling pathways involved in 

the antioxidant gene signatures in SARC. 

 

Evaluation of immune cell infiltration 

 

CIBERSORT is an analytical tool for determining the 

proportions of 22 immune cell types in tissues using 547 

barcode gene expression values. In this study, the 

CIBERSORT algorithm (version 1.03; http://cibersort. 

stanford.edu/) was employed to determine the proportions 

of the 22 immune cell types in sarcoma samples [38]. 

 

Construction of the models and web-based 

calculators 

 

To obtain subsets of predictors for OS and DFS, 

univariate and multivariate Cox proportional hazards 

analyses were performed using the TCGA-SARC dataset 

to determine independent risk factors for nomogram 

construction [39]. Factors determined to be significant (p 

< 0.05) in univariate Cox regression were subjected to 

multivariate Cox regression analysis. Using the variables 

selected on the basis of the Cox regression results, we 

constructed combined prognostic models to evaluate the 

2-, 4-, and 6-year OS and DFS of patients with sarcoma 

using “rms,” “Hmisc,” “lattice,” “Formula,” and “foreign” 

R packages. Model performance was assessed using 

calibration plots, time-dependent ROC analysis, and 

DCA. For the convenience of clinical application, web-

based calculators for predicting the OS and DFS of 

patients with sarcoma were built using the R packages 

‘DynNom’ and ‘survival’ [40]. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 
 

Supplementary Table 1. Antioxidant genes obtained from molecular signatures database. 

Gene sets Antioxidant genes 

GO_ANTIOXIDANT_ACTIVITY 

ALB, ALOX5AP, APOA4, APOE, APOM, CAT, CLIC2, CYGB, 

DUOX1, DUOX2, EPX, FABP1, GPX1, GPX2, GPX3, GPX4, GPX5, 

GPX6, GPX7, GPX8, GSR, GSTA1, GSTK1, GSTM2, GSTO1, 

GSTO2, GSTP1, GSTT1, GSTZ1, HBA1, HBA2, HBB, HBD, HBE1, 

HBG1, HBG2, HBM, HBQ1, HBZ, HP, IPCEF1, IYD, KDM3B, 

LOXHD1, LPO, LTC4S, MGST1, MGST2, MGST3, MPO, MT3, 

NQO1, NXN, PARK7, PRDX1, PRDX2, PRDX3, PRDX4, PRDX5, 

PRDX6, PRXL2A, PRXL2B, PRXL2C, PTGS1, PTGS2, PXDN, 

PXDNL, S100A9, SELENOS, SELENOT, SELENOW, SESN1, 

SESN2, SOD1, SOD2, SOD3, SRXN1, TP53INP1, TPO, TXN, 

TXNDC17, TXNDC2, TXNRD1, TXNRD2, TXNRD3, UBIAD1 

GO_GLUTATHIONE_METABOLIC_PROCESS 

ALDH5A1, CHAC1, CHAC2, CNDP2, CTNS, DPEP1 , ETHE1, 

G6PD, GCLC, GCLM, GGCT, GGT1, GGT2, GGT3P, GGT5, GGT6, 

GGT7, GGTLC1, GGTLC2, GGTLC3, GLO1, GLRX2, GPX1, 

GPX4, GSR, GSS, GSTA1, GSTA2, GSTA3, GSTA4, GSTA5, 

GSTK1, GSTM1, GSTM2, GSTM3, GSTM4, GSTM5,  GSTP1, 

GSTT1, GSTT2, GSTT2B, GSTZ1, HAGH, HPGDS, IDH1, MGST1, 

MGST2, MMACHC, NAT8,  NFE2L1, NFE2L2, OPLAH, PARK7, 

PTGES, SLC7A11, SOD1 

GO_GLUTATHIONE_CATABOLIC_PROCESS 
CHAC1, CHAC2, GGT1, GGT2, GGT3P, GGT5, GGT7, GGTLC1, 

GGTLC2, GGTLC3 

ANTIOXIDANT_ACTIVITY 

APOA4, CAT, CYGB, EPX, GPX2, GPX3, GPX4, GSR, GSTZ1, 

IPCEF1, MGST3, MPO, PRDX2, PRDX4, SELENOS, TXNDC2, 

TXNRD1, TXNRD2 
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Supplementary Table 2A. Overall survival related genes in TCGA. 

id HR HR.95L HR.95H P-value 

APOM 0.694929672 0.490839127 0.983880916 0.040211656 

CHAC2 1.155359794 1.019240109 1.309658286 0.02394984 

CLIC2 0.967240029 0.941664334 0.993510362 0.014844272 

CNDP2 0.955683908 0.915039552 0.998133611 0.040932471 

GCLM 1.077595527 1.015097441 1.14394153 0.014225422 

GGT1 0.836215138 0.705122233 0.991680201 0.039782991 

GGT2 2977.320145 2.145235429 4132150.311 0.030256718 

GLO1 1.003677441 1.002165227 1.005191937 1.83E-06 

GPX5 6.95374E+11 28.73320463 1.68E+22 0.025401851 

GPX7 1.008845197 1.003062881 1.014660846 0.00267565 

GSS 1.031474696 1.014484921 1.048749001 0.000255122 

GSTK1 0.963004499 0.940607102 0.985935214 0.00169122 

GSTM5 0.868214547 0.782743445 0.963018605 0.0075259 

HAGH 0.910098517 0.848010458 0.976732425 0.008975474 

HP 1.046074068 1.001044359 1.093129336 0.0448072 

IPCEF1 0.662818398 0.476791434 0.921426428 0.014411379 

LTC4S 0.025701946 0.000705731 0.936036379 0.045933837 

MGST2 0.916662086 0.867510748 0.968598235 0.00197049 

NFE2L2 0.962855047 0.938390441 0.987957465 0.003943818 

PRXL2C 0.923336356 0.866028848 0.98443606 0.014696048 

PXDN 1.011352603 1.005330719 1.017410558 0.000211563 

S100A9 0.996979959 0.994130362 0.999837724 0.038350324 

SESN2 1.024347137 1.001567401 1.047644978 0.036041623 

SOD2 0.987989963 0.97811544 0.997964174 0.018393386 

SOD3 0.996241483 0.993136639 0.999356033 0.018057076 

TXNRD3 1.249794352 1.044191608 1.495880555 0.015035818 

UBIAD1 1.206410269 1.090336627 1.334840729 0.000277351 
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Supplementary Table 2B. Overall survival related genes in GSE17674. 

id HR HR.95L HR.95H P-value 

ALDH5A1 0.488242894 0.283360273 0.841265153 0.009805676 

CAT 0.243388991 0.102121374 0.580076422 0.001427824 

CHAC1 4.202232678 1.40897899 12.53301832 0.01002606 

CHAC2 1.731501528 1.133601607 2.644754138 0.011079099 

ETHE1 0.373413063 0.190002335 0.733871591 0.004269224 

GGCT 3.795527295 1.511354492 9.531865303 0.004524807 

GGT7 5.376836067 1.857911286 15.56068167 0.00191898 

GPX5 28.36192751 1.666053041 482.8171206 0.020727186 

GSTA4 0.519695482 0.280429528 0.963106117 0.037581225 

GSTK1 0.234482637 0.100139376 0.549055817 0.000834435 

GSTM1 0.525251397 0.281623079 0.979639279 0.042903503 

GSTM2 0.499890825 0.272589871 0.916728257 0.025028079 

GSTP1 3.590738658 1.200962822 10.73588947 0.022156706 

GSTT1 0.448913989 0.270877539 0.743966334 0.001886978 

KDM3B 0.377983896 0.174185415 0.820228412 0.013842951 

LOXHD1 0.780211673 0.633213122 0.961335502 0.019796816 

MT3 3.115568068 1.028136039 9.441128426 0.044535257 

PRDX4 2.206151533 1.111739092 4.377919804 0.023641774 

PTGES 51.64172666 8.342992391 319.6536456 2.23E-05 

PXDN 1.913703301 1.133051434 3.232210132 0.015220892 

S100A9 1.50226258 1.024294983 2.203264582 0.037268071 

SESN1 0.511400709 0.295158992 0.886067144 0.016788577 

SRXN1 2.483881638 1.065109271 5.792521163 0.035207005 

TP53INP1 0.0642593 0.012640652 0.326664912 0.000937732 

TXN 2.906414261 1.353150059 6.242651213 0.006231613 

TXNRD1 8.611899948 1.635886184 45.33617401 0.011061466 

 

  



www.aging-us.com 1427 AGING 

Supplementary Table 3A. Disease-free survival related genes in TCGA. 

id HR HR.95L HR.95H pvalue 

CHAC2 1.138053912 1.018636202 1.27147131 0.022229274 

DPEP1 1.072903191 1.018251369 1.130488298 0.008339277 

GCLM 1.074256007 1.020313647 1.131050215 0.006429505 

GGT6 2.576896399 1.248951694 5.316774929 0.010420976 

GGTLC2 3.52E-08 7.28E-16 1.701346374 0.057289229 

GLO1 1.002707912 1.001189807 1.004228319 0.00046849 

GPX2 1.042398062 1.01771136 1.06768359 0.000684666 

GPX7 1.008581171 1.002829263 1.01436607 0.003409695 

GSS 1.026499459 1.008810868 1.044498204 0.003186986 

GSTA1 1.009963512 1.00025664 1.019764583 0.044215604 

GSTK1 0.981308861 0.963305916 0.999648258 0.045803157 

GSTM3 0.967616257 0.938544384 0.997588645 0.034423142 

GSTM5 0.946494025 0.895208412 1.00071774 0.053024547 

IPCEF1 0.815225628 0.661366383 1.004878447 0.055574138 

IYD 212.9982566 4.328479785 10481.33746 0.006995491 

NFE2L2 0.979518998 0.958478803 1.00102106 0.061783231 

PXDN 1.008177734 1.001928685 1.014465758 0.010247922 

UBIAD1 1.100932343 0.997005815 1.21569203 0.057342526 
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Supplementary Table 3B. Disease-free survival related genes in GSE30929. 

id HR HR.95L HR.95H pvalue 

ALDH5A1 0.422656461 0.254279875 0.702527023 0.000894227 

APOA4 0.166787005 0.029183725 0.953199249 0.044024404 

CAT 0.361442798 0.221818748 0.588953354 4.40E-05 

DUOX1 0.243716631 0.070936925 0.837332553 0.024968334 

FABP1 0.00711812 0.000367002 0.138058273 0.001079862 

GCLC 0.595187031 0.364860393 0.970912735 0.037691793 

GGCT 3.186203687 1.773105142 5.725488971 0.000106523 

GGTLC2 0.170838953 0.037589682 0.776435084 0.022164081 

GLO1 3.607525959 1.470502598 8.850200988 0.00507672 

GPX1 0.597193306 0.376224957 0.94794308 0.02876173 

GPX3 0.794340534 0.663901276 0.950407697 0.011878723 

GPX4 0.583327575 0.399984116 0.850711432 0.00511338 

GPX5 0.036287858 0.002362546 0.55736834 0.017343185 

GPX7 1.916849565 1.359856538 2.701985213 0.00020334 

GSTK1 0.294243084 0.173421357 0.499240657 5.75E-06 

GSTM1 0.453597006 0.267535106 0.769058863 0.003337836 

GSTM2 0.50868778 0.326994953 0.791337159 0.002717673 

GSTM5 0.494121613 0.29746479 0.820790145 0.006475419 

GSTT1 0.647055994 0.483738929 0.865511196 0.003355428 

GSTT2 2.235335435 1.195607831 4.179233672 0.011750317 

GSTZ1 0.44505875 0.227745663 0.869730243 0.017871424 

HAGH 0.2985334 0.120372143 0.74038884 0.009092119 

HBB 0.695501245 0.57076775 0.847493542 0.000317194 

HBD 0.101332154 0.030971362 0.331538719 0.000153432 

HBE1 0.060803564 0.00493651 0.748924583 0.028842283 

IDH1 0.58100736 0.410866954 0.821603074 0.002130104 

IPCEF1 0.262314203 0.073360619 0.937952028 0.0395423 

MGST2 0.310465095 0.141445585 0.681453404 0.003543972 

MGST3 0.657811909 0.475411373 0.910193849 0.01147497 

NQO1 0.559752863 0.379814771 0.824937027 0.00336159 

NXN 2.196883781 1.533874622 3.146475128 1.76E-05 

PRDX1 2.10332709 1.044610909 4.235055185 0.037325306 

PRDX3 0.13658556 0.038566147 0.483730333 0.002031811 

PRDX4 1.50849613 1.005299292 2.26356528 0.047090029 

PTGS1 1.759009538 1.177358155 2.628014714 0.005832676 

SLC7A11 4.915350344 2.147831408 11.24886661 0.000163426 

SOD3 0.459144337 0.305881816 0.689199266 0.000172551 

UBIAD1 3.586817718 1.247755998 10.3107189 0.017748622 

 


