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ABSTRACT

Bacterial infection is one of the most important factors affecting the human life span. Elderly people are more
harmed by bacterial infections due to their deficits in immunity. Because of the lack of new antibiotics in recent
years, bacterial resistance has increasingly become a serious problem globally. In this study, an antibacterial
compound predictor was constructed using the support vector machines and random forest methods and the
data of the active and inactive antibacterial compounds from the ChEMBL database. The results showed that
both models have excellent prediction performance (mean accuracy >0.9 and mean AUC >0.9 for the two
models). We used the predictor to screen potential antibacterial compounds from FDA-approved drugs in the
DrugBank database. The screening results showed that 1087 small-molecule drugs have potential antibacterial
activity and 154 of them are FDA-approved antibacterial drugs, which accounts for 76.2% of the approved
antibacterial drugs collected in this study. Through molecular fingerprint similarity analysis and common
substructure analysis, we screened 8 predicted antibacterial small-molecule compounds with novel structures
compared with known antibacterial drugs, and 5 of them are widely used in the treatment of various tumors.
This study provides a new insight for predicting antibacterial compounds by using approved drugs, the
predicted compounds might be used to treat bacterial infections and extend lifespan.

INTRODUCTION neurodegenerative disorders [2], such as Alzheimer’s

disease [3]. Antibiotics are a fast and effective way to
Due to deficits in innate immunity and adaptive deal with bacterial infections. However, with the
immunity in older adults, they are more susceptible to widespread use of antibiotics, bacteria are also
viral and bacterial infection and experience higher constantly evolving and a large number of pathogens
incidence and severity of infectious diseases [1]. have emerged that can resist these drugs [4]. As the
Bacterial infections may also cause common research and development of novel antibiotics by
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pharmaceutical companies has drastically decreased in
recent years, bacterial resistance has increasingly
become a serious problem [5]. Therefore, the
development of novel and highly efficient antibiotics is
an urgent issue. High-throughput screening has been the
dominant approach of antimicrobial drug development
in the industry in the past few decades [6, 7]. However,
due to the long development time, huge cost, and low
efficiency of this method [8], computer-aided drug
design techniques have become a promising method in
the discovery of novel antibacterial drugs [9].

Previous studies have developed multiple computational
methods for efficiently assessing and screening
compounds for their antimicrobial activity, such as
multitarget and multi-objective approaches [10, 11].
Quantitative structure-activity relationships (QSAR)
modeling is one of the most frequently employed in
silico techniques for antibacterial activity prediction,
improved models such as mt-QSAR and QSAR-Co can
integrate multi-dimensionally heterogeneous chemical
and biological data which greatly improved the
reliability of such modeling [12]. The current view
holds that drugs are inherently poly-pharmacological
because they can act on multiple targets or disease
pathways, and thus the drug discovery process should
attempt to optimize more properties simultaneously
[13]. Based on this theory, the multi-task model

constructed by comprehensively considering the
antibacterial activity of the compound and ADMET
(absorption, distribution, metabolism, excretion,

toxicity) characteristics can accurately screen anti-
mycobacterial drugs [14]. Molecular fingerprints are a
way of encoding molecular structure that digitizes the
structural information of a compound, which are widely
used in drug discovery and virtual screening [15].
Compared to other virtual screening methods, molecular
fingerprints require minimal setup and configuration,
are easy to calculate, and are less CPU-intensive and
memory-intensive, which become the preferred tool for
characterizing small molecules [16].

In recent years, machine learning methods have shown
tremendous potential in the process of drug discovery
and development [17]. Multiple machine learning-based
methods effectively improved the accuracy of drug-
target interaction prediction [18]. Especially in the early
phases of drug discovery, the use of machine learning
methods significantly reduces time and effort in drug
discovery and development [19]. In other areas of drug
discovery, deep learning is a promising method for the
prediction of molecular properties and the de novo
generation of suggestions for new molecules [20].
Compared with traditional methods, machine learning
approaches have the advantages of high precision, low
cost, and strong operability. These technologies may

have fundamentally changed the process of identifying
new molecules and/or repurposing old drugs [21].
Multiple machine learning methods are widely used in
ligand-based and receptor-based antibacterial drug
discovery [9, 22-27]. By using chemoinformatics
methods to extract the molecular characteristics of short
peptides, studies have shown that the support vector
machine (SVM) model can accurately predict the
antibacterial activity of short peptides [22, 23] and the
genetic characteristics of antibiotic resistance in specific
pathogens [28]. The combination using random forest
(RF) and genome-based analysis approaches promoted
phenotypic antibacterial drug discovery [24] and
revealed potential antibiotic resistance genes [25]. In
recent years, emerging deep neural network methods
have facilitated the discovery of antibacterial molecules
with unique structures from massive data [26].
Furthermore, due to the limitations of a single method,
the combination using multiple machine learning
methods showed excellent performance in antibacterial
compounds discovery [26, 27] and predicting the
bacterial genetic mutations on drug resistance [29].

Although the popularization of machine learning
methods has greatly shortened the discovery of
antibacterial lead compounds, there are still required
long-term studies from the identified lead compounds to
clinical applications, especially experiment on drug
safety [30]. Therefore, a new use for old drugs may be a
way to resolve current antibiotic resistance [31]. The
current Food and Drug Administration (FDA) approved
antibiotics can be divided into multiple categories
according to the core scaffolds, and a variety of semi-
synthetic antibiotics are based on these scaffolds [32].
Due to the increased bacterial resistance to specific
scaffold structures, it is a promising way to develop
antibiotics with novel structures. In this study, we
combined using multiple machine learning methods and
molecular fingerprints of compounds to build the
antibacterial compound predictor and then identified
structure novel small-molecule antibacterial compounds
from the FDA-approved drugs.

RESULTS
Initial screening of machine learning methods

To choose the appropriate machine learning methods to
construct the anti-bacterial compound prediction model,
we evaluate the predictive performance of different
machine learning methods including k-nearest neighbor
(KNN), logistic regression (LR), linear support vector
classifier (LSVC), random forest (RF), gradient
boosting regression tree (GBRT), support vector
machine (SVM), and multi-layer perception (MLP). In
the initial screening process, each machine learning
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method used benchmark datasets constructed from
different molecular fingerprints for training and
prediction with default parameters. The benchmark
dataset was split into the training set (accounting for
80%) and the validation set (accounting for 20%), and
then performed a S5-fold cross-validation test. The
results suggested that the benchmark dataset based on
FP2 molecular fingerprints, along with the SVM, RF,
and MLP methods showed excellent prediction
accuracy among all machine learning methods and
molecular fingerprints combinations, whereas the
accuracy fluctuates greatly among different machine
learning methods in the benchmark dataset based on
vector features (Figure 1). Therefore, the benchmark
dataset based on FP2 molecular fingerprints, and the
RF, SVM, and MLP methods were sclected in the
subsequent analysis.

The development process of antibacterial compound
predictor

The development process of the antibacterial compound
predictor is shown in Figure 2. The first step of the
antibacterial compound predictor is to prepare the
benchmark dataset using screened active and inactive
antibacterial compounds from the ChEMBL and the
PubChem database. Then, the SVM, RF, and MLP

methods were used to build models using the
benchmark dataset. Using the parameter grid search and
5-fold cross-validation strategy, the optimal parameters
of these three models were determined (Table 1,
Supplementary Figures 1-3). After training, parameter
optimization, and model evaluation, the optimal SVM,
RF, and MLP models were established. The final
antibacterial compound predictor includes the
combination of the optimal three models. The integrated
model was used to predict the antibacterial activity of
FDA-approved small-molecule drugs from the
DrugBank database.

High performance of the SVM, RF, and MLP
models

The overall performance of the SVM, RF, and MLP
models was quantified by multiple -classification
evaluation indicators including accuracy, precision,
sensitivity, specificity, F1 score, AUC, and MSE (Table
1). The mean values of accuracy, precision, sensitivity,
specificity, and F1 score of the three models at around
0.85. The mean values of the AUC of these models
were higher than 0.92 (ROC curves of these models
shown in Supplementary Figure 4). The mean squared
error of the three models is around 0.15. These indicate
that all three models showed high effectiveness in
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Figure 1. The prediction accuracy of different machine learning methods for benchmark datasets. The filtered datasets include
one positive dataset and 10 negative datasets, therefore, each value in the figure is the average of 10 prediction accuracy. Compared with
other machine learning methods, random forest (RF), support vector machine (SVM), and multi-layer perception (MLP) all show higher
prediction accuracy. The benchmark dataset based on FP2 molecular fingerprints shows the highest prediction accuracy in the RF and MLP
methods, and also shows high prediction accuracy in the SVM method among all molecular fingerprints. The accuracy fluctuates greatly
among different machine learning methods in the benchmark dataset based on vector features.
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Table 1. Optimal parameters and prediction performance of different machine learning methods.

Support vector machine

Random forest Multi-layer perception

n_estimators: 750 hidden layer sizes: 512

Optimal gamma: 0.01
parameters C:10

Accuracy 0.852 +0.002
Precision 0.854 +0.004
Sensitivity 0.850 + 0.004
Specificity 0.854 +0.005
F1 score 0.852 +0.002
AUC 0.926 +0.002
MSE 0.148 = 0.002

alpha: 0.0001

0.849 + 0.004 0.847 £ 0.004
0.868 + 0.004 0.850 + 0.007
0.822 +0.007 0.845 £ 0.003
0.875 +0.004 0.850 + 0.009
0.844 + 0.005 0.847 £ 0.003
0.932 +£0.002 0.920 £ 0.002
0.151 £0.004 0.153 £ 0.004

Abbreviations: AUC: area under the curve; MSE: mean squared error. Parameters of predictive performance were displayed

as mean * standard deviation.

antibacterial compounds prediction. Furthermore, the
data showed that the standard deviations of these
indicators are very small, suggesting that different
negative datasets do not affect the overall performance
of these models.

Prediction of candidate antibacterial small-molecule
drugs

All approved small-molecule drugs in the DrugBank
database were used to screen for potential antibacterial
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Figure 2. Flow chart of the construction of the antibacterial compound prediction model. The benchmark dataset was built
using the active and inactive antibacterial compounds downloaded from the ChEMBL and the PubChem database. The combination of SVM,
RF, and MLP methods was used to construct the antibacterial compounds predictor, which is used to predict the antibacterial activity of

approved small-molecule drugs from the DrugBank database.
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compounds through the antibacterial compound
predictor. The results showed that there are large
differences in the number of drugs in isolated prediction
intervals among the SVM, RF, and MLP models. There
are more compounds in the probability intervals at both
ends and fewer compounds in the middle intervals in

the MLP model, whereas the distribution of predicted
probabilities showed the opposite trend in the RF and
SVM models (Figure 3A). There were 1482, 1539, and
1398 predicted active antibacterial drugs in the single
SVM, RF, and MLP models. A total of 1090 drugs
showed antibacterial activity shared by all three models
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Figure 3. Antibacterial prediction results of approved small-molecule drugs. (A) The probability of predicted antibacterial activity
for all small-molecule drugs in the SVM, RF, and MLP models. A drug with a probability value greater than 0.5 is considered an active
antibacterial compound. (B) Venn diagram of the predicted antibacterial drugs in three machine learning models. (C) Venn diagram of the
predicted antibacterial drugs and FDA-approved antibacterial drugs. (D) The top 20 categories of the 957 predicted novel antibacterial drugs.
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(Figure 3B). The single model and the combination of
the two models predicted relatively more active
antibacterial compounds, and there is more overlap with
FDA-approved drugs (Supplementary Figure 5). Among
the prediction results by the combination of the three
models, 133 antibacterial drugs were FDA approved
(Figure 3C). Our results suggested that both the single
models and the combination of multiple models all
showed excellent prediction performance
(Supplementary Table 1). Furthermore, for the
remaining 957 drugs, many of them belong to benzene
and substituted derivatives (184 drugs) and steroids and
steroid derivatives (116 drugs), few drugs belong to
other categories (Figure 3D).

Structural similarity of the predicted antibacterial
drugs

Molecular fingerprint similarity was calculated between
the predicted and FDA-approved antibacterial drugs.
The predicted antibacterial drugs that are not approved
for marketing were defined as novel predicted
antibacterial drugs. There were low overall similarities
between approved antibacterial drugs and novel
predicted antibacterial drugs (Supplementary Figure 6).
873 novel-predicted antibacterial drugs showed average
similarities <0.2 to all approved antibacterial drugs
(Figure 4A). According to previous reports [32], we
identified 8 representative core scaffolds from the
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Figure 4. The similarity of the predicted antibacterial drugs and FDA-approved antibacterial drugs. (A) The molecular
fingerprint similarity of 957 predicted novel antibacterial drugs and 206 FDA-approved antibacterial drugs. The average similarities between
most of the predicted drugs and approved drugs were less than 0.2. (B) Substructure similarity between novel predicted antibacterial drugs
and core scaffolds of approved antibacterial drugs. Compounds with an overlap coefficient higher than 0.9 are considered to have high

substructure similarity.
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Table 2. The prediction results of 9 antibacterial drugs with low structural similarities.

DrugBank ID Name SVl\P;[redlcted ;;Obablh;}:[ — S(t;llgtlll“(.;ﬂi;i:nnggi)tly
DB00228 Enflurane 0.741 0.544 0.916 0.055 (0.000-0.119)
DB00531 Cyclophosphamide 0.571 0.518 0.902 0.086 (0.010-0.150)
DB00753 Isoflurane 0.698 0.536 0.980 0.055 (0.000-0.120)
DB00964 Apraclonidine 0.514 0.514 0.501 0.093 (0.013-0.198)
DB01028 Methoxyflurane 0.770 0.504 0.913 0.048 (0.000-0.143)
DB01057 Echothiophate 0.703 0.518 0.864 0.072 (0.017-0.143)
DBO01181 Ifosfamide 0.589 0.515 0.888 0.095 (0.010-0.172)
DBO01189 Desflurane 0.732 0.546 0.975 0.055 (0.000-0.150)
DB01236 Sevoflurane 0.538 0.517 0.934 0.060 (0.000-0.162)

Abbreviations: SVM: support vector machine; RF: random forest; MLP: multi-layer perception. The structural similarities
were calculated between the novel predicted antibacterial drugs and FDA-approved antibacterial drugs.

FDA-approved antibacterial drugs (Supplementary
Table 2). 906 predicted compounds do not contain any
core scaffold (Figure 4B). Only 51 (5.3%) of the
predicted compounds showed a high overlap coefficient
with core scaffolds (Supplementary Table 3). These
indicate that most of the predicted antibacterial drugs
are structurally novel.

Novel predicted antibacterial drugs

There were 9 novel-predicted drugs with an average
similarity less than 0.1 and a maximum similarity less
than 0.2 to all approved antibacterial drugs, and these
drugs all showed high predicted probability in SVM,
RF, and MLP models (Table 2). Details of these 9 drugs
are listed in Supplementary Table 4. Among these
drugs, cyclophosphamide (DB00531) and ifosfamide
(DBO01181) are anticancer drugs that were used to treat
a variety of hematological tumors and solid tumors.
Apraclonidine (DB00964) is used to relieve postsurgical
ocular hypertension. Echothiophate is used for the
treatment of subacute or chronic angle-closure
glaucoma. The other 5 drugs are mainly used in general
anesthesia, such as enflurane (DB00228), isoflurane
(DB00753), methoxyflurane (DB01028), desflurane
(DB01189), and sevoflurane (DB01236). To explore the
correlation between these drugs and aging, 307 human
aging-related genes were downloaded from the Human
Ageing Genomic Resources (HAGR,
https://genomics.senescence.info/). We used SEA [33],
HitPickV2 [34], and TargetNet [35] for target prediction
of these 9 drugs, the union set of the three predictions
were chosen as target genes for the query drug. The
results showed that these drugs may target recognized
aging genes (such as APP, AR, RELA, and SIRTI,
Supplementary Figure 7).

DISCUSSION

Exploring the antibacterial activity of the approved
drugs may be an effective way of screening new
antibiotics. It is an effective approach by using machine
learning methods to predict active antibacterial
compounds [26, 28, 36]. The accuracy of the prediction
model is affected by many factors, such as the quality of
the benchmark datasets [37], the representative
molecular characteristics of the compounds [16], the
applicable machine learning models [9], and the
optimized model parameters [38]. This study collected a
large amount of experimental data on the antibacterial
activity of compounds from the ChEMBL and
PubChem databases. By comparing the prediction
accuracy of multiple machine learning models on
benchmark datasets constructed based on different
molecular fingerprints, our results showed that the
average prediction accuracy of SVM, RF, and MLP
models are higher than other machine learning methods,
and the FP2 molecular fingerprint 1is more
representative than other fingerprints. Therefore, it is
reasonable to construct the antibacterial compound
predictor by building the benchmark datasets by
calculating the FP2 molecular fingerprint of the
compounds and combining the RF, SVM, and MLP
models. However, the model constructed in this study
did not achieve the desired prediction performance
(only 133 of the 206 FDA-approved antibacterial drugs
have been successfully predicted). This is probably
because the benchmark datasets collected data from
multiple sources and require a more effective data
integration strategy. Furthermore, it is worth noting that
parameter optimization can only slightly improve
(approximately 1%) the prediction accuracy of the
different machine learning models.
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Through structural similarity analysis of the predicted
active antibacterial drugs, we screened 9 drugs with
novel structures. Apraclonidine is mainly used for the
prevention and treatment of post-surgical intraocular
pressure (IOP) elevation, and it is also indicated for the
short-term adjunctive treatment of glaucoma [39].
Echothiophate is used in the treatment of subacute or
chronic angle-closure glaucoma and some cases it is
also used as accommodative esotropia [40].
Cyclophosphamide and ifosfamide are widely used
broad-spectrum anticancer drugs [41, 42]. Studies
showed that cyclophosphamide can inhibit bacterial
translocation of the gastrointestinal tract [43] and
reduce the abundance of lactobacilli and enterococci
[44] in mice. Desflurane, enflurane, isoflurane,
methoxyflurane, and sevoflurane are widely used
volatile anesthetics [45, 46], most of these anesthetics
have demonstrated antibacterial properties in vitro [47—
50]. An early in vitro experiment showed that
methoxyflurane and isoflurane exhibited excellent
antibacterial activity, while enflurane had less effect on
a few pathogens [48]. The resistance experiment to a
variety of bacteria showed that isoflurane has higher
antibacterial activity than sevoflurane [49]. Based on
these reports, the antibacterial compound screening
method used in this study is credible.

There are still many difficulties in the discovery of
antibacterial compounds in silico. Firstly, the prediction
accuracy is affected by the size and quality of the
benchmark dataset. The definition of the active or
inactive antibacterial compounds in this study is based
on the in vitro experimental data. However, most of the
screened active antibacterial compounds have not yet
entered clinical trials, the human safety and clinical
effectiveness of these compounds are still unclear [51].
Then, the compounds in this study were characterized
by molecular fingerprints, whereas this method cannot
reflect the complete structural features of given
compounds and is not suitable for macromolecular
compounds [16]. Next, machine learning models need
further optimization. The prediction accuracy of the
SVM, RF, and MLP models in this study is around 0.85,
optimizing these models may be able to obtain higher
prediction  accuracy. Lastly, considering that
compounds may produce different types of molecules
during the metabolic process, computational simulation
of the drug metabolic process [52] in humans will make
the predictions more convincing.

The development of new and highly effective
antibiotics can alleviate the crisis of bacterial infections,
extend human lifespan, and reduce the incidence of
infectious diseases in the elderly. This study provides a
new insight for predicting antibacterial compounds with
novel structures by using approved drugs. The existing

approach could be extended by different augmentation
methods (such as compound augmentation by graph or
molecular description) with different machine learning
state-of-the-art methods such as deep-learning methods.
There are still many challenges and opportunities in
using machine learning to predict antibacterial
compounds. With the development of big data
technology, the continuous optimization of machine
learning models and algorithms, and the discovery of
more antibacterial active compounds and drugs, it is
foreseeable that the prediction of antibacterial
compounds in the future will achieve higher accuracy
and credibility.

MATERIALS AND METHODS
Antibacterial compounds collection

Compounds that performed antimicrobial activity tests
were collected from ChEMBLdAb (version 25,
https://www.ebi.ac.uk/chembl/) and PubChem
(https://pubchem.ncbi.nlm.nih.gov/) databases. A total
of 83768 compounds were obtained, 8001 of these
compounds have a clear IC50 value, and others only
have an inactive label. The IC50 cutoff value of
antibacterial activity was defined by curve fitting the
IC50 values of all compounds. Compounds with IC50
less than 10 pmol/L were generally considered as
active antibacterial compounds [53-57], the curve
fitting results also suggest that this cutoff is
reasonable (Supplementary Figure 8). Based on the
curve fitting results, compounds with IC50 higher
than 10 umol/L were considered inactive antibacterial
compounds. Pybel, a python wrapper of OpenBabel
[58, 59] was used to access the SMILES string of
compounds and calculate molecular fingerprint which
represents the presence or absence of particular
substructures in the molecule. Multiple types of
molecular fingerprints of all compounds were
calculated. Benchmark datasets were built based on
the following steps: (1) remove duplicate compounds;
(2) remove compounds with a molecular weight
greater than 1000; (3) remove compounds with
molecular fingerprint similarities higher than 0.9
between the active and inactive antibacterial
compounds. Finally, we got a positive dataset
including 2708 active antibacterial compounds and a
negative dataset including 78620 inactive antibacterial
compounds. All active antibacterial compounds have
IC50 values whereas only 1893 inactive antibacterial
compounds have IC50 values.

Construction of the benchmark dataset

There is a large difference in the number of compounds
between the positive and negative datasets. The positive
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dataset contains 2708 active antibacterial compounds.
To balance the number of compounds between the
positive and negative datasets, the filtered negative
dataset contains 1893 inactive antibacterial compounds
with IC50 values, the remaining quantity difference was
randomly selected from the inactive antibacterial
compounds only with an inactive label. Considering the
uncertainty of random selection, we repeated 10 times
for negative dataset extract. Therefore, the filtered
datasets including one positive dataset and 10 negative
datasets, each negative dataset are combined with the
positive data set for subsequent analysis. Next, the
molecular fingerprint is calculated for the positive
dataset and all repeated negative datasets. The following
types of molecular fingerprints were calculated
including FP2, FP3, FP4, DLFP, MACCS, ECFP2,
ECFP4, ECFP6, FCFP2, FCFP4, and FCFP6. Several
start-of-the-art chemoinformatics approaches were also
calculated such as mol2vec [60], SMILES2Vec [61],
and FP2VEC [62]. The features of each compound were
presented by the binary bits of the different types of
molecular fingerprints or vectors and these features
were used for machine learning modeling
(Supplementary Table 5). All these benchmark datasets
were used for the preliminary screening of applicable
machine learning models.

Parameter selection of the SVM, RF, and MLP
models

The SVM, RF, and MLP models for antibacterial
compounds prediction were built using the svm,
ensemble, and neural network module in the scikit-
learn Python library (version: 0.20.0, https:/scikit-
learn.org/stable/). A parameter grid search strategy was
used to choose the optimal parameter "gamma" for the
kernel function and regularization parameter "C" for the
SVM model, the optimal number of trees (parameter
"n_estimators") for the RF model, and the optimal
hidden layer sizes and alpha for the MLP model. The
other parameters of the above three models use default
values. The benchmark dataset was randomly split into
the training and validation set (accounting for 80%) and
the test set (accounting for 20%) wusing the
train_test split function in the scikit-learn. The 5-fold
cross-validation method was used to evaluate the
generalization performance of the model with specified
parameters in the training and validation set. The cross-
validation accuracy was calculated for model
evaluation. After cross-validation, a temporary model
was built using the training and validation set and
calculated the area under the curve (AUC) for the
receiver operating characteristic (ROC) curve in the test
set. Considering that there may be similar compounds in
the split datasets, dataset split and cross-validation were
repeated 10 times, which may reduce the impact of

similar compounds on the prediction performance of
these models. For each given parameter, the mean
cross-validation accuracy and mean AUC was
calculated. The optimal model was selected by
comparing the maximum mean cross-validation
accuracy under different parameters. If there were
multiple models with the same mean accuracy, the
model with the maximum AUC was considered to be
the optimal model.

Performance evaluation

The optimal SVM, RF, and MLP models were used for
performance evaluation. The confusion matrix was
calculated using the results of the optimal cross-
validation test. The true positive (TP) indicates the
number of correctly predicted active antibacterial
compounds, the true negative (TN) indicates the number
of correctly predicted inactive antibacterial compounds,
the false positive (FP) indicates the number of inactive
antibacterial compounds  predicted as active
antibacterial compounds, and the false negative (FN)
indicates the number of active antibacterial compounds
predicted as inactive antibacterial compounds. We
calculated the following quality indices: accuracy = (TP
+ TN)/(TP + TN + FP + FN), precision = TP/(TP + FP),
sensitivity = TP/(TP + FN), specificity = TN/(TN + FP),
and F1 score = 2 x TP/(2 x TP + FP + FN). Mean
squared error (MSE) was calculated for all three
models. Because the filtered datasets include one
positive dataset and 10 negative datasets, the average of
10 calculations of these quality indices and AUC were
used to evaluate the SVM, RF, and MLP model
performance. A model with high scores (>0.8) of
accuracy, precision, F1 score, and AUC was considered
to be an effective model.

Antibacterial small-molecule drugs prediction

The final SVM, RF, and MLP models were built using
the benchmark dataset with the optimal parameters. All
these three models were used to predict antibacterial
activity for approved small-molecule drugs. We
compared the prediction performance of a single model
and a combination of different models. The candidate
antibacterial drugs were defined as the drugs that
showed antibacterial activity in all the SVM, RF, and
MLP models. Drug information was acquired from the
DrugBank database (https:/www.drugbank.ca/) [63].
We first filtered the drugs with approved status but not
withdrawn yet, then removed the drugs with molecular
weight >1000. Finally, 2315 approved small-molecule
drugs were screened to perform antibacterial activity
prediction. The predicted active antibacterial drugs
excluding FDA-approved antibacterial drugs were
defined as novel antibacterial drugs.
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Structural similarity analysis

FP2 molecular fingerprint similarity was calculated
among all novel antibacterial drugs and FDA-approved
antibacterial drugs. The overlap between fingerprints is
quantified as a measure of molecular similarity using
the Tanimoto coefficient (Tc). The predicted drugs with
average and maximum molecular fingerprint similarity
less than 0.1 and 0.2 were considered to be structurally
novel. Furthermore, previous literature reported several
core scaffolds shared by most antibacterial compounds
[32]. The flexible maximum common substructure
algorithms in the fmcsR package [64] in R were used to
identify whether the core scaffolds exist in the predicted
antibacterial drugs.
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SUPPLEMENTARY MATERIALS
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Supplementary Figure 1. Parameter optimization of the support vector machine (SVM) model. The optimal parameter
“gamma” and “C” was determined according to the maximum 5-fold cross-validation accuracy (A) and the maximum area under the curve
(AUC) (B). The red box indicates the maximum 5-fold cross-validation accuracy or AUC.
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Supplementary Figure 2. Parameter optimization of the random forest (RF) model. The optimal parameter “n_estimators” was
determined according to the maximum 5-fold cross-validation accuracy (A) and the maximum area under the curve (AUC) (B). The red box
indicates the maximum 5-fold cross-validation accuracy or AUC.
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Supplementary Figure 3. Parameter optimization of the multi-layer perception (MLP) model. The optimal parameters
“hidden_layer_sizes” and “alpha” were determined according to the maximum 5-fold cross-validation accuracy (A) and the maximum area
under the curve (AUC) (B). The red box indicates the maximum 5-fold cross-validation accuracy or AUC.
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Supplementary Figure 4. The receiver operating characteristic (ROC) curve and area under the curve (AUC) for the optimal
SVM, RF, and MLP models. ROC and AUC were calculated for each cross-validation, all 10 times were shown in the figure. The figure
showed the use of one of the benchmark datasets (see Methods 2.2 and 2.5) for model construction and its prediction performance.
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Supplementary Figure 5. Venn diagram of predicted and FDA-approved antibacterial drugs in a single model (A) and the combination of
two models (B).
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Supplementary Figure 6. FP2 molecular fingerprint similarity between FDA-approved antibacterial drugs and predicted
antibacterial compounds. The color bar indicates the similarity from low (0) to high (1).
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DB00228 targets  Aging genes DB00531 targets  Aging genes DB00753 targets  Aging genes

DB00964 targets  Aging genes DB01028 targets  Aging genes DB01057 targets  Aging genes

DB01181 targets  Aging genes DB01189 targets  Aging genes DB01236 targets  Aging genes

Supplementary Figure 7. Venn diagram of predicted drug targets and human aging-related genes. The union set of SEA,
HitPick, and TargetNet predictions were chosen as target genes for the query drug. Human aging-related genes were downloaded from the
Human Ageing Genomic Resources (HAGR).
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Supplementary Figure 8. Curve fitting of IC50 values of antibacterial compounds. The blue point indicates the IC50 values of all
compounds. A sigmoid function was used to perform curve fitting and calculate the fitting parameters (yellow curve). The position of the
maximum intercept of the function is defined as the fitting threshold (green dotted line), which is very close to the IC50 cutoff (10 umol/L).
Therefore, compounds with IC50 less than 10 umol/L were defined as active antibacterial compounds, and those with IC50 higher than 10
umol/L were considered inactive antibacterial compounds.
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Supplementary Tables

Supplementary Table 1. The prediction summary of different machine learning models.

Model Number of predicted drugs Number of overlapped drugs P-value
SVM 1482 166 1.88E-8
RF 1539 170 2.45E-8
MLP 1398 153 4.21E-6
SVM, RF 1272 145 7.09E-7
SVM, MLP 1228 144 8.35E-8
RF, MLP 1162 137 2.56E-7
SVM, RF, MLP 1090 133 4.24E-8

Abbreviations: SVM: support vector machine; RF: random forest; MLP: multi-layer perception. P-values were calculated by
the hypergeometric distribution model.

Supplementary Table 2. Core scaffolds and representative drugs of antibacterial compounds.

Categories Core Structure Represented Name Structure
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Supplementary Table 3. Novel predicted antibacterial drugs with high similarity to core scaffolds.

Categories Predicted Drug Query Size Tg;-;g:t MCS Size g:&igc'?:::t C?Zé;(l:;‘gl ¢
Quinolones DB08820 11 29 11 0.38 1.00
Sulfonamides DB00222 14 34 14 0.41 1.00
Sulfonamides DBO01016 14 33 14 0.42 1.00
Sulfonamides DB01067 14 31 14 0.45 1.00
Sulfonamides DBO01251 14 37 14 0.38 1.00
Oxazolidinones DB00315 21 0.29 1.00
Oxazolidinones DB00660 16 0.38 1.00
Oxazolidinones DB06228 29 0.21 1.00
Sulfonamides DBO00559 14 39 13 0.33 0.93
Sulfonamides DB08439 14 26 13 0.48 0.93
Quinolones DB00385 11 51 10 0.19 091
Quinolones DB00445 11 39 10 0.25 0.91
Quinolones DB00524 11 24 10 0.40 0.91
Quinolones DB00670 11 26 10 0.37 091
Quinolones DB00694 11 38 10 0.26 0.91
Quinolones DB00695 11 21 10 0.45 0.91
Quinolones DB00796 11 45 10 0.22 091
Quinolones DB00904 11 22 10 0.43 0.91
Quinolones DB00963 11 20 10 0.48 0.91
Quinolones DB00997 11 39 10 0.25 091
Quinolones DB01009 11 19 10 0.50 0.91
Quinolones DB01022 11 33 10 0.29 0.91
Quinolones DBO0O1117 11 26 10 0.37 0.91
Quinolones DBO01148 11 29 10 0.33 0.91
Quinolones DBO01177 11 36 10 0.27 0.91
Quinolones DB01204 11 32 10 0.30 091
Quinolones DB01205 11 22 10 0.43 0.91
Quinolones DBO01325 11 18 10 0.53 0.91
Quinolones DB01419 11 42 10 0.23 091
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Quinolones
Quinolones
Quinolones
Quinolones
Quinolones
Quinolones
Quinolones
Quinolones

Lincosamides

DB01698
DB02266
DB04880
DB05239
DB06193
DB06207
DB08822
DB08881
DB08911
DB08995
DB09079
DB09183
DB09214
DBI11363
DBI11577
DB11689
DBI11699
DB11967
DB11986
DB13225
DB15477
DB09419

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
24

43
20
17
30
24
35
42
33
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43
40
35
19
36
28
27
21
27
41
22
30
10

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
9

0.23
0.48
0.56
0.32
0.40
0.28
0.23
0.29
0.26
0.23
0.24
0.28
0.50
0.27
0.34
0.36
0.45
0.36
0.24
0.43
0.32
0.36

0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.90

Abbreviation: MCS: maximum common substructure. Tanimoto Coefficient = MCS Size/(Query Size + Target Size — MCS Size)
Overlap Coefficient = MCS Size/min(Query Size, Target Size). The MCS algorithm was used to calculate structural similarities
among small molecules. A total of 957 predicted novel antibacterial drugs were calculated among 8 core structures. The table
showed 51 predicted drugs with an overlap coefficient >0.9 among 8 core structures, the results are sorted by overlap
coefficient from high to low.

Supplementary Table 4. Details of the 9 predicted novel antibacterial drugs.

Ovarian adenocarcinoma

Retinoblastoma

Drug ID Name Structure Class Indication
. Analgesia
DB00228 Enflurane cl /\\K o /\ Organofluorides General anesthesia
c Lymphoma
Multiple myeloma
//’ Leukemia
. o Organonitrogen Mycosis fungoides
DB00531 Cyclophosphamide (\ | compounds Neuroblastorna
NH g \ \ \/\
(o}

Cl

Breast cancer
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DB00753

DB00964

DB01028

DB01057

DBO01181

DBO01189

DB01236

Isoflurane

Apraclonidine

Methoxyflurane

Echothiophate

Ifosfamide

Desflurane

Sevoflurane

Organofluorides

Benzene and
substituted derivatives

HzN h Cl

Organooxygen
cl compounds
\ 2
N T - Organonitrogen
\ o ‘L compounds
/\/ “
\
—NH
I TN Oxazaphosphinanes
o N cl
o
o
T \/\/ Organofluorides
N
Organooxygen
compounds

General anesthesia

Ocular hypertension
Postsurgical ocular
hypertension

General anesthesia

Accommodative component
in esotropia
Chronic angle-closure
glaucoma
Open-angle glaucoma
Nonuveitic secondary
glaucoma

Germ cell testicular cancer
Cervical cancer
Soft tissue sarcomas
Osteosarcoma
Bladder cancer
Ovarian cancer
Small cell lung cancer
Non-Hodgkin's lymphoma

General anesthesia
Maintenance of anesthesia
therapy

General anesthesia

Supplementary Table 5. Binary bits of different types of molecular fingerprints or vector features were used for

machine learning modeling.

Compound Features

Description

Number of features

Molecular fingerprints
FP2
FP3
FP4
DLFP
MACCS
ECFP2
ECFP4

FP2 Fingerprints
FP3 Fingerprints
FP4 Fingerprints
Daylight-like Fingerprints
MACCS keys
Extended-Connectivity Fingerprints, Iteration 1

Extended-Connectivity Fingerprints, Iteration 2

1024
210
307
2048
166
1024
1024
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ECFP6
FCFP2
FCFP4
FCFP6
Vector features

mol2vec
SMILES2Vec
FP2VEC

Extended-Connectivity Fingerprints, Iteration 3
Functional-Class Fingerprints, Iteration 1
Functional-Class Fingerprints, Iteration 2

Functional-Class Fingerprints, Iteration 3

Vector features based on Morgan fingerprints
Vector features based on molecule SMILES

Trainable embedding vectors based on fingerprints

1024
1024
1024
1024

200
100
100
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