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INTRODUCTION 
 
The incidence rate of ovarian cancer ranks the third 
place all over the world. And of all the malignant 
tumors, the fatality rate of ovarian cancer is the highest 
[1]. In recent days, numerous kinds of clinical 
treatments have been applied to the patients with 
ovarian cancer, including surgery, chemotherapy. 
Whereas, for patients that are diagnosed in the late 

stage, the 5-year survival rate accounts for <25%. And 
the effects of conventional treatments are not as good as 
before [2]. Therefore, it is significantly important to 
explore a novel biomarker and new clinical therapies to 
improve the overall rate and prognosis of ovarian cancer 
patients. 
 
Exploring the mechanisms of tumor immune 
microenvironment (TIME) could be beneficial for the 
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ABSTRACT 
 
Exosome has been demonstrated to be secreted from cells and seized by targeted cells. Exosome could transmit 
signals and exert biological functions in cancer progression. Nevertheless, the underlying mechanisms of 
exosome in ovarian cancer (OC) have not been fully explored. In this study, we wanted to explore whether 
Fibroblast growth factor 9 (FGF9), as an exosome-associated gene, was importantly essential in OC progression 
and prognosis. Firstly, comprehensive bioinformatics platforms were applied to find that FGF9 expression was 
lower in OC tissues compared to normal ovarian tissues. Meanwhile, downregulated FGF9 displayed favorable 
prognostic values in OC patients. The gene enrichment of biological functions indicated that abnormally 
expressed FGF9 could be involved in the OC-related immune signatures, such as immunoinhibitors and 
chemokine receptors. Taken together, these findings could provide a novel insight into the significance of FGF9 
in OC progress and supply a new destination of FGF9-related immunotherapy in clinical treatment. 
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guidance of the immune responses of cancer and predict 
the therapeutic molecules [3, 4]. To have a better 
understanding of the TIME in ovarian cancer is 
necessary. Because immune cells could enhance 
anticancer activities and decrease the recurrence rate of 
cancer. Immune systems combined with signaling 
biomarkers could play a crucial role in the prognostic 
prediction of ovarian cancer patients [5]. Nevertheless, 
more profound scientific researches regarding the 
relationships between TIME and ovarian cancer are still 
essential and needed to be fully investigated. 
 
Exosomes were demonstrated to be normal nanovesicles 
which were composed of various molecules, including 
lipid and nucleic acids. They were found in the 
exocytosis of cells and could contribute to the biological 
functions of cells, which could serve as a biomarker in 
the pathological process of human diseases and cancers 
[6–8]. Exosomes had a strong relationship with immune 
responses in numerous diseases, such as cardiovascular, 
central nervous system and cancer. Furthermore, the 
utility of exosome-related immune regulation could do 
good to the future therapeutic progression [9, 10]. 
Fibroblast growth factor 9 (FGF9), as an exosome-
associated gene, was first found in human glioma cells, 
and it has been reported to participate in the regulation 
in glia of central nervous system [11]. Recently, 
numerous studies have demonstrated that FGF9 plays a 
crucial part in the tumor progression. The upregulated 
level of FGF9 exerted great effects in the 
transdifferentiation of small cell lung cancer (SCLC). 
In vivo studies have identified that FGF9 induced the 
malignant transformation via triggering FGFR pathway 
[12]. Moreover, abnormally expressed FGF9 was 
involved in the modulation of OC invasiveness [13]. 
Whereas, more studies are still required to investigate 
the relationship between FGF9 expression and the 
prognosis of OC patients. 
 
In this paper, we would explore the underlying 
mechanisms of FGF9 in ovarian cancer. Through 
comprehensive bioinformatic analysis, the expression 
level of FGF9 was discovered to be downregulated in 
ovarian cancer tissues. And the high expression of 
FGF9 has strong correlation with good prognosis. These 
findings indicated that FGF9 could be a novel 
prognostic prediction and immune-associated biomarker 
for ovarian cancer. 
 
MATERIALS AND METHODS 
 
Data acquisition 
 
Gene Expression Omnibus (GEO) database [14] was 
applied to explore and download the two OC datasets, 
including GSE26712 [15, 16], GSE18520 [17] (Table 1). 

Then, we have analyzed the differently expressed genes 
(DEGs) between the normal ovarian tissues and OC 
tissues. The cut-off value was established: p-value 
<0.05 and |logFC| ≥2.0. In order to explore the co-
differentially expressed genes (co-DEGs) of the 
exosome-associated gene dataset and two GEO datasets, 
the Venn plots were employed. Moreover, the Cancer 
Genome Atlas (TCGA) database [18] was used to 
obtain the expression levels and clinical statistics of OC 
patients. 
 
Bioinformatics platforms  
 
The comprehensive evaluations of differently expressed 
genes were downloaded from some bioinformatic 
platforms (Table 2). The prognostic values were 
evaluated by means of the Kaplan-Meier plotter [19]. 
This database was used for the exploration of the 
overall survival (OS), first-progression survival (FPS) 
and post progression survival (PPS) of co-DEGs in OC. 
Additionally, the TNMplot [20], TCGA database and 
GEPIA2.0 [21] further investigated the expression level 
of FGF9 in tumor group and normal group. 
Subsequently, the LinkedOmics platform [22] was used 
to analyze the correlation between FGF9 and co-
expressed genes. At the same time, through this 
database, we have identified the Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways. Concerning the research of the link 
between FGF9 and immune response and regulation, we 
employed the single-sample GSEA (ssGSEA), TISIDB 
[23] and TIMER [24]. Subsequently, the relationships 
between FGF9 expression and immune checkpoints, 
including CTLA4 and VSIR have been figured out. 
 
Statistical analysis 
 
The findings in this study were depicted as mean ± 
standard deviation (SD). The difference between the 
normal group and the tumor group was investigated by 
t-test. P < 0.05 was regarded to be statistically 
significant. 
 
RESULTS 
 
Differently expressed genes between ovarian cancer 
group and normal group 
 
Through the exploration in GEO database, we finally 
picked out two suitable datasets and then attained the 
statistics of the two datasets. The cut-off value was set 
up: p-value <0.05 and |logFC| ≥2.0. After this 
procedure, DEGs between ovarian cancer group and 
normal group were generated. And we found that in 
GSE26712, there were 82 genes up-regulated and 231 
genes down-regulated. Meanwhile, there were 493 
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Table 1. The features of two GEO datasets about gene expression profiling by array. 

GEO datasets Platform 
Sample size 

DEGs References 
cancer normal 

GSE26712 GPL96 185 10 82 up-regulated genes and 231 down-regulated genes [15, 16] 
GSE18520 GPL570 53 10 493 up-regulated genes and 599 down-regulated genes [17] 

Abbreviations: GEO: Gene Expression Omnibus datasets; DEGs: differentially expressed genes. 
 
Table 2. Bioinformatics platforms that are employed to analyze the role of FGF9 in ovarian cancer. 

Database URL References 
GEO https://www.ncbi.nlm.nih.gov/gds/?term= [14] 
TCGA https://portal.gdc.cancer.gov/ [18] 
Kaplan-Meier Plotter http://kmplot.com/analysis/ [19] 
TNMplot http://www.tnmplot.com [20] 
GEPIA2.0 http://gepia.cancer-pku.cn/ [21] 
LinkedOmics http://www.linkedomics.org/admin.php [22] 
TISIDB http://cis.hku.hk/TISIDB/ [23] 
TIMER  https://cistrome.shinyapps.io/timer/ [24] 

 
up-regulated genes and 599 down-regulated genes in 
GSE18520 (Supplementary Table 1). Besides, we 
applied the Venn plot (http://bioinformatics.psb. 
ugent.be/webtools/Venn/) to implicate the significance 
of exosome-correlated genes in the development of OC 
patients. And the Venn plot showed that two 
upregulated exosome-correlated genes (CD24 and CP) 
and one downregulated exosome-correlated gene 
(FGF9) might play pivotal roles in OC progression 
(Figure 1). 

The prognostic prediction value of FGF9 in ovarian 
cancer patients 
 
To investigate the correlation between the expression of 
CD24, CP, FGF9 and the OC patients’ prognosis, the 
Kaplan-Meier plotter was applied. The findings have 
conveyed that high expression level of CD24 was linked 
to good OS (HR = 0.87, 95% CI = 0.76–0.98, p = 
0.028), PFS (HR = 0.86, 95% CI = 0.75–0.99, p = 0.04), 
PPS (HR = 0.82, 95% CI = 0.69–0.97, p = 0.022) 

 

 
 
Figure 1. The co-DEGs between the exosome-associated genes and two OC datasets. The Venn plot showed that two 
upregulated exosome-correlated genes (CD24 and CP) and one downregulated exosome-correlated gene (FGF9) might play pivotal roles in 
OC progression. 

https://www.ncbi.nlm.nih.gov/gds/?term=
https://portal.gdc.cancer.gov/
http://kmplot.com/analysis/
http://www.tnmplot.com/
http://gepia.cancer-pku.cn/
http://www.linkedomics.org/admin.php
http://cis.hku.hk/TISIDB/
https://cistrome.shinyapps.io/timer/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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(Figure 2A–2C). Furthermore, high expression of CP 
was related to favorable OS (HR = 0.79, 95% CI = 
0.63–0.99, p = 0.043), PPS (HR = 0.73, 95% CI = 0.55–
0.95, p = 0.02) (Figure 2D, 2F). However, CP 
expression was not correlated with the PFS of OC 
patients (p > 0.05) (Figure 2E). And from the 
GSE14764, we could conclude that higher expression of 
FGF9 was linked to the better prognosis of OS (HR = 
0.32, 95% CI = 0.11–0.9, p = 0.023), PPS (HR = 0.34, 
95% CI = 0.11–1.03, p = 0.045) (Figure 2G, 2I). 
Additionally, OC patients with high level of FGF9 
showed favorable PFS (HR = 0.72, 95% CI = 0.54–
0.97, p = 0.029) in GSE9891 (Figure 2H). From these 
results, we speculated that FGF9 could possess the 
potential ability to be a prognostic biomarker. 

Downregulated expression of FGF9 in ovarian 
cancer group 
 
Through the evaluation of the two datasets downloaded 
from the GEO database, we found that FGF9 expressed 
more highly in normal ovarian tissues than ovarian 
cancer tissues (p < 0.0001) (Figure 3A, 3B). In addition, 
TCGA database has verified that the expression level of 
FGF9 was different between the normal group and the 
OC group (p = 0.018) (Figure 3C). Meanwhile, 
GEPIA2.0 platform has identified that the expression 
level of FGF9 was higher in the normal group than that 
in OC group (Figure 3D). What’s more, by means of the 
TNMplot platform, we could know about that FGF9 
mRNA expression were both lower in OC tissues from 

 

 
 

Figure 2. The prognostic values of CD24, CP and FGF9  in OC.  (A–I) The prognostic values of CD24, CP and FGF9 in ovarian cancer 
patients. Abbreviations: OS: overall survival; PFS: progression‐free survival; PPS: post progression survival. 
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gene chip data (p = 1.57e-05) and RNA-seq data (p = 
4.2e-01) (Figure 3E, 3F). The above findings have 
conveyed that the expression of FGF9 quietly diminished 
in OC group, implicating that FGF9 might be a promising 
inhibitor in OC patients’ progression and development. 
 
The co-expression network of FGF9 in ovarian 
cancer 
 
The LinkedOmics platform was applied to explore the 
co-expression network in the TCGAOV cohort, and 
then figuring out the biological functions of FGF9 in 
OC patients’ development. Figure 4A and 
Supplementary Table 2 have demonstrated the co-
expressed genes that have positive and negative 
relationship with FGF9 (p < 0.05). Also, the heatmaps 
have depicted the genes that are positively and 
negatively correlated with FGF9 (Figure 4B, 4C and 
Supplementary Tables 3 and 4). Significantly, the top 
19 positive-related genes have the great possibility to be 
low-risk molecules for OC patients. In addition, the top 
20 negatively correlated genes that were high-risk 
molecules in OC. Meanwhile, 1 of top 20 negatively 

related genes owned the bad hazard ratio (Figure 4D). 
Moreover, through the investigation of Gene Ontology 
pathway, the result conveyed that the co-expressed 
genes of FGF9 participated in several biological process 
categories, such as response to stimulus, biological 
regulation and metabolic process. In the cellular 
component categories, these genes mainly take part in 
nucleus, cytosol and membrane. At the same time, the 
co-expressed genes of FGF9 significantly join in the 
protein binding, ion binding and nucleic acid binding 
in the molecular function categories (Figure 4E). 
Moreover, the KEGG analysis has implied that the 
enriched pathways were protein processing in 
endoplasmic reticulum, adipocytokine signaling 
pathway, epithelial cell signaling in helicobacter pylori 
infection, adherens junctions etc. (Figure 4F). 
 
The link between FGF9 with immune regulation 
 
Then, we downloaded the statistics of TCGA-OV 
database and analyzed the effects of FGF9 expression 
on immune regulation of ovarian cancer patients via 
ssGSEA. It indicated that FGF9 was positively linked to 

 

 
 
Figure 3. FGF9 was down-regulated in OC patients. (A, B) In the two datasets, the expression level of FGF9 was lower in OC tissues 
than that in normal ovarian tissues. (C, D) The GEPIA2.0 database and TCGA database have depicted that the expression of FGF9 decreased 
in OC tissues compared to normal ovarian tissues. (E, F) TNMplot database depicting FGF9 expression was lower in OC tissues compared to 
normal tissues from gene chip data and RNA-seq data. 
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the infiltration of natural killer (NK) cells (p < 0.05). 
Meanwhile, FGF9 expression was negatively correlated 
with cytotoxic cells, activated dendritic cells (aDC), T 
cells, NK CD56dim cells, Treg, neutrophils and T 
helper type 1 (Th1) cells (p < 0.05) (Figure 5A). In 
addition, the results that obtained from TISIDB 
database were consistent with the findings before 
(Figure 5B). By means of TIMER database, the plot 
further portrayed that the expression level of FGF9 had 
strong negative relationship with B cell, CD8+ T cell, 
CD4+ T cell, macrophage, neutrophil and dendritic cell 
(p < 0.05) (Figure 5C). Furthermore, the figures have 
depicted that the relationship between FGF9 expression 
and immune checkpoints and the findings showed that 
the expression level of FGF9 was negatively linked with 
CTLA4 (Spearman r = −0.239, p < 0.001) and VSIR 
(Spearman r = −0.169, – < 0.001) (Figure 5D, 5E). 
 
Additionally, we further investigated the relation 
between FGF9 and immune responses through the 
TISIDB platform, including immunoinhibitors and 
receptors. This picture has conveyed the correlation 
between immunoinhibitors in OC and the expression of 

FGF9 (Supplementary Figure 1A). The findings 
implicated that the top four immunoinhibitors that were 
strongly linked with FGF9 were PDCD1LG2 
(Spearman r = −0.331, p = 3.36e-09), HAVCR2 
(Spearman r = −0.317, p = 1.66e-08), CD274 
(Spearman r = −0.314, p = 2.19e-08) and LAG3 
(Spearman r = −0.309, p = 3.96e-08) (Supplementary 
Figure 1B). Moreover, the correlation between FGF9 
and receptors has been conducted (Supplementary 
Figure 2A). And the top four receptors that had negative 
association with FGF9 expression were CXCR6 
(Spearman r = −0.289, p = 2.96e-07), CXCR3 
(Spearman r = −0.271, p = 1.52e-06), CCR5 (Spearman 
r = −0.264, p = 3.04e-06) and CCR1 (Spearman r = 
−0.259, p = 4.7e-06) (Supplementary Figure 2B). In 
summary, these results have demonstrated that FGF9 
was involved in the immune regulation of OC patients. 
 
DISCUSSION 
 
The purpose of this paper was to figure out the 
correlation of exosome-associated genes and  
the progression in ovarian cancer. By exploring the 

 

 
 
Figure 4. The co-expression network of FGF9 in OC. (A) The LinkedOmics platform portraying the crucially associated genes with 
FGF9 in OC patients. (B, C) Heatmaps showing the top genes that were positively and negatively correlated with FGF9 in OC. (D) Survival 
heatmaps downloaded from the GEPIA2.0 database displayed that the top genes that were positively and negatively associated with FGF9 
in OC. (E, F) GO signaling pathway and KEGG signaling pathway of FGF9 in OC patients. 
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co-DEGs between an exosome-associated gene dataset 
and two OC datasets obtained from the GEO database, 
we could find two up-regulated genes CD24 and CP. 
And we concluded the expression level of FGF9 
displayed downregulation of OC. Additionally, the 
higher expression of FGF9 tended to be correlated with 

the better prognosis of OC patients. Consequently, the 
findings have concluded that the expression of FGF9 
was different in normal ovarian tissues and OC tissues. 
FGF9 expression decreased in OC group. By means of 
LinkedOmics database, we could figure out the 
positively and negatively associated genes with FGF9 in 

 

 
 
Figure 5. The relationship between the expression level of FGF9 and immune responses of OC patients. (A) The diagraph 
showing the relation between FGF9 expression and 24 types of immune cells. The size of the dots represented the values of Spearman r 
(p < 0.05). (B) The pictures downloaded from TISIDB database showing the relationship between FGF9 and immune infiltration cells, such as 
activated dendritic cells (aDC), Treg, Th17 cells, NK CD56dim cells (p < 0.05). (C) The Timer database showing the relationship between the 
expression level of FGF9 and immune infiltration cells. (D, E) The heatmap and scatterplot depicting FGF9 expression was negatively 
correlated to VSIR or CTLA4. 
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OC patients. Meanwhile, FGF9 showed a correlation 
with the prognosis of OC patients. Also, the results of 
GO pathway and KEGG pathway conveyed that the 
co-expressed genes participated in microenvironment of 
cancer cells and the biological functions in treating 
cancers. 
 
It has been reported that various kinds of cells could 
generate exosomes. And the diameters of exosomes are 
30–150 nm. Moreover, exosomes have been identified to 
play an essential role in the cells’ communication via 
miRNA, mRNA, and DNA [25]. Recently, there is an 
increasing trend concerning the exosome nanotechnology 
[26]. Because exosome possessed the special structure 
and favorable biological characteristic, the studies 
regarding exosome could be beneficial to the nano 
medical therapy in the future [27]. Additionally, 
exosomes could be secreted by tumor cells and they 
could exert great effects in changing the 
microenvironment of tumors. At the same time, it was 
verified that exosomes were significant in the cancer 
progression and the antitumor immunity [28, 29]. Several 
signaling pathways could be induced and suppressed by 
exosomes. Moreover, exosomes could contribute to the 
metastasis and drug resistance of cancer cells [30]. 
Significantly, exosomes that were generated from OC 
cells could induce niche formatting before metastasis 
through inhibiting immune responses, angiogenesis and 
the reformation of oncogenes [31]. A recent study has 
indicated that, in OC cells, the exosomal miR-1246 
induce the development of tumors. Besides, the inhibitors 
of miR-1246 could lead to the downregulated level of 
PDGFRβ and ki67 in vivo trials. Also, this paper has 
demonstrated that miR-1246 secretion through exosomes 
could elevate the chemoresistance in OC patients [32]. In 
addition, another study has illustrated that exosomal 
pGSN could elevate the survival of OC cells through the 
conversion of the chemosensitivity into chemoresistance 
in OC cells [33]. These results have implicated that in 
OC patients’ progression, exosome was importantly vital. 
And to further investigate the underlying mechanism of 
exosome and OC could benefit the future therapies for 
OC patients. Our study is aimed at exploring the 
prognostic value of FGF9 in OC patients and we 
concluded that high expression level of FGF9 was 
followed with good prognosis. 
 
FGF9, as a target gene of miR-214, could suppress 
cancer-associated fibroblasts (CAFs) in GC cells. Also, 
the abnormal FGF9 expression in CAFs has strong 
relationship with poorer prognosis of GC patients [34]. 
A study implicated that HD5 expressed in ovarian 
cancer cells via western blot and immunohistochemistry 
(IHC) evaluations. And the expression of HD5 mediated 
by FGF9 signaling pathway further verified HD5 was 
correlated with cancer [35]. The analysis has conveyed 

that overexpression of FGF9 could provide a new 
clinical strategy in gastric cancer and bladder cancer. 
P4, as a new FGF9-binding peptide, could play a pivotal 
part in enhancing the sensitivity of chemical drugs [36]. 
Low expression of miR-187 was linked to diminished 
overall survival (OS) of cervical cancer patients. The 
over-expressed level of miR-187 suppressed cell growth 
and triggered cell apoptosis in cervical cancer [37]. 
FGF9 could act as a target gene of microRNA-219a-5p 
and relieved the chemoresistance of cisplatin in non-
small cell lung cancer (NSCLC) [38]. In this paper, the 
exosome-related gene FGF9 expression was high in 
normal ovarian tissues compared to OC tissues. 
 
Several studies have proven that the combination of 
immunotherapy and radiotherapy could provide a new 
strategy of therapy in ovarian cancer patients. MSI-
H/dMMR and immune checkpoint inhibition could 
synergize with other strategies to exert effects in the 
treatment of ovarian cancer. Cancer vaccines and 
immunomodulation were reported to possess the 
potential to be low-toxicity approaches for OC patients 
[39–41]. In this article, we have explored the correlation 
between FGF9 and immune responses. FGF9 was 
reported to have a positive link with NK cells. On the 
other hand, FGF9 had a negative correlation with 
cytotoxic cells, aDC, T cells, NK CD56dim cells, Treg, 
neutrophils and Th1 cells. Simultaneously, FGF9 was 
crucially related to immunoinhibitors (PDCD1LG2, 
HAVCR2, CD274, LAG3) and receptors (CXCR6, 
CXCR3, CCR5, CCR1). Moreover, cancers might 
evade from the attack of NK cells. Interestingly, to 
reinforce the cytotoxicity of NK cells could elevate the 
efficacy of NK-associated immunotherapy [42]. Also, in 
high-grade serous ovarian cancer (HGSC), NK cells 
could be pivotal in the anticancer immunity triggered by 
immune checkpoint blockade [43]. This study also 
concluded that FGF9 expression had a negative relation 
with immune checkpoints, including CTLA4 and VSIR. 
CTLA4 belonged to the family of Immunoglobulin-
associated receptors and it was expressed via CD4+ and 
CD8+ T cells. Through this way, CTLA4 could take part 
in activating the T cells and induce immune regulation 
[44]. Nowadays, immune checkpoint inhibitors were 
applied for the therapy of ovarian cancer. CTLA4 could 
exert great effects in eliminating autoreactive T cells 
and PD-1 controlled T cells’ apoptosis [45]. These 
above results have implicated that FGF9 was correlated 
with immune responses and regulation, implying that 
FGF9 could be a promising biomarker for the 
immunotherapy of OC patients. 
 
CONCLUSIONS 
 
In conclusion, this paper has reported that the 
expression level of FGF9 had a vital relationship with 
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the prognostic prediction value of OC. Furthermore, it 
has been identified that FGF9 was crucially related with 
the immunoinhibitors and chemokine receptors. 
Consequently, this study has provided a novel horizon 
that the exosome-correlated gene FGF9 had the great 
potential to be a prognostic prediction strategy for OC 
patients. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

  
 
Supplementary Figure 1. The relationship between the expression level of FGF9 and immunoinhibitors of OC patients. 
(A) The diagraph showing the correlation between FGF9 expression and immunoinhibitors. (B) The scatter plots depicting the top four 
immunoinhibitors sharing a negative relationship with FGF9 expression. 
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Supplementary Figure 2. The correlation between the FGF9 expression and chemokine receptors of OC patients. (A) The 
picture showing the connection between FGF9 expression and receptors. (B) The scatter plots portraying the top four receptors that 
possessed a negative relationship with FGF9 expression. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 
 
Supplementary Table 1. The upregulated genes and downregulated genes in the two GEO datasets.  

 
Supplementary Table 2. The co-expressed genes possessing positive and negative relationship with FGF9.  

 
Supplementary Table 3. The top 19 genes positively correlated with FGF9 in ovarian cancer. 

YAP1 PGR BRCA2 ATM 
IRS1 RPS6KB1 DIRAS3 CCND1 
KIT HSPA1A EIF4EBP1 CDH2 

SMAD3 BCL2 CAV1 JUN 
SRC MAPK9 COL6A1  

 
 
Supplementary Table 4. The top 20 genes negatively correlated with FGF9 in ovarian cancer. 

SQSTM1 EIF4G1 MYH9 LCK 
PRDX1 PIK3CA  STAT5A GAB2 
SMAD1 SLC1A5 BRAF EIF4E 
CCNE1 CCNB1 SYK TP53 
ASNS EEF2K G6PD PREX1 

 




