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INTRODUCTION 
 
Atherosclerosis (AS) is the cause of most 
cardiovascular disease types, which becomes the 
primary reason for morbidity and mortality worldwide 
[1, 2]. Atherosclerotic lesions are characterized by the 
amplification of inflammatory response and 
accumulation of lipid droplet [2–4]. Macrophages play 
an essential role in the immune system and 

inflammatory reactions, which contribute to the 
development of atherosclerotic plaques with an 
astonishing inflammatory dysfunction [5–7]. 
 
The Raf/mitogen-activated protein kinase 
(MEK/MAPKK)/extracellular signal-regulated kinase 
1/2 (ERK 1/2) signaling pathway regulates multiple 
cellular processes such as proliferation, differentiation, 
and cell growth, and ERK phosphorylation is activated 
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ABSTRACT 
 
Background: microRNAs (miRNAs) have drawn more attention to the progression of atherosclerosis (AS), due to 
their noticeable inflammation function in cardiovascular disease. Macrophages play a crucial role in disrupting 
atherosclerotic plaque, thereby we explored the involvement of miR-223-3p in the inflammatory response in 
macrophages. 
Methods: RT-qPCR was used to analyze the miR-223-3p levels in carotid arteries and serum of AS patients. ROC 
curve was used to assess the diagnostic value of miR-223-3p. Movat staining was applied to evaluate the 
morphological differences. FISH was used to identify the expression of miR-223-3p in macrophages of 
atherosclerotic lesions. Bioinformatic analysis was performed. Double-immunofluorescence and western blot 
were performed to assess the inflammatory cytokine secretion and p-ERK1/2. C16-PAF was injected into the 
culture medium of the miR-223-3p mimic/NC-transfected macrophages with ox-LDL. 
Results: MiR-223-3p was up-regulated in AS patients and was associated with a higher overall survival rate. MiR-
223-3p was co-localized with CD68+ macrophages in vulnerable atherosclerotic lesions. MiR-223-3p mimics 
decreased atherosclerotic lesions, macrophages numbers whereas increased SMCs numbers in the lesions. The 
TNF-a immune-positive areas were reduced by miR-223-3p mimics. MAP2K1 was negatively associated with miR-
223-3p. MiR-223-3p mimics reduced the inflammation and the MEK1/ERK1/2 signaling pathway in vivo and in 
vitro. C16-PAF reversed the effects of miR-223-3p mimics on inflammation and ERK1/2 signaling pathway. 
Conclusions: MiR-223-3p negatively regulates inflammatory responses by the MEK1/ERK1/2 signaling pathway. 
Our study provides new insight into how miR-223-3p protects against atherosclerosis, representing a broader 
therapeutic prospect for treating atherosclerosis by miR-223-3p. 
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by MEK [8, 9]. On activation, Raf mediates 
phosphorylation of MEK1 and MEK2, which in turn 
phosphorylate ERK1 and ERK2, correspondingly [10, 
11]. The activation of ERK1/2 signaling may contribute 
to chronic inflammation, which is involved in 
arteriosclerosis development [12, 13]. 
 
Previous studies have described an association between 
the modifications in microRNA (miRNA) and 
atherosclerosis [14–16]. MiRNAs are endogenous non-
coding RNAs with a length of approximately 21nt-25nt 
(nucleotide), which control gene expression and play a 
critical role in vascular functions and atherosclerosis 
through post-transcriptional repression [14, 17]. Evidence 
has indicated that miRNAs target genes are related to 
chronic inflammation and macrophage activation [18, 
19]. Several previous studies highlight that miR-223-3p 
is a novel prognostic marker in cardiovascular diseases 
[20, 21], and miR-223-3p can potentially affect 
inflammatory response and macrophage accumulation 
[22]. However, the role of miR-223-3p in atherosclerosis 
disease and its underlying molecular mechanism has not 
been investigated to date. The miRDIP and starBase 
elucidate that MEK1 was a target gene of miR-223-3p. 
Evidence has indicated that the MAPK signaling pathway 
is involved in miR-223-3p inhibition [23]. However, 
whether miR-223-3p involves in arteriosclerosis through 
down-regulating MEK1/ERK1/2 is undiscovered. 
 
Therefore, the present study was conducted to explore 
the effects and regulatory mechanisms of miR-223-3p 
/MEK/ERK1/2 in arteriosclerosis. ApoE-/- mice were 
fed with a high-fat diet (HFD) to induce AS models, 
macrophages treated with ox-LDL were served as cell 
AS models. 
 
RESULTS 
 
Enhanced MiR-223-3p levels in carotid arteries and 
serum from patients with AS and co-localization with 
macrophages in vulnerable atherosclerotic lesion 
 
To evaluate the expression level of miR-223-3p as 
potential biomarkers of AS, the information of the  
patients were shown in Table 1. The qPCR results 
revealed that the expression level of miR-223-3p was up-
regulated in both serum and carotid arteries samples of 
AS patients compared with controls. (Figure 1A, 1B, 
P<0.05). Furthermore, we performed the receiver 
operating characteristic (ROC) curve to assess the 
diagnostic value of miR-223-3p. We found that the 
expression level of miR-223-3p is associated with a 
higher overall survival rate, suggesting that the miR-223-
3p could be an excellent diagnostic marker for AS (Figure 
1C). And the medical imaging were shown in Figure 1D. 
Consequently, we carried out a histological analysis on 

the carotid artery sections to evaluate the morphological 
differences using Movat staining. Representative staining 
results for vulnerable plaque and stable plaque were 
exhibited in Figure 1E.a, b, and we found the vulnerable 
plaque was associated with increased medial thickness 
and luminal diameter, and the messages about the patients 
were shown in Table 1. Additionally, we also found 
reduced miR-223-3p expression levels in the vulnerable 
plaque compared with stable plaque (Figure 1E.c). In 
addition, we carried out a Fluorescent in situ 
Hybridization (FISH) assay to identify the miR-223-3p in 
macrophages of the intima and vulnerable atherosclerotic 
lesions. We found miR-223-3p co-localization with 
CD68+ macrophages in vulnerable atherosclerotic lesions 
of AS patients (Figure 1F). 
 
Prevention of AS progression and inflammation by 
miR-223-3p mimics 
 
To functionally investigate the role of miR-223-3p in 
vulnerable atherosclerotic lesions, we applied the well-
established mice atherosclerosis HFDs, in which 
atherosclerotic lesions were induced in apolipoprotein-E 
deficient (ApoE-/-) mice by a high-fat diet. To further 
elucidate the in vivo effects of miR-223-3p in AS, ApoE -/- 
mice were assigned to high-fat diet (HFD) + miR-223-3p 
negative control (NC), and HFD + miR-223-3p mimics. 
Mice carotid roots and myometrial tissues were obtained 
and stained with Movat staining. Representative staining 
results were shown in Figure 2A, atherosclerotic lesions 
were shown in both groups, and an obvious decrease in 
the extent of atherosclerotic lesions in the miR-223-3p 
mimics. Moreover, the plaque area staining positive for 
macrophages (CD68+) in miR-223-3p mimics decreased 
compared with the NC group, whereas the SMA staining 
level was increased in miR-223-3p mimics (Figure 2B, 
2C), suggesting that miR-223-3p mimics could reduce 
macrophages accumulation and promote smooth muscle 
cells composition. ELISA results revealed that the TNF-a 
immunopositive plaque area also reduced in miR-223-3p 
mimics compared with the NC group (Figure 2D). The 
quantitative analysis was consistent with the above 
findings obtained in our in vitro experiments. (P<0.05, 
miR-223-3p mimics vs. miR-223-3p NC). In brief, these 
in vivo experimental data implied that miR-223-3p 
mimics could prevent AS from developing.  
 
Targeting relationship between miR-223-3p and 
MEK/ERK 
 
Given that miRNAs exert their function by reducing 
their downstream expression of target genes [24]. The 
variety of functions of miR-223 has been linked to the 
suppression of many different target genes in 
inflammatory pathologies [25, 26]. Therefore, miR-
2233p may affect cell differentiation and activation by 
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Table 1. Clinicopathological characteristics of atherosclerotic patients. 

Characteristics Stable group Vulnerable group 
Age 64.25±3.038 N=4 69.50±2.630 N=4 
Gender Male:3/Femal:1 Male:3/Femal:1 
Have hyperlipidemia N=4 N=4 
Have diabetes N=1 N=2 
Have hypertension N=2 N=3 
Maximum diameter under ultrasonic(mm) 1.098 ±0.093 N=4 3.283 ?0.2463 N=4** 

 

suppressing its target genes, which have been protective 
against inflammatory response. We obtained three 
potential genes (PLAGL2, FLOT2, and MAP2K1) of 
miR-223-3p by combining the results from the online 
miRNA target prediction databases (Figure 3A). To 
confirm whether the three potential genes were the 
downstream target genes for miR-223-3p, we examine 
the expression of the three potential genes in 
macrophages transfected with miR-223-3p mimics. The 
qPCR results revealed that MAP2K1(MEK1) 
expression was noticeably decreased in macrophages 
transfected with miR-223-3p mimics (Figure 3B). 
Furthermore, miRDIP and starBase databases were 
applied, and we found miR-223-3p and MAP2K1 had 
targeted binding regions (Figure 3C). There results 
suggested that MAP2K1 was a direct target of miR-223-
3p. Upon activation, Raf mediates phosphorylation of 
MEK1 and MEK2, which in turn phosphorylate ERK1 
and ERK2 [27]. Thus, we hypothesize that the 
regulation of miR-223-3p may be through the 
MEK/ERK signaling pathway in atherosclerosis. To 
assess the inflammatory response signaling pathway in 
AS, we downloaded the GSE34822 dataset from the 
GEO database, comprised of atherosclerosis samples. 
As shown in Figure 3D, 158 up-regulated differentially 
expressed genes (DEGs) and 206 down-regulated DGEs 
were obtained using the criteria of Padj < 0.01, |log2FC| 
> 1.2, hierarchical clustering analysis exhibited the 
distinction on differentially expressed genes in the heat 
map. We then performed pathway analysis by David 
and established Go enriched up-regulated pathways 
(Figure 3E), including inflammatory response, 
metabolic process, lipid transport, and intracellular 
protein transport. We also found down-regulated 
pathways, including anion transmembrane transport, 
glycerol transport, and ADP biosynthetic process. 
(Figure 3F) Correspondingly, relevant partial results for 
KEGG pathways were exhibited in Figure 3G. 
Furthermore, the gene set enrichment analysis  
(GSEA) revealed that the innate immune pathway 
regulation was functionally enriched in AS (Figure 3H, 
3I). Thus, we pick up miR-223-3p, MEK/ERK1/2,  
and the inflammatory response pathway for further 
investigation. 

Regulation of inflammatory cytokine secretion and 
p-ERK1/2 by miR-223-3p  
 
Double-immunofluorescence was performed on carotid 
tissues from 223-3p mimics and the NC mice group. As 
shown in Figure 4A, the double-immunofluorescence 
exhibited significant co-localization of the macrophage 
marker CD68+ and TNF-α, suggesting that the 
macrophages express TNF-α in miR-223-3p mimics 
(Figure 4A). To further investigate the possible role of 
miR-223-3p in the inflammatory response of AS, 
protein expression changes in mice carotid tissues were 
determined by quantitative analysis and western blots, 
respectively. We found significantly decreased 
expression levels of inflammatory cytokine (IL-6 and 
TNF-a) in carotid tissues from the miR-223-3p mimics 
group in western blots (Figure 4B). Additionally, we 
also found significantly reduced p-ERK1/2 expression 
level in miR-223-3p mimics. (Figure 4B). The 
quantitative analysis of relative protein expression 
confirmed the associated decrease in the protein levels 
of IL-6, TNF-a, and ERK1/2 in carotid tissues of miR-
223-3p mimics as compared with the NC group (Figure 
4B, P<0.05), suggesting that miR-223-3p mimics could 
repress inflammatory response and phosphorylation 
ERK1/2 in AS. 
 
MiR-223-3p mimics inhibits the inflammatory 
response via the ERK1/2 pathway in vitro 
 
The macrophages might initiate and exacerbate 
inflammation with ox-LDL stimulation and prompt the 
destabilization of the atherosclerotic plaques [28]. To 
investigate the biological importance of ERK1/2 as a 
target of miR-223-3p, miR-223-3p mimic/NC-
transfected macrophages were stimulated with ox-LDL 
and saline to detect the ERK1/2, IL6, TNF-a expression 
in in vitro. Using western blots, we found that the 
expression levels of p-ERK1/2, IL6, and TNF-a  
were significantly suppressed in miR-223-3p mimic-
transfected macrophages with ox-LDL stimulation  
as compared with miR-223-3p NC-transfected 
macrophages with ox-LDL (Figure 5A). The result of  
in vitro implied that miR-223-3p mimic could repress 
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Figure 1. Enhanced miR-223-3p levels in carotid arteries and serum from patients with AS. (A) The levels of miR-223-3p were 
higher in AS arteries as compared with normal arteries determined by qPCR. (*P<0.05). (B) The levels of miR-223-3p were higher in the serum 
of AS patients compared with normal controls determined by qPCR. (*P<0.05). (C) The expression level of miR-223-3p has been associated 
with a higher overall survival rate by ROC curve. (D) The three-dimensional vascular remodeling, CT, ultrasonic sound pictures from patient 
with stable or vulnerable lesions were shown. (E) Histological analysis on the aortic sections evaluates the morphological differences by 
Movat staining. Representative staining results for vulnerable plaque and stable plaque. Decreased miR-223-3p in the vulnerable plaque as 
compared with stable plaque (*P<0.05). (F) Fluorescent In Situ Hybridization assay revealed miR-223-3p (green) co-localization with CD68+ 
(red) macrophages in vulnerable atherosclerotic lesions of AS patients. DAPI (blue) for nuclei staining. 
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the inflammatory response in AS.  To further determine 
whether miR-223-3p mimic mediated inflammatory 
effect in ox-LDL stimulated macrophages was via 
ERK1/2 signaling pathway, C16-PAF, an ERK1/2 
agonist was injected into the culture medium of the 
miR-223-3p mimic/NC-transfected macrophages with 
ox-LDL stimulation. Interestingly, we found that the 
decreased expression levels of p-ERK1/2, IL6, and 
TNF-a in miR-223-3p mimic-transfected macrophages 
with ox-LDL were markedly reversed by C16-PAF, 
suggesting that miR-223-3p mimic mediated 
inflammatory effect in ox-LDL stimulated macrophages 
was via ERK1/2 signaling pathway (Figure 5A). As 
shown in Figure 5B, the quantitative analysis of relative 
protein expression was consistent with our western blot 
analysis data (P<0.05, Figure 5B). Therefore, these data 
suggested the essential role for ERK1/2 as a mediator of 
the biological effects of miR-223-3p-mediated 
inflammatory effect in AS. 

DISCUSSION 
 
AS is an inflammatory diseases, the macrophages play a 
significant roles in the formation and progression of 
atherosclerosis, therefore the factors regulated the 
inflammatory factors and associated modulatory 
pathway proteins secreted by lesional macrophages, 
deserved of research [29, 30]. Previous studies 
demonstrated the miRNAs involved in atherosclerotic 
progression and also played crucial effects in 
modulating lesional inflammatory responses [31–33]. In 
the current study, Firstly, bioinformatics analysis were 
used for screening out the miRNA-223-3p involved in 
the progression of AS, the expression level of miR-223-
3p was up-regulated in both carotid arteries and serum 
of AS patients, the miR-223-3p is associated with  
a higher overall survival rate, suggesting that the  
miR-223-3p could be an excellent diagnostic marker  
for AS, data shown in Figure 1A–1C. And further the 

 

 
 

Figure 2. Prevention of AS progression by miR‐223‐3p mimics.  (A) Representative Movat staining of  the histopathology of mice's 
carotid  roots  and  a  pronounced  decrease  in  the  extent  of  atherosclerotic  lesions  in  the  carotid  roots  tissues  from miR‐223‐3p mimics. 
(*P<0.05). (B) The plaque area staining positive for macrophages (CD68)  in the miR‐223‐3p mimics group and NC group (*P<0.05). (C) The 
SMA staining in mice's aortic roots in the miR‐223‐3p mimics group and NT group (*P<0.05). (D) TNF‐α staining in mice's aortic roots in the 
miR‐223‐3p mimics group and NT group(*P<0.05). 
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Q-PCR were used for testing the mRNA levels of miR-
223-3p in human species of stable and vulnerable 
atherosclerotic plaques, shown in Figure 1E. Besides, 
Fluorescent In Situ Hybridization (FISH) assay revealed 
miR-223-3p co-localization with CD68+ macrophages 
in vulnerable atherosclerotic lesions of AS patients, as 
showed in Figure 1F, thereby the macrophages were 
elected for target cellular type in our study. 
 
The disease based on atherosclerosis, such as 
myocardial infarction, apoplexy, cerebral infarction, 
obliterans of the Lower Extremities and et al., attracted 

from youth to middle aged and old aged people [34, 35]. 
The vulnerable/ instable plaques mainly appeared in old 
persons [36] and in this study, the atherosclerotic 
lesions from patients of the first affiliated hospital of 
Hebei medical university were obtained by carotid 
endarterectomy (CEA). Consequently, we carried  
out a histological analysis of aortic sections from AS 
patients to evaluate the morphological differences, 
representative Movat staining results for vulnerable 
plaque and stable plaque were exhibited in Figure 1D, 
and we found decreased miR-223-3p expression level  
in the vulnerable plaque compared with stable plaque, 

 

 
 

Figure 3. Targeting relationship between miR-223-3p and MEK/ERK. (A) The miRNA target prediction databases exposed three 
potential genes (PLAGL2, FLOT2, and MAP2K1) of miR-223-3p. (B) The qPCR revealed that MAP2K1(MEK1) expression was noticeably 
decreased in macrophages transfected with miR-223-3p mimics. (C) miRDIP and starBase databases showed that miR-223-3p and MAP2K1 
had targeted binding regions. (D) The hierarchical clustering analysis exhibited the distinction on differentially expressed genes in the heat 
map. (E) Go enriched up-regulated pathways. (F) Go enriched down-regulated pathways. (G) The relevant partial results for KEGG pathways. 
(F) The gene set enrichment analysis (GSEA) revealed that the innate immune pathway regulation was functionally enriched in AS. (H, I) GSEA 
revealed that the innate immune pathway regulation was functionally enriched in AS. 



www.aging-us.com 1871 AGING 

indicating that miR-223-3p has the value to be made 
further research on. The detailed mechanisms of miR-
223-3p were further verified in animal models, we 
applied the well-established atherosclerotic mouse 
models, apolipoprotein-E deficient (ApoE-/-) mice, in 
which AS lesions were induced by fed with high fat 
diet. ApoE-/- mice were treated with miR-223-3p 

negative control and mimic and pathological analysis 
results showed that the increase of miR-223-3p 
decreased lesional areas following with macrophage 
decrease, TNF-α secretion and smooth muscle cells 
increase. Lesional macrophages is the major cellular 
resource responding for inflammatory factors secretion, 
TNF-α, IL-6, IFN-γ, et al., resulting in accumulating 

 

 
 

Figure 4. Regulation of inflammatory cytokine secretion and p-ERK1/2 by miR-223-3p. (A) Double-immunofluorescence revealed 
significant co-localization of the macrophage marker CD68+ and TNF-α in carotid tissues from 223-3p mimics and. (B) The western blots 
analysis revealed significantly decreased expression levels of IL-6, TNF-a, and p-ERK1/2 in carotid tissues from the miR-223-3p mimics group. 
The quantitative analysis of relative protein expression exposed the associated decrease in the protein levels of IL-6, TNF-a, and ERK1/2 in 
carotid tissues of miR-223-3p mimics (*P<0.05). 
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Figure 5. MiR-223-3p mimics inhibits the inflammatory response was via the ERK1/2 pathway in vitro. (A) The western blots 
analysis revealed that p-ERK1/2, IL6, and TNF-a were significantly suppressed in miR-223-3p mimic-transfected macrophages with ox-LDL 
stimulation, and the decreased expression levels of p-ERK1/2, IL6, and TNF-a were markedly enhanced in miR-223-3p mimic-transfected 
macrophages with ox-LDL by C16-PAF. (B) The quantitative analysis revealed that the relative protein levels of p-ERK1/2, IL6, and TNF-a were 
decreased in miR-223-3p mimic-transfected macrophages with ox-LDL stimulation, and the decreased relative protein levels of p-ERK1/2, IL6, 
and TNF-a were markedly enhanced in miR-223-3p mimic-transfected macrophages with ox-LDL by C16-PAF. (*P<0.05). 
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circulating monocytes and macrophages into AS and 
promoting outbreak of inflammatory response [37–39], 
thus forming a vicious cycle; and the lesional SMC is 
the major cell secreting collagen, extracellular matrix 
components, the principal contents of fibrotic caps, 
protected the vulnerable plaques from rupture, playing 
protective roles [40, 41]. Our vivo experimental data 
illustrated that miR-223-3p mimics-mediated inhibition 
of inflammatory responses is one of the mechanisms 
involved in the development of AS. 
 
MiRNAs exert their function by reducing their 
downstream expression of target genes. The variety of 
functions of miR-223 has been related to the 
suppression of many different target genes in 
inflammatory pathologies [25]. Therefore, miR-223-3p 
may affect cell differentiation and activation by 
suppressing its target genes, which have been protective 
against inflammatory response. We obtained the 
potential gene MAP2K1 of miR-223-3p by combining 
the results from the online miRNA target prediction 
databases. The qPCR results revealed that 
MAP2K1(MEK1) expression was noticeably decreased 
in macrophages transfected with miR-223-3p mimics. 
Furthermore, miRDIP and starBase databases were 
applied, miR-223-3p and MAP2K1 had targeted 
binding regions. There results suggested that MAP2K1 
was a direct target of miR-223-3p. Upon activation, Raf 
mediates phosphorylation of MEK1 and MEK2, which 
in turn phosphorylate ERK1 and ERK2 [27]. Thus, we 
hypothesize that the regulation of miR-223-3p may be 
through the MEK/ERK signaling pathway in 
atherosclerosis. To assess the inflammatory response 
signaling pathway in AS, we downloaded the 
GSE34822 dataset from the GEO database, comprised 
of atherosclerosis samples. The hierarchical clustering 
analysis exhibited the distinction on differentially 
expressed genes in the heat map according to the 
GSE34822 dataset. We then performed pathway 
analysis by David and established Go enriched up-
regulated and down-regulated pathways and relevant 
partial results for KEGG pathways. The gene set 
enrichment analysis (GSEA) revealed that the innate 
immune pathway regulation was functionally enriched 
in AS. Thus, we pick up miR-223-3p, MEK/ERK1/2, 
and the inflammatory response pathway for further 
investigation. 
 
Double-immunofluorescence exhibited significant co-
localization of the macrophage marker CD68+ and 
inflammatory factor TNF-α, indicating the TNF-α 
secreted by macrophage in AS lesions. To further 
investigate the possible role of miR-223-3p in the 
inflammatory response of AS, protein expression 
changes in mice carotid tissues were determined by 
quantitative analysis and western blots. Respectively, 

we found significantly decreased expression levels of 
inflammatory cytokine (IL-6 and TNF-a) in carotid 
tissues from the miR-223-3p mimics group compared 
with the NC group. Evidence has indicated that the 
MAPK1 signaling pathway is involved in miR-223-3p 
inhibition by combining with 3’-UTR of MAPK1 for 
further degradation [23, 42]. As the MAPK signals 
especially the MAPK1/ERK2 is the major modulatory 
signal proteins for inflammatory factors synthesis and 
sections [43, 44]. Using quantitative analysis and 
western blots, we found a significantly decreased p-
ERK1/2 expression level in miR-223-3p mimics 
compared with the NC group (P<0.05), suggesting that 
miR-223-3p mimics could repress inflammatory 
response and phosphorylation ERK1/2 in AS, these 
results were consistent with our bioinformatics analysis.  
 
The macrophages might initiate and exacerbate 
inflammation with ox-LDL stimulation and prompt the 
destabilization of the atherosclerotic plaques [28]. 
Using western blots analysis, we found that the 
expression levels of p-ERK1/2, IL6, and TNF-α were 
significantly suppressed in miR-223-3p mimic-
transfected macrophages with ox-LDL stimulation as 
compared with miR-223-3p NC. C16-PAF, an ERK1/2 
agonist, was injected into the culture medium of the 
miR-223-3p mimic/NC-transfected macrophages with 
ox-LDL stimulation to investigate whether miR-223-3p 
mimic mediated inflammatory effect was via ERK1/2 
signaling pathway. Interestingly, we found that the 
decreased expression levels of p-ERK1/2, IL6, and 
TNF-a were markedly enhanced in miR-223-3p mimic-
transfected macrophages with ox-LDL by C16-PAF, 
suggesting that miR-223-3p mimic mediated 
inflammatory effect was via ERK1/2 signaling pathway. 
These results implied that the MEK/ERK1/2 signaling 
pathway was necessary to facilitate the development of 
miR-223-3p in AS. Our in vitro experiment 
demonstrated that miR-223-3p could play an anti- 
atherosclerosis role by modulating ERK activity and 
inflammatory factor secretion. 
 
In conclusion, our study elucidates that miR-223-3p 
prevents the development of AS and reduced 
inflammatory response through down-regulation of 
MEK1/ERK1/2, which suggests that miR-223-3p 
/MEK1/ERK1/2 can be potentially used as an attractive 
therapeutic for AS. 
 
MATERIALS AND METHODS 
 
Patients and specimens 
 
8 patients with stable plaques n=4, and vulnerable plaques 
n=4 underwent diagnostic carotid CT and ultrasonic 
testing to intent to revascularize the culprit arteries shown 
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in Figure 1B. All patients presented with atheromatous 
plaques of the extracranial artery but without thrombus, 
the information of risk factors for atherosclerosis such as 
diabetes and hypertension were also collected. The 
detailed patient information were collected. 
 
Establishment of mice AS models  
 
The ApoE−/− mice (C57Bl/6 background) were 
obtained from Beijing HFK Biotechnology Co., Ltd 
(Beijing, China). The animal use protocol for this 
study has been reviewed and approved by the 
Laboratory Animal Ethical Committee, Hebei Medical 
University first Affiliated Hospital. ApoE−/− mice 
established adeno-associated virus serotype-9 (AAV9) 
mediated miR-223-3p overexpression via the tail vein. 
The groups were set as follows: high-fat diet (HFD) + 
miR-223-3p negative control (NC), and HFD + miR-
223-3p mimics groups via tail vein injection. The mice 
were fed a high-fat diet (HFD) to induce early 
atherosclerotic lesions. After providing a high-fat diet 
for two months and transfection with AAV9, the mice 
were sacrificed.  
 
Enzyme-linked immunosorbent assay 
 
After injection with pentobarbital sodium, blood 
samples were gathered from the carotid artery of AS 
patients and controls. The serum contents were treated 
with regional citrate anticoagulation (RCA) and 
centrifuged at 2500g for 20 min at four ° C. Blood cells 
were recovered by centrifugation at 700 × g for 20 min 
at 4° C. The ELISA kit (Cat. No. 210-A-050, R&D 
Systems, Minneapolis, MN) was conducted to identify 
the plasma and macrophages expressed according to the 
kit instructions. The serum levels of inflammatory 
cytokines interleukin-6 (IL-6) (eBioscience) and tumor 
necrosis factor-α (TNF-α) (eBioscience) were examined 
using ELISA kits (RapidBio, CA, USA). 
 
Movat-staining 
 
After thoroughgoing washing with water, the aortic 
tissues were rinsed by 60% isopropanol for 5 min and 
stained with the Movat-staining dyeing solution for 2 
h, then differentiated and rinsed by 60% isopropanol 
for 6~7 times. Finally, the images were captured 
under an optical microscope (×400, Olympus Optical 
Co., Ltd.).  
 
Macrophage culture and transfection 
 
Mouse macrophage-like cell line RAW 264.7 was 
obtained from Peking Union Medical College. After 
adding Dulbecco's modified eagle's medium (DMEM, 
General Electric Company, Utah, USA) with 10% 

fetal bovine serum (FBS) (Gibco Company, Grand 
Island, NY, USA), the cells were cultured at 37° C 
with 5% CO2. Forty-eight hours later, the cells were 
treated with 0.25% trypsin (Biotime Biotechnology) 
and re-cultured in a 75 mL flask. The cells were 
seeded in 6-well plates at 2.5 × 105 cells per well and 
cultured in a medium before transfection. According 
to the manufacturer's instructions, cells were then 
transfected using Lipofectamine 2000 (Santa Cruz 
Inc., Santa Cruz, CA, USA). The miRNA and 
Lipofectamine 2000 reagent were individually diluted 
to 20% in serum-free DMEM and incubated for 10 
mins. Then cultured macrophages were transfected 
with miR-223-3P mimics, miR-223-3P mimics 
negative control (NC). The primary culture medium 
was detached three hours after transfection, and the 
cells were cultured for an additional 24 hours in the 
transfection complex. Twenty-four hours after 
transfection, the culture medium was removed, and 
the cells were re-cultured for an extra 48 hours. 
Consecutively diluted ox-LDL at 50, 100, and 200 
mg/L were used to treat the cells for 12 h, 24 h, and 
48 h. qPCR was conducted on a Step One Plus system 
and Chromo4 using specific primers (Applied 
Biosystems, Foster City, CA). Values of miR-223-3P 
were normalized (cultured macrophages) and 
presented as 2−ΔΔCT equation through boxplot with 
smallest and largest whiskers. 
 
Fluorescent In Situ Hybridization (FISH) assay 
 
The FISH assay was applied to detect the location and 
expression of miR-223-3P in aortic tissues. The aortic 
tissues were fixed with 4% paraformaldehyde at room 
temperature and embedded in paraffin (4-μm 
thickness). Subsequently, the tissues were 
deparaffinized by mineral oil. They rehydrated in 
graded dilutions of ethanol (100%, 100%, 90%, 80%, 
70%, 50%), digested with 16 µg of proteinase K 
(Thermo Fisher Scientific, San Jose, CA, USA) at  
37° C for 15 min, rinsed in 0.2% glycine in PBS 
(Sigma-Aldrich) for 10 min, fixed with 4% 
paraformaldehyde phosphate-buffered saline (PBS) at 
room temperature for 10 min. Then, paraffin slides 
were hybridized with fluorescent (Cy3-labeled) 
oligonucleotide miR-223-3P probes (5′-UGUCA 
GUUUGUCAA AUACCCC-3′) at 37° C overnight. 
After probe hybridized, tissues were incubated in 
extraction buffer (20 mM Tris-HCl, pH7.5, 2 mM 
EDTA, 0.25% SDS, 0.225M NaCl), at 37° C for 20 
min. Tissues were stained with CD68+ with purified 
ab81289 (Abcam Inc., Cambridge, MA) at 1:200. The 
conventional heat-mediated antigen retrieval was 
conducted with Tris-EDTA buffer (pH 7.6, Abcam 
Inc., Cambridge, MA). Goat Anti-Rabbit IgG  
H&L (HRP) was used as the secondary antibody at 
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1/5000 dilution. 4,6-diamidino-2-phenylindole (DAPI) 
staining was used for cell nuclear counterstain  
with laser scanning confocal microscopy (Olympus, 
Japan). A light microscope carried out the qualitative 
analysis ((Nikon Corporation, Tokyo, Japan). Images 
of the sections were captured by fluorescence 
microscope (magnification, ×200; BX50, Olympus) 
and analyzed using Image-Pro Plus 6.0 software 
(Media Cybernetics, USA). 
 
Western blot analysis 
 
The protein extracts from aortic tissues and cells were 
denatured. The protein samples were separated by SDS-
PAGE (10% gel) and transferred to PVDF membranes 
(Millipore, MA, USA). After washing with Tris-
buffered saline with Tween- 20 (TBST), the protein 
samples were incubated with primary and secondary 
antibodies (Abcam) for 1h. Band intensities were 
detected by an Odyssey infrared imaging system (Li-
cor, Lincoln, NE, USA). 
 
RNA isolation and real-time PCR 
 
Total RNA was isolated from macrophages and aortas 
using a Trizol reagent (Life Technologies, Inc, 
Burlington, ON, Canada) and purified by the RNA Easy 
kit (Qiagen Inc., Valencia, CA). qPCR fluorophore 
SYBR-Green was purchased from Beijing Solarbio 
Science and Technology Co., Ltd. Reverse transcription-
quantitative PCR (qRT-PCR) of the target mRNA was 
carried out using primers, The mice primers: miR-223-3p’ 
F 5'-GTG CAG GG TCC GAG GT-3';R 5'-CGG GCT 
GTC AGT TTG TCA-3'; U6’ F 5'-CTC GCT TCG GCA 
GCA CA-3'; R 5'-AAC GCT TCA CGA ATT TGC GT-
3'. human primers : miR-223-3p F 5’-ACA CTC CAG 
CTG GGT GTC AGT TTG TCA AAT-3’; R 5’-CTC 
AAC TGG TGT CGT GGA GTC GGC AAT TCA GTT 
GAG TGG GGT AT-3’; U6 F 5’- CGC TTC GGC AGC 
ACA TAT AC -3’; R 5’- AAA TAT GGA ACG CTT 
CAC GA -3’. Changes in gene expression levels of >2.5-
fold were considered significant. 
 
Statistical analysis 
 
All data were expressed as mean ± standard deviation 
(SD). Statistically significant differences among groups 
were evaluated by one-way analysis of variance 
(ANOVA) or Student's t-test using SPSS 20.0 software. 
Statistical significance was signified when p values 
<0.05. 
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