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INTRODUCTION 
 

Sarcopenia, characterized by the age-related loss of 

muscle mass and strength, is a major contributor to the 

risk of physical frailty, loss of independence, and 

hospitalization with poor health outcomes in aging older 

adults [1]. It has become a major public health 

challenge with the rapid expansion of the world’s older 

population and is responsible for substantial healthcare 

expenditure [2]. Sarcopenia was recognized as an 

independent condition with an assigned ICD-10 code in 

2016, which is a milestone for the increased awareness 

of its importance in human health [3]. Age-related 

sarcopenia is a multifactorial disease, and some possible 
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ABSTRACT 
 

We aimed to validate two metabolites, aspartic acid and glutamic acid, which were associated with sarcopenia-
related traits, muscle mass and strength, in our previous untargeted metabolomics study and to identify novel 
metabolites from five metabolic pathways involving these two metabolites. We included a discovery cohort of 
136 white women aged 20-40 years (used for the previous untargeted metabolomics analysis) and a validation 
cohort of 174 subjects aged ≥ 60 years, including men and women of white and black. A targeted LC-MS assay 
successfully detected 12 important metabolites from these pathways. Aspartic acid was associated with muscle 
mass and strength in the discovery cohort, but not in the validation cohort. However, glutamic acid was 
associated with these sarcopenia traits in both cohorts. Additionally, N-acetyl-L-aspartic acid and carnosine 
were the newly identified metabolites that were associated with muscle strength in the discovery and 
validation cohorts, respectively. We did not observe any significant sex and race differences in the associations 
of these metabolites with sarcopenia traits in the validation cohort. Our findings indicated that glutamic acid 
might be consistently associated with sarcopenia-related traits across age, sex, and race. They also suggested 
that age-specific metabolites and metabolic pathways might be involved in muscle regulation. 
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causes have been suggested, such as decreased nerve 

input, protein intake, and physical activity [4–7]. 

However, the biological mechanisms underlying the 

development of sarcopenia are still largely unknown, 

and no specific drugs have been approved for the 

treatment of sarcopenia [1]. 

 

Metabolomics is an emerging technology to 

comprehensively profile small molecules in biofluids, 

cells, and tissues and has contributed to our under-

standing of a number of disorders [8–11], such  

as diabetes, cardiovascular disease, and cancer. 

Metabolomics methodologies fall into two distinct 

groups, untargeted and targeted metabolomics, each  

with its own inherent advantages and disadvantages. 

Untargeted metabolomics is the comprehensive analysis 

of all the measurable analytes in a sample. It is especially 

suitable for diseases/conditions with very limited 

information about its metabolic mechanisms. By contrast, 

targeted metabolomics is the measurement of defined 

groups of chemically characterized and biochemically 

annotated metabolites [12]. Although most studies have 

used either the untargeted or targeted approach, it is 

reasonable, or even ideal, to use the untargeted 

metabolomics approach to prioritize metabolic pathways 

(hypothesis generation) for further comprehensive 

targeted metabolomics analysis in additional samples 

which can validate findings of the untargeted analysis 

and discover more disease-related metabolic changes. 
 

To investigate the mechanisms of sarcopenia, we have 

conducted an untargeted metabolomics study of 

sarcopenia-related traits, muscle mass and strength, in a 

cohort of young white women. In the pathway analysis, 

two amino acids, aspartic acid and glutamic acid, were 

both mapped to five metabolic pathways [13]. To 

further validate the associations of these two 

metabolites with muscle mass (measured by body mass 

index-adjusted appendicular lean mass, ALM/BMI) and 

muscle strength (measured by hand grip strength, HGS) 

and identify additional trait-associated metabolites, we 

designed a targeted metabolomics assay to assess the 

key metabolites from these pathways in the original 

discovery cohort of white young women and a 

validation cohort including older black and white as 

well as men and women. 

 

RESULTS 
 

The clinical characteristics of the study participants in 

the discovery and validation cohorts are shown in Table 

1. Across all the sex and race subgroups, the 

participants of the validation cohort were older, had a 

higher rate of current smoking, and had less alcohol 

drinking compared to those of the discovery cohort. The 

validation cohort had similar levels of ALM/BMI but 

smaller hand grip strength, especially among white and 

black women, than the discovery cohort. 

 

Table 2 shows the metabolites selected and measured 

from the five metabolic pathways involving aspartic 

acid and glutamic acid. Twelve out of the 15 meta-

bolites on the targeted liquid chromatography-mass 

spectrometry (LC-MS) assay were successfully detected 

in the study samples. Figure 1 shows the correlation 

coefficients between the 12 detected metabolites in the 

discovery and validation cohorts, respectively. In 

general, the correlations among the metabolites were 

very different between the subjects in the discovery 

cohort and the validation cohort. Additionally, the 

correlations of metabolites varied substantially among 

different race- and sex-subgroups as well (Figure 2). 

These different correlations of metabolites within each 

metabolic pathway among different age, race, and sex 

groups may suggest the functions of the pathways 

probably vary across age, sex, and race as well. 

 

The multivariate analysis showed that aspartic acid, 

identified in our previous untargeted metabolomics 

study, was still significantly associated with sarcopenia 

traits in the discovery cohort, but not in the validation 

cohort (Table 3). Higher aspartic acid levels were 

associated with lower ALM/BMI and HGS (Table 4). 

However, glutamic acid, another metabolite identified 

in our previous untargeted metabolomics study, was 

significantly associated with sarcopenia traits in both 

the discovery and validation cohorts even after 

adjusting for multiple testing (FDR q-value < 0.05) 

(Table 3). Specifically, glutamic acid was associated 

with ALM/BMI (P = 0.011) in the discovery cohort but 

associated with both ALM/BMI (P = 0.024) and HGS 

(P = 0.001) in the validation cohort. Glutamic acid was 

negatively associated with ALM/BMI in both the 

discovery and validation cohorts and negatively 

associated with HGS in the validation cohort (Table 4). 

We did not observe any race- or sex-specific effects of 

glutamic acid on the sarcopenia traits in the validation 

cohort (P values for the interaction terms of the 

metabolite with race and sex > 0.05) (Table 3). 

 

N-Acetyl-L-aspartic acid (NAA) and carnosine were 

two potential cohort-specific metabolites associated 

with HGS. NAA was significantly associated with HGS 

in the discovery cohort (P for joint analysis = 0.006; 

effect = 2.2071 and P = 0.002 for HGS), and carnosine 

was suggestively associated with HGS in the validation 

cohort (P for joint analysis = 0.043; effect = -1.0917 

and P = 0.038 for HGS) (Tables 3, 4). There were also 

suggestive (not significant after adjusting for the 
multiple testing) sex-specific effects of both NAA (P 

for interaction with sex = 0.046) and carnosine (P for 

interaction with sex = 0.022) on the sarcopenia traits in 
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Table 1. Characteristics of study participants. 

 
Discovery 

cohort 

Validation cohort 

Overall White women White men Black women Black men 

N 136 174 71 31 19 53 

Age, year 31.5 (5.1) 65.9 (4.7) 67.7 (5.0) 67.1 (5.1) 64.6 (3.2) 63.4 (2.8) 

Weight, kg 70.3 (21.4) 78.6 (38.9) 71.9 (56.8) 87.6 (15.7) 77.5 (19.7) 82.6 (17.1) 

Height, cm 164.6 (6.4) 168.8 (9.5) 162.3 (5.9) 175.3 (7.8) 163.1 (5.5) 175.6 (8.3) 

Body mass index, kg/m2 26.0 (7.5) 27.6 (14.4) 27.3 (21.5) 28.6 (5.5) 29.1 (7.2) 26.8 (5.3) 

Current smoking, % 35.3 56.9 43.7 54.8 47.4 79.2 

Alcohol drinking, gram/day 36.5 (52.4) 12.3 (24.2) 10.3 (14.3) 9.1 (10.5) 14.6 (43.4) 16.0 (30.3) 

Physical activity, times/week 3.1 (2.2) 3.5 (2.6) 3.7 (2.4) 3.1 (2.6) 2.6 (2.4) 3.8 (3.0) 

Dairy intake, cups/day 1.6 (1.3) 1.6 (1.4) 1.8 (1.6) 1.8 (1.5) 1.3 (1.0) 1.3 (1.1) 

ALM/BMI index 0.8 (0.1) 0.8 (0.2) 0.7 (0.1) 0.9 (0.1) 0.7 (0.1) 1.0 (0.2) 

Hand grip strength, kg 27.0 (8.4) 23.6 (9.5) 17.8 (4.5) 31.0 (10.0) 15.4 (4.3) 29.8 (8.1) 

Means (standard deviations) are for continuous variables, and percentages are for categorical variables. 
ALM/BMI, body mass index adjusted appendicular lean mass. 

 

Table 2. Selected metabolites from the metabolic pathways involving aspartic acid and glutamic acid. 

Metabolic pathway Metabolites 

Alanine, aspartate, and glutamate metabolism 
Aspartic acid, Glutamic acid, N-Acetyl-L-aspartic acid, Glutamine, 

Oxaloacetate, γ-Aminobutanoate 

Aminoacyl-tRNA biosynthesis Aspartic acid, Glutamic acid, Serine 

Arginine and proline metabolism 
Aspartic acid, Glutamic acid, Arginine, Ornithine, Proline, 4-

Hydroxyproline 

Histidine Metabolism 
Aspartic acid, Glutamic acid, Histidine, Urocanic acid, Carnosine, 

Histamine 

Nitrogen metabolism Aspartic acid, Glutamic acid 

The metabolites in italic were not detected in the study samples. 

 

the validation cohort (Table 3). Especially, the effects 

on HGS were opposite in women and men for both N-

acetyl-L-aspartic acid and carnosine (Table 4). 

 

DISCUSSION 
 

This targeted metabolomics study replicated the study 

findings of a previous untargeted metabolomics study, 

the association of glutamic acid with sarcopenia traits, 

not only in the original discovery cohort (for the 

previous untargeted metabolomics study) but also in 

another independent validation cohort. Although we did 

not replicate the association of aspartic acid, which was 

another metabolite identified in our previous untargeted 

metabolomics study, with sarcopenia traits in the 

validation cohort, we did replicate it in the discovery 

cohort using the targeted metabolomics method. 

Additionally, we identified two novel metabolites, NAA 

and carnosine, which were potentially associated with 

the sarcopenia trait, muscle strength, by measuring 

more metabolites from the metabolic pathways 

involving glutamic acid and aspartic acid.  

Although untargeted metabolomics analysis has its 

advantages in discovering novel biomarkers without 

the need for a priori metabolic hypothesis over 

targeted metabolomics analysis, it still has many 

challenges or pitfalls, especially compound 

identification [14, 15]. In addition to a large proportion 

of unknown metabolites, the structures of metabolites 

identified through existing MS databases still need 

further verification through comparing with authentic 

standards tested using the same instrument as study 

samples, a “gold standard” for determining metabolite 

identities [16]. Also, the structure verification of 

disease-related metabolites is necessary for subsequent 

functional studies for the ultimate translational goal of 

metabolomics study findings. Therefore, targeted 

metabolomics analysis designed using chemical 

standards of metabolites identified in untargeted 

metabolomics studies will help to further validate the 

metabolite identities and their associations with 
traits/diseases. In this study, we also included 

additional metabolites from the disease-related 

metabolic pathways found in the previous untargeted 
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metabolomics study in the targeted metabolomics 

assay to further identify novel biomarkers for 

sarcopenia traits.  

 

In this study, we replicated the associations of aspartic 

acid and glutamic acid with sarcopenia traits in the 

discovery cohort of young white women using the new 

targeted LC-MS assay. Glutamic acid was also associated 

with sarcopenia traits in the new validation cohort of older 

subjects, including both black and white and men and 

women. These findings might suggest glutamic acid 

influences these sarcopenia traits across age, sex, and 

race. However, aspartic acid might be a sarcopenia trait-

related metabolite that is specific to younger individuals. 

Aspartic acid and glutamic acid are not essential amino 

acids but among the 20 proteinogenic amino acids. 

Aspartic acid can be made from glutamic acid by enzymes 

using vitamin B6. Both aspartate and glutamate (the 

anions of the amino acids) are major excitatory 

neurotransmitters [17], and glutamate also plays roles in 

the skeletal neuromuscular junction. Participating in 

modulating cholinergic transmission and plastic changes 

[18]. Glutamate in skeletal muscle also participates in 

various metabolic pathways, such as glutathione 

synthesis, insulin production, tricarboxylic acid cycle, and 

purine nucleotide cycle [19]. Additionally, glutamic acid 

can be converted to γ-aminobutyric acid (GABA) by the 

enzyme glutamic acid decarboxylase. GABA is the most 

abundant inhibitory transmitter in the brain. Oral 

supplementation of GABA has been reported to increase 

growth hormone and muscle protein synthesis, potentially 

contributing to dynamic protein turnover [20]. The 

association of glutamic acid with muscle mass we 

identified was in line with the finding in a sample of UK 

women [21]. However, we added further evidence for its 

association with muscle strength in humans as well. In 

addition, animal studies have shown that aspartate inhibits 

inflammation-induced muscle loss through regulating 

phosphorylation of Akt, AMPKα, and FOXO1 [22, 23]. 

However, we identified aspartate were negatively 

associated with muscle mass and strength in humans. 

These inconsistent findings warrant more studies to clarify 

its role in muscle regulation. 

 

NAA is a derivative of aspartic acid and the second 

most concentrated molecule in the brain after the amino 

acid glutamic acid. NAA is essential for normal brain 

operation and declines in several neurodegenerative and 

neuropsychiatric diseases [24]. Also, NAA is reduced in 

the aging spinal cord that contributes to loss of 

innervation and downstream degenerative processes that 

occur in skeletal muscle [25]. NAA is synthesized in 

neuronal mitochondria but can efflux from the brain to 

the circulation. It has been observed that serum levels of 

NAA decreased with aging [26], suggesting its effects 

on health conditions/diseases might vary with age. This 

might partially explain why it was associated with 

muscle strength only in the discovery cohort of young 

subjects, but not in the validation cohort of older 

subjects in this study.  

 

 
 

Figure 1. Pairwise correlation coefficients among the metabolites in the targeted assay. (A) Discovery cohort. (B) Validation 

cohort. 



www.aging-us.com 2105 AGING 

Carnosine is a dipeptide of the amino acids beta-alanine 

and histidine with a high concentration in mammalian 

skeletal muscle. In skeletal muscle cells, carnosine can 

be synthesized by carnosine synthase from beta-alanine 

and histidine. Interestingly, muscle carnosine loading 

leads to improved performance in high-intensity 

exercise in both untrained and trained individuals [27]. 

Also, carnosine has the potential to suppress many of 

the biochemical changes that accompany aging, such as 

protein oxidation, glycation, and cross-linking, and 

associated pathologies [28]. In this study, we observed a 

suggestive sex difference in the effects of plasma 

carnosine levels on muscle strength among older 

subjects. Carnosine was positively associated with 

muscle strength in women, but negatively in men. 

Blood carnosine is partially influenced by dietary 

factors, such as intakes of carnosine and beta-alanine 

[29]. Therefore, reverse causation might be an 

 

 
 

Figure 2. Pairwise correlation coefficients among the metabolites in the race-sex subgroups of the validation cohort.  
(A) White women. (B) Black women. (C) White men. (D) Black men. 
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Table 3. The significance of the associations between metabolites and sarcopenia traits in the joint and 
individual trait analyses. 

Metabolite Class HMDB ID 

Discovery cohort 

 

Validation cohort 

Joint 

analysis 
ALM/BMI HGS 

Joint 

analysis 

Interaction 

with race 

Interaction 

with sex 
ALM/BMI HGS 

Aspartic acid Amino acid HMDB0000191 0.009* 0.023 0.010  0.917 0.539 0.588 0.880 0.704 

Glutamic acid Amino acid HMDB0000148 0.025* 0.011 0.132  0.001* 0.428 0.259 0.024 0.001 

Glutamine Amino acid HMDB0000641 0.466 0.585 0.409  0.623 0.080 0.335 0.347 0.876 

N-Acetyl-L-

aspartic acid 
Amino acid HMDB0000812 0.006* 0.178 0.002  0.682 0.102 0.046 0.548 0.471 

Serine Amino acid HMDB0000187 0.964 0.920 0.842  0.214 0.668 0.500 0.288 0.294 

4-Hydroxyproline Amino acid HMDB0000725 0.762 0.475 0.803  0.929 0.703 0.292 0.714 0.868 

Arginine Amino acid HMDB0000517 0.679 0.582 0.677  0.957 0.293 0.995 0.959 0.796 

Ornithine L-alpha-amino acid HMDB0000214 0.393 0.199 0.874  0.934 0.624 0.708 0.726 0.861 

Proline Amino acid HMDB0000162 0.357 0.870 0.176  0.492 0.462 0.319 0.329 0.416 

Carnosine Hybrid peptide HMDB0000033 0.485 0.292 0.924  0.043 0.060 0.022 0.411 0.038 

Histidine Amino acid HMDB0000177 0.391 0.186 0.567  0.164 0.471 0.657 0.589 0.117 

Urocanic acid Imidazole HMDB0000301 0.667 0.952 0.406  0.958 0.443 0.526 0.942 0.828 

*FDR q-value < 0.05. Raw P values < 0.05 are bold. 
ALM/BMI, body mass index adjusted appendicular lean mass; HGS, hand grip strength; HMDB, the Human Metabolome 
Database. 

 

Table 4. The effects associated with sarcopenia traits in the discovery and validation cohorts. 

Metabolite 

ALM/BMI 

 

HGS 

Discovery cohort 
Validation cohort 

Discovery cohort 
Validation cohort 

Overall White Black Women Men overall White Black Women Men 

Aspartic acid -0.0217 -0.0016 -0.0122  0.0251 -0.0185  0.0061  -1.8126 -0.2053 -0.0213 -0.5099 -0.1444 -0.4212 

Glutamic acid -0.0242 -0.0255 -0.0219 -0.0159 -0.0217 -0.0171  -1.0832 -1.8610 -2.7074 -1.4658 -1.6002 -2.8643 

Glutamine  0.0055  0.0096  0.0051  0.0242  0.0114  0.0020  -0.6150  0.0828  0.6324 -0.9101 -0.3811  0.4758 

N-Acetyl-L-aspartic 

acid 
0.0132  0.0062 -0.0006  0.0067 -0.0031  0.0035   2.2071  0.3889  0.9694 -0.1936 -0.7651  0.7507 

Serine -0.0010  0.0111  0.0066  0.0134  0.0087  0.0083   0.1427 -0.5708 -0.8434  0.0111 -0.0173 -0.6966 

4-Hydroxyproline  0.0071 -0.0040  0.0096 -0.0102  0.0239 -0.0175   0.1824 -0.0942  0.0443 -0.6128  0.8805 -0.8552 

Arginine -0.0053 -0.0005 -0.0160  0.0163 -0.0057  0.0027   0.2956 -0.1371 -0.4751  0.5423 -0.1930  0.0777 

Ornithine  0.0126  0.0037 -0.0059  0.0107 -0.0012  0.0031   0.1149  0.0960 -0.1391  0.0735 -0.1766  0.3235 

Proline  0.0016 -0.0110 -0.0157  0.0068 -0.0171 -0.0040   0.9811 -0.4799 -0.0328 -0.7278  0.1212 -0.8645 

Carnosine -0.0103  0.0083  0.0117  0.0036  0.0119  0.0026   0.0681 -1.0917 -1.8010 -0.7936  0.3106 -1.5213 

Histidine -0.0130  0.0056 -0.0027  0.0194 -0.0080  0.0101  -0.4155 -0.8430 -0.6724 -1.2067 -0.2238 -1.3029 

Urocanic acid -0.0006  0.0007 -0.0141  0.0199 -0.0168  0.0210  -0.5849 -0.1167 -0.7393  1.0734 -0.5771  0.9171 

All the effects were associated with 1-standard deviation changes in metabolites. 
ALM/BMI, body mass index adjusted appendicular lean mass; HGS, hand grip strength. 

 

explanation for the negative association between 

carnosine and muscle strength in men. For example, 

carnosine supplementation was taken among the elderly 

with reduced muscle function.  

 

Our study has several strengths. First, we implemented 
a novel strategy of metabolomics study, which was to 

conduct targeted metabolomics analysis following up 

the study findings of an untargeted metabolomics study. 

Second, a pathway-based approach was used in the 

targeted metabolomics analysis to further identify 

sarcopenia trait-related metabolites. Third, two diverse 

study cohorts were included to identify common and 

specific outcome-related metabolites for different age, 

race, and sex subgroups. Finally, we investigated two 
major sarcopenia traits, muscle mass and strength, at the 

same time instead of muscle mass only which most of 

the previous studies focused on. In fact, muscle strength 
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is better than muscle mass in predicting adverse 

outcomes [30]. Nevertheless, our study also has some 

limitations. The sample size for each race-sex subgroup 

in the validation cohort was relatively small, especially 

for white men and black women, which might have 

limited the study power for examining the potential race 

and sex differences in metabolites associated with 

sarcopenia traits. Although we have used compre-

hensive pathway analysis to select metabolites from the 

metabolic pathways of interest for the targeted 

metabolomics analysis, it is still possible that we have 

missed some important metabolites that were not tested 

in the targeted LC-MS assay.  

 

In conclusion, this targeted metabolomics study 

replicated some findings from the previous untargeted 

metabolomics study of sarcopenia traits and also 

identified novel metabolites associated with sarcopenia 

traits. Our findings suggest that glutamic acid might be 

a risk factor for sarcopenia traits across all age, sex, and 

race groups. However, the effects of aspartic acid, 

NAA, and carnosine might vary with age. The 

biological mechanisms underlying the relationship 

between these metabolites and sarcopenia traits still 

need to be clarified in future studies. 

 

MATERIALS AND METHODS 
 

Study subjects 

 

We included two study cohorts, the discovery and 

validation cohorts. The discovery cohort consisted of 

136 white women aged 20-40 years from the ongoing 

Louisiana Osteoporosis Study (LOS), which aims to 

build a large sample pool and database for investigating 

genetic and environmental factors for osteoporosis in 

Southern Louisiana. The inclusion and exclusion 

criteria of LOS have been described in our previous 

study [31]. Individuals who were pregnant, had a 

bilateral oophorectomy, or had any chronic conditions 

(such as diabetes mellitus, renal failure, liver failure, 

lung disease, gastrointestinal disease, and inherited bone 

disease) were excluded from the current study. The 

validation cohort was from the ongoing MetAbolomics 

Study of Sarcopenia (MASS), which was designed to 

conduct metabolomic profiling of sarcopenia traits 

among individuals ≥ 60 years from the New Orleans 

metropolitan area, Louisiana. In this study, we included 

174 sequential participants recruited in MASS till 

conducting this study (71 white women, 31 white men, 

19 black women, and 53 black men). The exclusion 

criteria of MASS include 1) prolonged bed rest caused 

by any reasons; 2) chronic failure of heart, lung, liver, 

and kidney; 3) nervous system diseases (e.g., stroke, 

spinal cord injuries, and dementia); 4) uncontrolled 

diabetes mellitus; 5) chronic lung/gastrointestinal 

diseases/cancers; 6) severe rheumatoid arthritis; 7) 

active cancer treatment in the last years or cancer 

cachexia; 8) any type of congenital muscular dystrophy 

or metabolic disorders; and 9) alcohol or other 

substance abuse. Both LOS and MASS were approved 

by the institutional review board, and a written consent 

form was signed by each participant before any data and 

biosample collection. 

 

Clinical measurements 

 

The participants of the two cohorts completed an 

interviewer-assisted comprehensive questionnaire to 

collect demographic information, lifestyle (including 

smoking, drinking, and physical activity), dietary 

factors (including dairy consumption), reproductive and 

medical history [13]. Weight was measured in light 

indoor clothing using a calibrated balance beam scale, 

and height was measured using a calibrated stadiometer 

without shoes. Body mass index (BMI) was calculated 

as weight (kg) divided by height squared (m2).  

 

In both cohorts, total body and regional measures of 

lean mass were acquired using a dual-energy X-ray 

absorptiometry machine (Hologic Inc., Bedford, MA, 

USA) by trained and certified research staff. The 

machine was calibrated daily, and software and 

hardware were kept up to date during the data collection 

process. ALM was calculated as the sum of lean mass in 

the arms and legs. The BMI-adjusted ALM (ALM/BMI) 

was used to assess individuals’ muscle mass in the 

study [13, 32]. HGS was measured using the Jamar 1 

hand-held dynamometer (TEC Inc., Clifton, NJ, USA). 

Two measurements of strength were taken at both 

hands. The maximum grip strength value of the two 

hands was used to assess an individual’s muscle 

strength. 

 

Pathway-based metabolite selection 

 

In our previous untargeted metabolomics study, we 

identified five metabolic pathways including aspartic 

acid and glutamic acid which were significantly 

associated with sarcopenia traits using the pathway 

enrichment analysis integrated into the MetaboAnalyst 

web tool [13]. This tool uses the pathway data from the 

KEGG database. Chemical compounds can be mapped 

to the pathways using HMDB IDs. This method also 

conducts topological analysis to assess the impact of 

each metabolite on the pathway of interest. It uses 

relative betweenness centrality and out-degree centrality 

measures of a metabolite in a pathway to calculate its 

importance, a score ranging from 0 to 1 [33]. In this 
study, we selected 15 metabolites from the five 

metabolic pathways involving aspartic acid and 

glutamic acid based on their importance scores over 
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0.05 in the topological analysis and chemical 

characteristics for the LC-MS analysis (Table 2). Figure 

3 shows the topology analysis results of the alanine, 

aspartate, and glutamate metabolism pathway as an 

example to show how we selected the metabolites for 

the pathway. 

 

Targeted metabolomics analysis 

 

Sample preparation 

Blood samples were collected from the study subjects 

after over 10 hours overnight fasting. Serum samples 

from the discovery cohort and plasma samples from the 

validation cohort were available and used for the 

metabolomics analysis. Serum or plasma samples were 

separated and stored in freezers at -80° C before this 

study. To each thawed serum or plasma sample (100 

μL) in a 1.5 mL microcentrifuge tube, 20 μL of internal 

standard solution containing 4 μg/mL L-Proline-
13C5,15N and 40 μg/mL L-Aspartic acid-2,3,3-d3 

(Cambridge Isotope Laboratories, Inc., Tewksbury, 

MA, USA) was added, followed by vortex mixing for 

20 second. Then, 800 μL of acetonitrile/acetone/ 

methanol (8:1:1, v/v/v) was added for protein 

precipitation. After a stand still at -20° C for 20 min, 

and the mixture was centrifuged at 15,000 rpm for 10 

min at -10° C. The supernatant (500 μL) was transferred 

to a new 1.5 mL microcentrifuge tube and dried under a 

gentle stream of nitrogen gas. The dried sample was 

reconstituted in 75 μL of 5% acetonitrile in water 

followed by centrifugation at 15,000 rpm for 5 min at -

10° C. The supernatant (50 μL) was transferred into a 

300 μL autosampler vial (Waters), placed at 4° C before 

the LC-MS/MS analysis. 

 

LC-MS/MS analysis for targeted profiling 

The LC-MS/MS analysis of prepared samples was 

performed on SCIEX Triple Quad 5500 (AB Sciex 

LLC, Framingham, MA, USA) with Shimadzu Nexera 

XR HPLC (Shimadzu Scientific Instruments, Columbia, 

MA, USA) in the positive ionization mode. We used 

well-established HPLC/MS/MS methods to analyze the 

metabolites included in this study [34], with 

optimization of DP and CE on AB SCIEX 5500. 

Prepared test samples were placed in a SIL-20AC XR 

autosampler (Shimadzu Scientific Instruments, 

Columbia, MA, USA) that was set at 10° C. 

Chromatographic separation was achieved using an 

Acclaim™ 120 C18 column (2.1 × 100 mm, 3 μm; 

Thermo Fisher Scientific Inc., Waltham, MA, USA) 

maintained at 30° C with an injection volume of 1.0 μL. 

Mobile phase A consisted of 0.1% formic acid in 

water/acetonitrile (95:5, v/v) and mobile phase B was 

0.1% formic acid in acetonitrile. The HPLC column was 

equilibrated with 100% mobile phase A at 30° C, and 

the linear gradient used for elution was 0% B from 0-1 

min, 0-30% B from 1-3 min, 30-95% B from 3-3.5 min, 

95-99% B from 3.5-4 min, 99% B from 4-5 min, 
 

 

 

Figure 3. The topology analysis of the pathway of alanine, aspartate, and glutamate metabolism. The metabolites with red dash 

lines are the metabolites we selected from the pathway for the targeted assay. The number above each metabolite is the importance score 
of the metabolite in the pathway based on the topology analysis. 
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99-0% B from 5-5.5 min, and 0% B from 5.5-6 min. 

The total elution of a typical injection was 6.0 min at a 

flow rate of 0.25 mL/min, with a 2 min interval for 

column equilibration. The optimal MS/MS conditions 

for each metabolite were determined by individual 

standards (100 ng/mL in methanol) in the positive 

ionization mode. Retention times and MRM transitions 

of each metabolite are summarized in Supplementary 

Table 1. The blank control was prepared as 5% 

acetonitrile in water, and 5 µL of 20 random post-

extracted plasma samples were pooled to form the QC 

sample. The blank control and QC sample were 

analyzed prior to the first tested sample and after every 

ten samples to monitor the instrument variability. The 

relative standard deviations of the analyzed metabolites 

were < 10%, showing good stability and reproducibility 

of the analytical system used in this study. 

 

LC-MS/MS data handling 

Results collected from LC-MS/MS was analyzed in 

MultiQuart software 3.0.2 (AB Sciex LLC, Framingham, 

MA, USA). Analyte peaks in each MRM transition were 

automatically recognized in MultiQuart and checked 

manually. As internal standards were defined, the relative 

levels of each test metabolite were presented as the peak 

area ratio of the metabolite to the internal standard. Three 

of the 15 selected metabolites (oxalacetic acid, γ-

aminobutyric acid, and histamine) were not detected in 

the samples using the targeted LC-MS method (Table 4). 

The other 12 metabolites had been detected in all the 

samples, and their abundance data were further log 

transformed and autoscaled to have zero mean and unit 

variance (z scores) using the R package ‘specmine’ [35].  

 

Statistical analyses 

 

The characteristics of the participants were summarized 

using means (standard deviations) for continuous 

variables and percentages for categorical variables. 

Pairwise Pearson correlation coefficients were 

calculated to assess the relationship between 

metabolites in the discovery and validation cohorts, 

respectively. We used a multivariate analysis method to 

jointly examine the associations of metabolites with 

sarcopenia traits of interest, ALM/BMI and HGS, using 

the seemingly unrelated regression of the R package 

‘systemfit’ [36]. The null hypothesis (H0) was that none 

of the traits was associated with the tested metabolite. 

At least one trait associated with the metabolite would 

reject the null hypothesis. The coefficients for each 

outcome variables were estimated. Potential con-

founding factors, including age, BMI (for HGS), 

smoking, alcohol drinking, physical activities, and dairy 
intakes, were adjusted in these models. For the 

validation cohort, race and sex were also adjusted. The 

interaction terms of race and metabolites as well as sex 

and metabolites were also included in these models to 

examine the race- and sex-specific effects of the 

metabolites on the sarcopenia traits in the validation 

cohort. Race- and sex-stratified analysis were also 

conducted to estimate the effects of each metabolite on 

the sarcopenia traits. The false discovery rate (FDR) 

method was used to adjust for multiple testing [37]. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Table 
 

Supplementary Table 1. Retention times and MRM transitions of metabolites quantified by LC-MS/MS. 

Analyte Ion transition (m/z) 
Declustering potential 

(V) 

Collision energy  

(eV) 

Retention time  

(min) 

Serine 106.00 > 60.00 10 21 1.19 

Proline 116.00 > 70.00 60 21 1.25 

L-Proline-13C5,15N 122.10 > 75.00 60 21 1.25 

4-Hydroxyproline 132.00 > 86.00 10 21 1.20 

Ornithine 133.10 > 70.00 6 21 1.02 

Aspartic acid 134.0 > 74.00 61 25 1.22 

L-Aspartic acid-2,3,3-d3 137.10 > 75.00 60 21 1.22 

Urocanic acid 139.00 > 93.00 6 21 1.44 

Glutamine 147.00 > 84.00 60 21 1.19 

Glutamic acid 148.00 > 84.00 60 21 1.20 

Histidine 156.00 > 110.00 6 21 1.03 

Arginine 175.10 > 70.00 1 45 1.19 

N-Acetyl-L-aspartic acid 176.10 > 134.00 31 15 1.59 

Carnosine 227.10 > 110.00 41 37 0.99 

 


