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INTRODUCTION 
 
Breast cancer is one of the most common malignant 
tumors in women, with the highest incidence and 
mortality rate among all types of malignant tumors in 
women, posing a serious threat to women’s health [1]. 

In recent years, the treatment of breast cancer has been 
developing, and various clinical treatments such as 
surgery, chemotherapy and targeted therapy have 
become more and more mature. However, due to the 
high heterogeneity and metastatic nature of breast 
cancer, there is still room for improvement in the 
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ABSTRACT 
 
The human ATP binding cassette (ABC) family of transporter proteins plays an important role in the 
maintenance of homeostasis in vivo. The aim of this study is to evaluate the potential diagnostic, prognostic, 
and therapeutic value of the ABCA10 gene in BRCA. We found that ABCA10 expression was downregulated in 
different subgroups of breast cancer and strongly correlated with pathological stage in BRCA patients. Low 
expression of ABCA10 was associated with BRCA patients showing shorter overall survival (OS). ABCA10 
expression may be regulated by promoter methylation, copy number variation (CNV) and kinase, and is 
associated with immune infiltration. Our study also demonstrated the potential role of ABCA10 modifications in 
tumor microenvironment (TME) cellular infiltration. Nevertheless, the regulatory mechanism remains unknown 
and immunotherapy is marginal in BRCA. We demonstrate the expression of different ABCA10 modulators 
in breast cancer associated with genetic variants, deletions, tumor mutation burden (TMB) and TME. Mutations 
in ABCA10 are positively associated with different immune cells in six different immune databases and play 
an important role in immune cell infiltration in breast cancer. Overall, this study provides evidence that ABCA10 
could become the potential targets for precision treatment and new biomarkers in the prognosis of breast 
cancer. 
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mortality rate of breast cancer patients [2, 3]. 
Therefore, it is important to select more effective 
drugs for breast cancer treatment, prolong the survival 
of patients and reduce the mortality rate of breast 
cancer. 
 
The ATP-binding cassette transporter protein (ABC 
transporter protein) family is a class of transmembrane 
transport proteins widely found in living organisms [4]. 
The ABC transfer protein superfamily is the largest 
family of human transfer protein genes, which is 
divided into seven subfamilies: ABCA, ABCB, ABCC, 
ABCD, ABCE, ABCF, and ABCG, the results of which 
can be divided into full and half-transporter. To date, 48 
ABC genes have been identified, most of which are 
membrane-bound primary transporter proteins that 
actively transport various molecules to all cell 
membranes via ATP hydrolysis. The typical structure of 
ABC transporter proteins consists of a pair of 
nucleotide-binding domains (NBDs) located on the 
cytoplasmic side of the membrane, where the NBDs 
function to bind and hydrolyze ATP to provide energy 
for substrate translocation and the transmembrane 
domains (TMDs) are involved in substrate recognition 
[5]. Many cancers have been associated with ABC 
transport protein mutations, including ovarian cancer, 
lung cancer, liver cancer, colorectal cancer, and 
leukemia [4, 6–10]. However, there are no reports of 
low expression and mutation of ABCA10 leading to the 
progression of breast cancer. 
 
The use of bioinformatics to identify important cancer 
biomarkers is increasingly becoming a reliable and 
profitable method to provide a reliable guide for 
developing appropriate therapeutic interventions due to 
the availability of multi-omics clinical data in public 
databases including differentially expressed genes, 
mutation signatures, treatment response and survival 
characteristics of cancer patients. In addition, network 
analysis of multi-omics data also helps us to understand 
the epigenetic mechanisms of cancer development and 
facilitate the discovery of epigenetically based 
prognostic biomarkers and therapies. In this study, we 
identified ABCA10 as an oncogenic predictor of breast 
cancer and tumor immune infiltration. We also 
demonstrated that the ABCA10 signature was 
associated with immunotherapeutic response and poor 
prognosis in a breast cancer cohort. Genetic alterations 
in ABCA10 co-occur with other genetic alterations and 
are associated with poorer prognosis in the cohort. 
Finally, through pharmacogenetics we screened for 
drugs that have potential to target ABCA10. Thus, our 
findings may be clinically useful in designing 
appropriate treatment strategies, prognostic assessment 
and follow-up management of multiple cancer 
immunotherapies. 

MATERIALS AND METHODS 
 
Multiple breast cancer cell lines and cell culture 
 
Normal breast cells (H-184B5F5/M10) and breast 
cancer cell lines (MDA-MB361, MDA-MB-231, MDA-
MB-453, MDA-MB-468, HS578T, ZR781, T47D and 
MCF7 (all cell lines were purchased from (bioresource 
collection and research center, Hsinchu, Taiwan) were 
used and incubated in culture medium supplemented 
with 10% fetal bovine serum in a humidified 
atmosphere with 95% air and 5% CO2 at 37°C, while 
the MDA-MB cell line did not require CO2 conditions. 
 
Real-time PCR detection 
 
Multiplex breast cancer cell lines were extracted using 
EasyPrep Total RNA Kit (BIOTOOLS Co., Ltd., 
Taipei, Taiwan). and reverse transcribed by ToolScript 
MMLV RT kit. (BIOTOOLS Co., Ltd.). RT-qPCR was 
performed using TOOLS 2X SYBR qPCR Mix 
(BIOTOOLS Co., Ltd.) in a StepOne™ Real-Time PCR 
System (Thermo Fisher Scientific). 
 
Human BRCA specimens 
 
Tissue microarray (TMA) slides (CBA4) containing 
human breast cancer, metastatic, and normal tissues 
were purchased from SuperBioChips Laboratories 
(Seoul, Republic of Korea). For immunohistochemistry 
(IHC) assays and scoring methods were performed as 
described. The slides were treated with anti-ABCA10 
antibody (1:100, Merck, USA). IHC analyses included a 
scoring system involving two aspects, namely, staining 
intensity and percentage of positive cells. The total 
score ranged from 0 to 300, calculated as staining 
intensity × percentage of positively labeled cells. All 
clinical studies were performed in accordance with the 
approved guidelines of the Show Chwan Memorial 
Hospital Institutions Review Board (IRB: 1080604). 
Informed consent was obtained from all patients 
involved in this study. 
 
cBioPortal database 
 
cBioPortal (http://cis.hku.hk/TISIDB/) is a 
comprehensive website that allows exploration, 
visualization and analysis of multidimensional cancer 
genomic data [11]. We obtained the frequency of 
ABCA10 gene changes, mutation types and copy 
number changes in all tumors in TCGA through the 
"Cancer Type Summary" module of cBioPortal. In this 
study, we selected “TCGA Pan Cancer Atlas Study” in 
“Quick Select” section of the cBioPortal web and 
entered into “ABCA10” to find the genetic alteration 
characteristics of ABCA10. Next, we observed the 
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alteration frequency results, structural variants, mutation 
type, and CNA (Copy number alteration) of all TCGA 
tumors within the “Cancer Types Summary” module. 
 
GEPIA 2 database 
 
GEPIA2 (http://gepia2.cancer-pku.cn/#index) is a web-
based interactive tool for analyzing relevant RNA 
sequencing data from the cancer TCGA and GTEx 
projects [12]. General gene expression profiling, 
survival analysis and correlation analysis of TCGA-
BRCA cohorts and normal tissues are performed 
through the "Expression Analysis" module, and data are 
available in the panel "dataset sources" (setting: P-value 
cutoff = 0.01, log2 fold change cutoff = 1, and “Match 
TCGA normal and GTEx data”). Student t tests were 
used to perform expression analyses. Survival results 
are shown by Kaplan-Meier curves. p value = 0.05 is 
used as a threshold for statistical significance. 
 
Kaplan-Meier plotter 
 
For survival analysis in Kaplan-Meier Plotter 
(https://kmplot.com/analysis/), patient groups were 
divided by “Auto select best cutoff”, which 
automatically computes all possible cutoff values 
between the lower and upper quantile and selects the 
best performing threshold as a cutoff. 
 
LinkedOmics database 
 
LinkedOmics (http://www.linkedomics.org/admin.php) 
is an interactive portal that includes 32 TCGA cancer-
related data. Differentially expressed genes associated 
with ABCA10 in BRCA were analyzed using the 
Pearson test [13]. We used the LinkedOmics functional 
module to analyze co-expressed genes of ABCA10 to 
explore their biological significance in BRCA. We 
downloaded the TCGA dataset of breast cancer mRNA 
and screened 1093 clinical cases containing ABCA10 
gene expression, and ranked the cases in the top 
50% and bottom 50% of expression levels as the high 
and low expression groups, with a test standard of 
p < 0.001. 
 
Oncomine database 
 
The Oncomine database was used to determine the 
transcriptional expression level of ABCA10 gene in 
breast cancer. The expression level of ABCA10 
mRNA (log2 transactivation) in BRCA tissues was 
evaluated relative to its expression in normal tissues 
[14]. To obtain the most significant ABCA10 
expression, the thresholds were set as follows: the 
p-value was set as 1E−4, and the fold change was 
set as 2. 

Breast cancer gene-expression miner 4.7 
 
Evaluate the expression and prognostic value of 
ABCA10 in breast cancer using the Breast Cancer Gene 
Expression Miner online dataset [15]. The online 
dataset is a statistical mining tool for published 
annotated breast cancer transcriptomic data, including 
DNA microarray, RNA-seq, and RNA-seq. RNA-seq 
has a large amount of published annotated genomic 
data, allowing statistical analysis of gene expression, 
correlation and prognosis. 
 
TIMER 2.0 database 
 
Tumor Immunology Estimation Resource (TIMER) 
2.0 is providing a profile of various infiltrating 
immune cells (B cells, CD4+ T cells, CD8+ T cells, 
neutrophils, macrophages and dendritic cells...etc.) in 
tumor tissues as detected by RNA-Seq expression 
profiling data. We evaluated the association of 
ABCA10 expression levels with immune cell 
infiltration, survival of BRCA patients as derived from 
different databases in TIMER, and immune cell 
infiltration with genes. We entered "ABCA10" in the 
"Gene_DE" module of the TIMER 2.0 and found 
differences in ABCA10 expression between adjacent 
normal tissues and 33 different tumors or specific 
tumor subtypes in the TCGA project. 
 
Connectivity map analysis 
 
To identify potential drugs capable of mimicking 
ABCA10 activation, differentially expressed genes 
(DEGs) from ABCA10 overexpressing MCF7 cells 
were prepared using the R-based web application 
GEO2R [11]. The cMAP database collects drug-
induced gene expression profiles from human cancer 
cell lines and can be used to compare similarities and 
differences between the expression of the input DEGs 
and drug-induced genes. 
 
Statistical analyses 
 
Statistical methods were as previously described [16]. 
Correlation of gene expression was assessed using 
Spearman’s correlation coefficient. Statistical differences 
were analyzed using GraphPad Prism (GraphPad 
Software, La Jolla, CA, USA) by performing a t-test or 
Fisher’s exact test for both groups and a one-way 
ANOVA test for one group. A p-value of less than 0.05 
was considered statistically significant. 
 
Data availability statement 
 
The dataset supporting the conclusions of this article is 
included within the article. 

http://gepia2.cancer-pku.cn/#index
https://kmplot.com/analysis/
http://www.linkedomics.org/admin.php


www.aging-us.com 2255 AGING 

RESULTS 
 
Identification of key mutated genes in BRCA 
 
First, we obtained the mutation profiles of BRCA 
patients from the TCGA database. The details of the top 

30 most frequently mutated genes are shown in the 
waterfall diagram as shown in Figure 1A. The 
validation of the TCGA-BRCA cohort indicates that 
ABCA10 is one of the frequently mutated genes. After 
analysis through the ONCOMINE database, we found 
that ABCA10 levels were much lower than normal 

 

 
 
Figure 1. ABCA10 was significantly mutated in breast cancer compared with normal breast tissue. (A) Waterfall Plot of the top 
30 mutated genes from TCGA. The bar plot indicates the number of genetic mutations per patient, while the right bar plot displays the 
number of genetic mutations per gene. (B) The mRNA expression levels of ABCA10 in multiple cancers on ONCOMINE database. Red 
background with numbers indicates the studies including ABCA10 expression levels meeting our selection standards (with P-values <0.05 and 
expression fold changes >1.5-fold change and expressed gene rank in the top 10% as our selection threshold) in cancer tissue; Blue (the same 
selection threshold) in normal tissues. (C, D) Volcano and scatter and volcano plots exhibiting genes associated with alterations in ABCA10 
CNA frequency. (E) Box blot representing the 10 most frequently altered genes. (F) Mutation counts in patients with different kinds of cervical 
cancer in the TCGA dataset. (G) The distribution and correlation of CNVs are labeled as gains and losses, presented as visual ratios. 
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tissues only in breast cancer among the pan-cancers 
(Figure 1B). Analysis of the frequency of concurrent 
gene alterations with ABCA10 gene alterations by the 
cBioPortal database revealed a total of 9083 genes with 
concurrent gene alterations, which were enriched for both 
ABCA10 altered and unaltered cohorts (Figure 1C, 1D). 
However, TTN, CDH1, GATA3, MAP3K1, ABCA10, 
NCOR1, RUNX1, MDN1 TBX3, RB1 altered and non-
altered were the most common mutation cohort of genes 
altered (Figure 1E). We assessed the mutation load of 
each type of breast cancer by counting the mutations in 
each tumor sample. Most breast tumors had a mutation 
load in the <10 change range (Figure 1F). Significant 
changes in ABCA10 gain and loss were observed in the 
CNV ratio distribution and box plot (Figure 1G). 
 
Basic characteristics and genetic alteration of 
ABCA10 in BRCA 
 
Next, we used the cBioPortal database to evaluate the 
type and frequency of ABCA10 alterations in BRCA 

tissues based on sequencing data from BRCA patients 
obtained from TCGA’s Pan-Cancer Atlas database. We 
found that 7% of ABCA10 genes were mutated in 
various cancers (Figure 2A). We further explored the 
specific alterations in each gene, and we also found that 
residues 400–500 had the most mutated sites in the 
ABCA10 structure. All genetic alterations occurring in 
BRCA tumor samples were mostly copy number 
amplification (Figure 2B), which was the predominant 
type of genetic alteration in all TCGA tumor samples. 
The somatic copy number alterations (sCNA) module 
allows the user to compare the immune infiltration 
distribution of TCGA cancer types by the sCNA status 
of the genes. We examined the expression of many 
representative genes from each of the major ABCA10 
pathways and investigated ABCA10 “deep deletion” or 
“high amplification” altered states. We observed the 
gene expression levels of ABCA10 master regulators in 
pan-cancer (Figure 2C). In this study, we present an 
analytical strategy to assess the relative prognostic 
impact of all arm-level events in a pan-cancer SCNA 

 

 
 
Figure 2. Frequency and type of ABCA10 alterations in breast cancer. (A) Analysis of various mutations in the ABCA10 gene in 
human cancer data. (B) The graphical view showing the ABCA10 protein domain and the location of specific mutations. (C) The illustration 
of the definition of somatic cell copy alteration in ABCA10 deletion, arm and chromosome levels. (D) Expression of ABCA10 in different 
types of mutated tumor tissues. 
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cohort by varying mutation percentages in the pan-
cancer SCNA cohort. This combined landscape of arm-
level gains highlights the specific changes most closely 
associated with survival within human breast cancer and 
each specific type. Importantly, this complete list of 
rankings represents several attractive candidate gene 
sets and functions to explore. Next, we investigated the 
relationship between ABCA10 expression and BRCA 
mutation type. The results showed significant 

differences between the moderate and normal tissue and 
tumors without mutation groups (Figure 2D). 
 
Downregulation of ABCA10 signal network is 
associated with poor prognosis 
 
As shown in Figure 3A, BRCA patients were divided 
into low ABCA10 and high ABCA10 groups using the 
median expression as the threshold, and the expression 

 

 
 

Figure 3. Transcriptional level of ABCA10 in BRCA. (A) Overall survival estimates for ABCA10 mRNA levels from Kaplan‐Meier plotter 

database. (B) Expression of ABCA10 in BRCA and normal tissues. (C, D) ABCA10 expression in normal, BRCA primary tumor and metastatic 
tumor  from different datasets. Violin  (E) and box plot  (F)  to evaluate ABCA10 mRNA expression  in BRCA patients based on pathological 
stage. (G) The mRNA expression level of ABCA10 among different subtypes of BC from TCGA database. (H, I) Significance of dependency of 
ABCA10 in 84 BRCA cell lines and different subtypes based on the CRISPR screen. (J) mRNA expression of ABCA10 in normal breast cells and 
multiple breast  cancer  cells.  (K) qPCR analysis of ABCA10  in 30 paired BRCA and non‐tumor  tissues. N and T  represent non‐tumor and 
tumor tissues, respectively. (L) Representative  images of ABCA10 staining  in BRCA tissues. (M)  IHC scores of ABCA10 expression  in BRCA 
tissues. **P < 0.01, ***P < 0.001. 
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difference between the two groups was significant (p = 
0.011). Kaplan-Meier analysis showed that the survival 
rate of the low-ABCA10 group was shorter than that of 
the high-ABCA10 group. We analyzed the expression 
levels of ABCA10 in normal and tumor tissues of the 
breast and showed a significant decrease in ABCA10 
expression in tumor tissues (Figure 3B). The expression 
of ABCA10 in malignant breast cancer was shown by 
various databases, and the results showed that 
metastatic tissues were significantly lower than normal 
tissues (Figure 3C, 3D). To understand the levels of 
ABCA10 mRNA at different clinical stages, the data 
consistently showed that the levels of ABCA10 were 
significantly reduced from stage I (Figure 3E, 3F). The 
expression levels of ABCA10 in luminal A, luminal B, 
basal-like, and HER2 were all lower than normal tissues 
in different subtypes of breast cancer (Figure 3G). We 
further analyzed the dependence of 84 breast cancer cell 
lines on ABCA10 and mapped the ABCA10 
dependence (fold change in sgRNA abundance relative 
to control transfected cells) of breast cancer cell lines 
and different subtypes, which were ranked by increasing 
ABCA10 dependence (Figure 3H, 3I). We further 
confirmed the mRNA levels of ABCA10 in breast 
cancer cells and normal breast cells (H-184B5F5/M10), 
and the results were consistent with the database data, 
where ABCA10 levels were significantly higher in 
normal breast cells than in other breast cancer cells 
(Figure 3J). Next, we examined the mRNA expression 
of ABCA10 in 30 paired BRCA and non-tumor tissues. 

The qPCR results showed that ABCA10 was 
significantly up-regulated in BRCA tissues (Figure 3K). 
To further confirm the accuracy of the multi-omics 
analysis, we evaluated ABCA10 detected using 
immunohistochemistry in tumor tissues using 60 BRCA 
commercial tissue microarray (TMA). The results of 
ABCA10 expression in BRCA tissues in IHC staining 
are shown in Figure 3L. The IHC score of ABCA10 
decreased significantly from early stages and decreased 
significantly with the increase of late stages (Figure 
3M). The results were consistent with the results of the 
Oncomine database, and where lower ABCA10 
expression levels occurred at an early stage. Using the 
Oncomine dataset, we analyzed the levels of ABCA10 
in normal breast tissue, breast phyllodes tumor, 
Intraductal Cribriform breast cancer, mucinous breast 
cancer, Invasive breast cancer, and other breast cancers. 
breast cancer. The expression of ABCA10 mRNA in 
BRCA was significantly lower than normal samples 
from all four datasets, and the sample size and fold 
changes corresponding to the four studies are 
summarized in Figure 4. 
 
ABCA10 expression levels in the subgroups of 
BRCA patients 
 
Both DNA microarray (Figure 5A) and RNA 
sequencing data (Figure 5B) confirmed consistent 
results for ABCA10 levels in ER+, PR+, HER+, (ER+ > 
ER-, PR+ > PR-, HER+ > HER-; p < 0.0001) with high

 

 
 
Figure 4. Expression of ABCA10 gene in breast cancer in Oncomine database. ABCA10 mRNA levels from (A and B) Curtis Breast 
statistics cohort, (C and D) TCGA Breast Statistics cohort, (E) Gluck Breast Statistics cohort (F) Radvanyi Breast Statistics cohort in BRCA and 
normal tissue. Note: p < 0.05 indicates statistical significance; ABCA10 was among the top 10% overexpressed genes in all four different 
datasets of BRCA. 
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expression. Analysis according to the Scarff Bloom and 
Richardson equivalence state (SBR) criterion showed 
that increased SBR levels correlated significantly with 
decreased ABCA10 levels (SBR1 > SBR2 > SBR3, p < 
0.0001) in both DNA microarray and RNA sequencing 
data. Subsequently, results in different breast cancer 
subtypes also showed higher expression of ABCA10 in 
normal tissues than in other subtypes. Taken together, 
these DNA and RNA results provide prognostic value 
for the clinicopathological parameters of breast cancer. 
 
Functional network analysis of the predictive 
ABCA10 gene 
 
We further analyzed the association between 
shRNA/sgRNA efficacy and the expression levels of 
target genes in different breast cancer cell lines. We 
attempted to calculate two-way predictive and 
descriptive scores for each of the more than 16,000-
17,000 genes using statistical tests (Figure 6A, 6B). 
Among the shRNA efficacy, 97 genes (red circles in 
Figure 6A) showed positive scores in predictiveness and 
descriptiveness, while 78 genes (blue circles in Figure 
6A) showed negative scores. Similarly, among the 
sgRNA efficacy, 141 genes (red circles in Figure 6B) 
showed positive scores in terms of predictiveness and 
descriptiveness, while 102 genes (blue circles in Figure 
6B) showed negative scores. To further explore the 
potential functions and molecular pathways of ABCA10 
genes in BRCA, we identified ABCA10 co-expressed 
genes in the data of 975 patients from TCGA using the 
LinkedOmics database. A total of 7,966 ABCA10-

associated genes were altered, reflecting the important 
impact of the core gene ABCA10 on the pathogenesis 
of BRCA. These clusters of genes positively associated 
with ABCA10 are shown as red dots, whereas the 
clusters of genes negatively associated with ABCA10 
are indicated by green dots in the volcano plot (p < 0.01 
and FDR <0.01, Figure 6C). The 80 overlapping genes 
were analyzed by combining the two databases, and the 
top 20 significant gene clusters associated with 
ABCA10 were shown by functional enrichment (Figure 
6D, 6E). 
 
Relationship between ABCA10 expression and 
BRCA-infiltrating immune cells 
 
The tumor microenvironment is a highly complex 
system composed of multiple cells, enzymes, cytokines 
and metabolites, characterized by low oxygen, low pH 
and high pressure. To comprehensively investigate the 
role of ABCA10 in BRCA, we selected the TIMER 
database to analyze the association of ABCA10 
expression levels with subpopulations of infiltrating 
immune cells. We evaluated the potential correlation 
between ABCA10 expression in breast cancer and 
several mutations commonly seen in breast cancer 
(Figure 7A). We found that the value of highly mutated 
genes adjacent to each other is driving the genetic 
variation distribution between mutated (red) and non-
mutated (gray) samples. Then the effect of ABCA10 
mutations on immune cell infiltration in various cancer 
types was analyzed by mutation modules in Pan-cancer. 
We analyzed the effect of ABCA10 mutations on 

 

 
 
Figure 5. Association between ABCA10 gene expression and clinical pathological parameters in patients with breast cancer. 
(A, B) ABCA10 mRNA expression levels were shown in breast cancer patients by bee swarm in DNA microarray datasets and RNA-
sequencing datasets. (Abbreviations: ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 2). 
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immune cell infiltration by pan-cancer type and the 
effect of immune cell type on pan-cancer by mutation 
module (Figure 7B, 7D). The results showed that 
ABCA10 expression was significantly elevated in 
mutated PIK3CA (p = 0.0025) (Figure 7C). In contrast, 
ABCA10 expression was significantly decreased in 
mutant TP53 (Figure 7D). This also suggests that the 
association of ABCA10 with immunity may be related 
to the PIK3CA and TP53 mutations in BRCA (Figure 
7E). In Figure 8A, ABCA10 is shown to modulate 
different immune cells in breast cancer cells, with 
macrophages M0, M1, M2 and Monocyte accounting 
for the highest percentage of immune cells. In addition, 
we further investigated the association between the 
CNV of ABCA10 and immune cell infiltration in the 
prognostic model. We found that deletion or 
amplification of other forms of ABCA10 compared to 
normal copy number may differentially modulate 
immune cell infiltration in breast cancer (Figure 8B). 
We further analyzed ABCA10 with various immune 
cells, and we found a positive correlation with T cells, 
NK cells, DCs, B cells, CAF; and a negative correlation 

with Macrophage and Neutrophil (Figure 8C). The 
relationship between ABCA10 and various tumor-
infiltrating immune cells was evaluated by different 
immune databases. The results showed a significant 
correlation between ABCA10 and different levels of 
immune cell infiltration. Notably, ABCA10 expression 
showed a high positive correlation with the infiltration 
levels of CD8+ T cells, CD4+ T cells, B cells, CAF, 
DC, and NK cells; similar to the previous results, 
ABCA10 showed a negative correlation with 
Macrophage (Figure 9). Therefore, we hypothesize that 
the immune microenvironment plays a critical role in 
the development of breast cancer tumors and in the 
regulation of ABCA10. 
 
BRCA cells with lower ABCA10 expression are 
sensitive to the vasopressin receptor agonist 
 
To find potential drugs targeted at ABCA10, we used 
connectivity Map (CMap) analysis. The CMap database 
provides gene signatures and filters for associations 
between specificity and drug-driven gene expression.  

 

 
 
Figure 6. Functional prediction and enrichment analysis of ABCA10 expression in breast cancer. The predictability and 
descriptiveness between mRNA expression and shRNA (A) and sgRNA (B) functions are plotted with breast cancer cell lines. (C) Genes with 
shRNA/sgRNA overlap are identified in the positive correlation and negative correlation Venn diagram analysis. (D) Pearson test was used 
to analyze the differential gene expression related to ABCA10 in BRCA. (E) The top 20 functions of ABCA10 in BRCA are used for enrichment 
analysis. 
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The heatmap in Figure 10A shows the top 10 
perturbants that mimic the ABCA10-driven gene 
signature, including Lypressin with a score of 98.77 as a 
Vasopressin receptor agonist, which regulates ABCA10 
in MCF7 cells. In contrast, CAY-40145 was also a 

regulator of ABCA10 in MCF7 cells. As shown in 
Figure 10B, we found that the scores of Lypressin and 
ABCA10 KD on breast cancer cells (MCF7) were 0.39 
and 0.27, respectively, indicating a positive correlation 
between the average transcriptional effect of ABCA10 

 

 
 
Figure 7. Expression of common mutated genes and ABCA10 in BRCA. (A) Relationship between ABCA10 and the six highly 
mutated genes in breast cancer. (B) Gene_Mutation module comparing PIK3CA mutation status among ABCA10 gene expression in pan-
cancer. (C) Statistics of PIK3CA mutation status among ABCA10 gene expression in breast cancer (n = 1017). (D) Gene_Mutation module 
comparing TP53 mutation status among ABCA10 gene expression in pan-cancer. (E) Statistics of TP53 mutation status among ABCA10 gene 
expression in breast cancer (n = 1017). 
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expression and Lypressin drug activity. Thus, Lypressin 
treatment could mimic the gene expression profile of 
ABCA10 restoration. 
 
DISCUSSION 
 
The occurrence, progression and impact on patient 
prognosis of breast cancer are closely related to 
abnormal intracellular signaling [3, 17]. These signaling 
pathways related to biological processes such as 
regulation of immunity, inhibition of tumor cell 
apoptosis, and tumor microenvironment are key links 
affecting tumor progression, and different signaling 
pathways are intertwined into a network and influenced 
by multiple targets [18, 19]. We found a high rate of 
ABCA10 gene amplification in pan-cancer, however, 
gene amplification is an increase in the difference 
between a specific part of the genome compared to the 
rest of the genome. This process seems to occur 
everywhere, in most organisms, and has also been 
shown to occur in germ cells and somatic cells. 
Amplification of proto-oncogenes causes or promotes 

tumorigenesis and/or tumor progression. Interestingly, 
the rate of missense mutation is also high, probably 
because some genes are missense leading to a high rate 
of amplification. In some cases, the amplified gene may 
be a useful target for cancer therapy. Immune cells in 
the tumor microenvironment are key elements of tumor 
tissue, and there is growing evidence to support their 
clinicopathological relevance in predicting survival 
status and treatment outcome in tumor patients [20, 21]. 
Specifically, the level of tumor-associated macrophages 
(TAM) infiltration accelerates cancer progression [22]. 
After controlling for confounding clinical features, 
multivariate analyses suggest that immune scores 
remain an independent prognostic factor, which was 
further validated in an independent cohort [23, 24]. 
These data suggest that immune scores have similar 
predictive power to traditional predictors [25]. TAM is 
composed mainly of M2 macrophages, possibly due to 
exposure to complex factors in the tumor 
microenvironment [26]. Figures 8, 9 shows that 
ABCA10 is closely associated with immune-related 
pathways, including B cell, CD8+ T cell, CD4+ T cell, 

 

 
 
Figure 8. Correlation of ABCA10 expression with immune infiltration level in BRCA. (A) Immune cell bars show the expression of 
the ABCA10 gene. (B) The infiltration level of various immune cells under different copy numbers of ABCA10 in BRCA. (C) The correlation 
between ABCA10 expression level and immune infiltration. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Macrophage, neutrophil, and dendritic cell activation. 
By analyzing the relationship between ABCA10 and 
immune cell infiltration, only macrophage and 
neutrophil were negatively correlated, while other 
immune cells were currently correlated. Furthermore, the 
correlation between ABCA10 and immunosuppressive 
gene expression suggests that ABCA10 plays a key role 
in regulating tumor immunology. We have used 
bioinformatic analysis of the TCGA pan-cancer dataset 
to show that only breast cancer has significantly lower 
ABCA10 levels than normal tissue. We believe that 
genes with tumor suppressive functions that are 
repressed during tumorigenesis should at least be 
expressed in the corresponding normal tissues. 
Strikingly, only 20 of the 84 breast cancer cell lines were 
dependent on ABCA10 levels, suggesting that both 
clinical patients and breast cancer cells are sufficient to 
show that ABCA10 levels are low in the development of 
breast cancer. These findings provide strong evidence 
for a novel tumor suppressor function of ABCA10 in 
breast cancer. It is worth mentioning that the expression 
of ABCA10 has decreased significantly from the early 
stage, and the level of ABCA10 was the same in 
different tumor stages of BRCA. 

Preventing tumor progression and suppressing tumor 
cells is an important task of the immune system, which 
involves not only T cells but also innate immune cells 
[5]. Notably, tumors are constantly developing 
strategies to reprogram the anti-tumor machinery in 
order to suppress the function of immune cells [27–29]. 
ABCB1 is an ABC transporter known for mediating 
multidrug resistance [30] and has been shown to 
regulate the memory function of CD8+ T cells [5]. ABC 
transporter is a modulatory tumor suppressor because it 
facilitates the execution of the cell death program 
through the mitochondrial pathway and achieves tumor 
suppression by regulating intracellular AKT signaling. 
The absence of the transport protein will affect the 
activation and expansion of CD8+ T cells, and will 
result in the accumulation of memory CD8+ T cells. 
Mechanistically, mitochondria are key regulators of 
ABC transport proteins through early activation and 
memory formation in CD8+ T cells [31]. The lack of 
ABC transporter protein increases the number of CD8+ 
and CD4+ T cells, accompanied by the production of 
IFN-γ activity by these cells [32]. Therefore, the 
identification of ABCA10 regulators may be a novel 
strategy to initiate the tumor environment to kill tumors. 

 

 
 

Figure 9. Correlation of ABCA10 expression with immune infiltration level in BRCA. 
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There are some limitations in this study: all analyses 
were based on ABCA10 expression at DNA and mRNA 
levels, and conclusions were deduced from 
bioinformatics analysis, lacking more in-depth 

experimental data to support our mechanistic 
interpretation. Therefore, further studies are needed to 
validate our results and investigate the biologic function 
of ABCA10 in BRCA. 

 

 
 
Figure 10. Inhibition of ABCA10 expression in breast cancer cells by pharmacogenomic mapping. (A) Lypressin treatment 
simulated the effects of ABCA10 inhibition on breast cancer cell lines. (B) Analyses were performed to explore the similarity between 
ABCA10 and drug-induced genetic characteristics in multiple cancer cell lines to assess the effects. 
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CONCLUSIONS 
 
The role of ABCA10 gene in breast cancer has not been 
reported. In this study, we observed the difference of 
ABCA10 gene expression in normal tissues and tumor 
tissues by means of big data analysis. The Kaplan-Meier 
prognostic survival curve analysis showed that the high 
expression of ABCA10 gene in breast cancer tissues 
indicates a good prognosis. This suggests that the 
detection of ABCA10 gene expression in breast cancer 
tissue has important clinical significance. We used 
bioinformatic prediction to initially screen out ABCA10, a 
gene differentially expressed between tumor and normal 
tissue, for further study and screening of potential drugs. 
Although we have tested the expression of ABCA10 in 
various breast cancer cell lines and confirmed the same as 
predicted, ABCA10 deserves further study to become a 
new breast cancer tumor marker. 
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