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INTRODUCTION 
 
Acute kidney injury (AKI) is a common clinical 
syndrome with a high morbidity and mortality rate [1, 
2]. The incidence of AKI is steadily increasing in recent 
years. Its incidence varies in different clinical settings 
such as cardiac surgery, intensive care units, and 
community settings [3]. For hospitalized patients, 
depending on the diagnostic criteria, the incidence of 
AKI can reach 13% [4]. The prevalence of AKI in 
patients undergoing cardiac surgery is about 35% [5]. 
Though prevention strategies, patient classification and 
technology have been greatly improved, AKI still has a 
high morbidity and mortality rate, especially for those in 
the intensive care unit (ICU), where the morbidity can 
reach 50–70%. Patients survived from AKI demonstrate 
a significant risk of developing chronic diseases (chronic 
kidney disease (CKD)) or a rapid development into end-
stage renal diseases [6]. Early diagnosis is therefore 
important for early intervention, which could improve 
the prognosis of patients with AKI. 

Serum creatinine (SCr), which is a marker of renal 
function, shows importance in assessing glomerular 
filtration rate (GFR) and is insensitive to acute changes 
in renal functions [7, 8]. There have been many studies 
aiming to find early biomarkers for AKI diagnosis. 
Parikh CR et al. determined kidney injury molecule-1 
and liver fatty acid-binding protein as biomarkers of 
AKI [9]. Meersch M et al. found that TIMP-2, IGFBP7 
can predict AKI early after cardiac surgery [10]. Using 
urinary exocrine, ZHANG et al. identified miRNA-30c-
5p and miRNA-192-5p as potential biomarkers to renal 
injury caused by ischemia-reperfusion [11]. However, 
so far, reliable biomarkers sensitive to AKI and specific 
to its etiology are limited. 
 
The aim of this study was to integrate miRNA and 
mRNA expression profile data from kidney 
transplantation to study altered miRNA and gene 
expression patterns between kidney transplant recipients 
and stable transplant recipients and to further identify 
AKI-related biomarkers. This study determined specific 
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ABSTRACT 
 
Patients with acute kidney injury (AKI) show high morbidity and mortality, and a lack of effective biomarkers 
increases difficulty in its early detection. Weighted gene co-expression network analysis (WGCNA) detected a 
total of 22 gene modules and 6 miRNA modules, of which 4 gene modules and 3 miRNA modules were 
phenotypically co-related. Functional analysis revealed that these modules were related to different molecular 
pathways, which mainly involved PI3K-Akt signaling pathway and ECM-receptor interaction. The brown 
modules related to transplantation mainly involved immune-related pathways. Finally, five genes with the 
highest AUC were used to establish a diagnosis and prediction model of AKI. The model showed a high area 
under curve (AUC) in the training set and validation set, and their prediction accuracy for AKI was as high as 
100%. Similarly, the prediction accuracy of AKI after 24 h in the 0 h transplant sample was 100%. This study may 
provide new features for the diagnosis and prediction of AKI after kidney transplantation, and facilitate the 
diagnosis and drug development of AKI in kidney transplant patients. 
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genes as potential biomarkers based on weighted co-
expression networks and to further establish an AKI 
diagnostic and predictive classifier. 
 
RESULTS 
 
Identification of AKI-related co-expression modules 
by weighted co-expression analysis 
 
To better screen AKI-related genes and miRNAs, 
Median Absolute Deviation (MAD) >25% was selected 
using gene expression profiles and miRNA expression 

profiles. Weighted co-expression networks were 
constructed using WGCNA, and for mRNA expression 
profiles, power of β = 5 (scale-free R^2 = 0.85) was the 
soft threshold to ensure a scale-free network (Figure 
1A–1B). A total of 22 modules were identified (Figure 
1C). Similarly, for miRNA expression profiles, the 
power of β = 3 (scale-free R^2 = 0.9) was a soft 
threshold to ensure a scale-free network (Figure 1D–
1E). A total of 6 modules were identified (Figure 1F). 
Furthermore, the correlation between each gene module 
and AKI was analyzed according to the feature vectors 
of the modules. It was found that pale turquoise module 

 

 
 
Figure 1. Identification of AKI-related co-expression modules. (A) Analysis of the scale-free fit index for various soft-thresholding 
powers (β) in mRNA expression profiles. (B) Analysis of the mean connectivity for various soft-thresholding powers in mRNA expression 
profiles. (C) Dendrogram of genes clustered based on a dissimilarity measure (1-TOM). (D) Analysis of the scale-free fit index for various 
soft-thresholding powers (β) in miRNA expression profiles. (E) Analysis of the mean connectivity for various soft-thresholding powers in 
mRNA expression profiles. (F) Dendrogram of miRNA clustered based on a dissimilarity measure (1-TOM). (G) Heat map of correlation 
between gene co-expression module and AKI. (H) Heat map of correlation between miRNA co-expression module and AKI. 
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was significantly negatively correlated with AKI but 
positively correlated with zero-hour, and that cyan 
module was significantly negatively correlated with 
PBx but positively correlated with zero-hour, moreover, 
brown and dark magenta module were significantly 
negatively correlated with zero-hour in the co-
expression modules (Figure 1G). Among the six 
miRNA co-expression modules, three modules were 
closely correlated with zero-hour, among which the 
brown module was significantly negatively correlated 
with AKI (Figure 1H). These results indicated that 
abnormal transcriptome changes after kidney 
transplantation may lead to different clinical outcomes 
of kidney transplant patients. 
 
Functional analysis of phenotypic related gene co-
expression modules 
 
To observe the function of the three phenotype-related 
modules zero-hour, PBx and AKI, we extracted the 
most module-related genes (correlation coefficient > 
0.8) from the four modules brown, dark magenta, pale 
turquoise and cyan, respectively. This study detected 
136 genes in the brown module, 34 genes in the dark 

magenta module, 30 genes in the cyan module, and 30 
genes in the pale turquoise module. After subjecting 
these genes to KEGG Pathway enrichment analysis, 
specifically, the pale turquoise module was enriched to 
seven KEGG Pathways, which were mainly related to 
the PI3K-Akt signaling pathway, ECM-receptor 
interaction, Fatty acid biosynthesis, and Renin-
angiotensin system (Figure 2A); the cyan module was 
enriched to four Pathways, which were mainly related 
to Axon guidance, Pathogenic Escherichia coli infection 
(Figure 2B); the brown module was mainly enriched in 
immune-related pathways such as Toll-like receptor 
signaling pathway, Chemokine signaling pathway, 
Cytokine-cytokine receptor interaction (Figure 2C); the 
dark magenta module was enriched to the Purine 
metabolism and Nitrogen metabolism pathways (Figure 
2D). Among the pathways enriched by these four 
modules, only Proteoglycans in cancer was enriched by 
dark magenta and cyan at the same time, and other 
pathways did show overlaps, indicating that different 
co-expression modules may participate in different 
biological pathways. For example, the brown module 
was enriched to a variety of immune-related pathways, 
and the genes in the brown module were significantly 

 

 
 
Figure 2. Functional enrichment analysis of phenotype-related gene co-expression modules. (A) 7 KEGG Pathway enriched by 
pale turquoise module. (B) 4 KEGG Pathway enriched by cyan module. (C) 21 KEGG Pathway enriched by brown module. (D) 2 KEGG 
Pathway enriched by dark magenta module. The dots are the number of genes enriched in the pathway; the color represents the 
significance of enrichment, the horizontal axis represents the enrichment factor, and the vertical axis represents the KEGG Pathway. 
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negatively correlated with kidney transplantation. This 
showed that the expression of genes in the brown module 
was mainly related to mid- and long-term immuno-
suppressive therapy in kidney transplant patients. 
 
MiRNA and mRNA specifically expressed in AKI 
 
We selected the most relevant gene modules and miRNA 
modules of AKI for further analysis to identify miRNAs 
and mRNAs specifically expressed in AKI. Here, 215 
genes were included in the most relevant gene module of 
AKI (pale turquoise), which showed a double-peak 
distribution of correlations with AKI (Figure 3A). A total 
of 164 miRNAs were included in the most relevant 
miRNA module of AKI (brown), and the correlation of 
these miRNAs with AKI also showed a double-peak 
distribution (Figure 3B), indicating that the genes and 
miRNAs in the module presented two expression patterns 
in the AKI samples. We selected genes and miRNAs 
with expression correlation coefficients greater than 0.8 
with the modules and greater than 0.4 with AKI as the 
genes and miRNAs specifically expressed in AKI. Here, 
we obtained 4 miRNAs and 29 genes. Fourteen of these 
29 genes were significantly under-expressed in AKI and 
PBx samples, 15 genes were significantly overexpressed 
in AKI and PBx samples, and four miRNAs were 
significantly under-expressed in both AKI and PBx 
samples (Figure 3C). Furthermore, after comparing the 
expression differences of these genes in AKI and PBx 
samples, we found that 17(58.6%) of the genes showed 
significant expression differences (Figure 3D), indicating 
that these genes may serve as specific biomarkers for 
AKI. Interestingly, no significant difference in the 
expression of the four miRNAs was detected in the 
samples of AKI and PBx (Figure 3E). However, KEGG 
Pathway enrichment analysis of four miRNA target genes 
showed a total of 87 enriched pathways, which had the 
most intersections with the KEGG Pathway enriched by 
the brown and pale turquoise modules of co-expressed 
genes (Supplementary Figure 1A), suggesting that these 
four miRNAs may be involved in both AKI and 
immunomodulatory processes. 
 
Identification of key mRNA markers in AKI 
 
To further screen gene markers in AKI, we selected 17 
genes (10 specifically high-expressed and 7 genes 
specifically low-expressed) differences in the three 
types of samples (Figure 4A). Support vector machines 
were used to establish an AKI prediction model based 
on the expression of each gene, and ROC was used to 
analyze the prediction performance of each gene (Figure 
4B). The results showed that AUC of 9(53%) genes was 
greater than 0.9 and AUC of 15 (88%) genes was 
greater than 0.8, showing a high performance in 
predicting AKI samples based on the expression of 

these genes. Subsequently, the top five AUC genes 
(HAS2, MYOF, PLPPR1, QDPR, SFXN1) were 
subjected to GO enrichment analysis, with FDR <0.01 
as the threshold. Four genes were found to be enriched 
to 41 GO terms (Figure 4C), which were mainly related 
to transmembrane transport, amino acid metabolism, 
renal absorption and positive regulation of urine 
volume, suggesting that these four genes may play an 
important role in kidney injury. 
 
Construction of diagnostic model 
 
Studies have increasingly shown that combining 
multiple genes is more predictive than the use of a single 
gene, therefore the five genes with the highest AUC 
were selected. The gene expression profiling of 36 
samples was used as the training set (AKI = 8, PBx = 10, 
zero-hour = 18) to construct the classification model 
with support vector machine. The model was tested by 
ten-fold cross validation method. The classification 
accuracy of AKI was 100%, that of PBx was 90%, and 
that of zero-hour was 94.7% (Figure 5A). Among the 36 
samples, 35 were correctly classified, and the AUC of 
the 3 samples was 1 (Figure 5B), indicating that these 5 
genes could accurately predict AKI, and distinguish AKI 
from other chronic kidney diseases. Next, the model was 
applied to the external verification data set GSE30718 
and GSE30718. The expression patterns of the five 
genes in the verification set were found to be highly 
consistent with the training set. MYOF and HAS2 were 
high-expressed in AKI, and SFXN1, PLPPR1, and 
QDPR were low-expressed in AKI (Figure 5C). 8 
nephrectomy samples and randomly selected 8 AKI 
samples repeated for 1000 times were used as a 
verification set and substituted into the model for further 
verifying the prediction accuracy of the model. The 
prediction accuracy rate was 100% and 98% when 
repeated for 965 times and 35 times, respectively (Figure 
5D). In addition, we selected 11 samples of stable 
kidney transplantation and randomly selected 1000 AKI 
samples as a verification set to verify the model 
performance, the prediction accuracy rate of which was 
100%, 98.7%, and 97.4% when repeated for 950 times 
(95%), 49 times (4.9 %), and 1 time (0.1%), respectively 
(Figure 5E). Moreover, GSE37838 dataset with 70 
samples [12] containing 12 AKI samples and 58 
immediate graft function (IGF) samples were obtained 
for validation. The expression profiles of HAS2, MYOF, 
PLPPR1, QDPR, and SFXN1 genes were extracted from 
GSE37838, and we found that HAS2 and MYOF 
expression was upregulated in AKI, and that PLPPR1, 
QDPR, and SFXN1 genes were significantly 
downregulated in AKI, which was consistent with our 
results (Supplementary Figure 1B–1C). These results 
indicated that the five-gene model had a high prediction 
performance. 
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Figure 3. miRNA and mRNA specifically expressed in AKI. (A) Relationship between gene expression in pale turquoise module and 
module/AKI. The horizontal axis represents the correlation coefficient between gene expression and pale turquoise module, and the vertical 
axis represents the correlation coefficient between gene expression and AKI. (B) Relationship between miRNA expression in brown module 
and module/AKI. The horizontal axis represents the correlation coefficient between miRNA expression and brown module, and the vertical 
axis represents the correlation coefficient between miRNA expression and AKI. (C) heatmap of genes and miRNAs specifically expressed in 
the module. (D, E): Differences between genes and miRNAs specifically expressed in the module in AKI samples and PBx samples. Statistical 
p-values were obtained using the t-test, with “*” indicating p < 0.05 and “**” indicating p < 0.01, “.” indicates p < 0.1, “-” indicates p > 0.1. 
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Potential regulatory pathways of the five-gene 
diagnosis model 
 
To observe the potential regulatory patterns of these 
genes, we first separately predicted the miRNAs 

targeting these genes. In combination with the 
phenotype-associated miRNA co-expression module, it 
was observed that hsa-mir-29b-2 targeted HAS2 and 
SFXN1 in the four core miRNAs of the miRNA co-
expression module, and interestingly hsa-mir-29b-2 was 

 

 
 
Figure 4. Key mRNA biomarkers in AKI. (A) The expression differences of the 17 genes in AKI, PBX and zero-hour, among which “*” 
means p < 0.05; “**” said p < 0.01; “***” means p < 0.001, “****” means p < 0.0001. (B) ROC curve of 17 genes. (C) The enrichment results 
of GO function of the five largest AUC genes. Different colors on the right side of the circle represent the GO Term, different colors on the 
left side of the circle represent genes, and the lines represent gene enrichment to the corresponding GO Term. 
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significantly negatively associated with HAS2 (Figure 
6A) but positively correlated with SFXN1 (Figure 6B). 
This indicated that mir-29b-2 may be involved in the 
occurrence and development of AKI. Furthermore, 
based on the expression of these five genes, 
unsupervised clustering was conducted on zero-hour 
samples, and the results showed that these five genes 
could be divided into two groups (Cluster1 and 
Cluster2) (Figure 6C), where HAS2 and MYOF were 
high-expressed in Cluster1 and PLPPR1, QDPR, and 

SFXN1 were low-expressed in Cluster1. After 
analyzing the differences in the KEGG pathways 
between the two samples with GSEA (Figure 6D), 
three pathways, namely, LYSINE DEGRADATION, 
INOSITOL PHOSPHATE METABOLISM and 
oxidation, were observed to be significantly enriched 
in Cluster1, suggesting that there may be 
phosphorylation abnormalities in AKI-like samples, 
which were indirectly or directly involved in the 
regulation of AKI. 

 

 
 
Figure 5. Construction of diagnostic model. (A) Prediction of AKI, PBx, and zero-hour in a diagnostic model constructed from 5 genes. 
(B) ROC curves for the prediction of AKI, PBx, and zero-hour in a diagnostic model constructed by 5 genes. (C) Expression patterns of the 
five genes in the training set and external test sets. (D) A thousand randomized validations of the distribution of predictive accuracy for 
nephrectomy samples and AKI samples in the validation set. (E) Thousands of random verifications in the verification set for the prediction 
accuracy distribution of stable kidney transplant samples and AKI samples. 
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DISCUSSION 
 
AKI is a common complication of kidney 
transplantation and is associated with a shorter graft 
survival [13, 14]. AKI, which is usually diagnosed 
based on an increase in serum creatinine than the 
preoperative level, commonly occurs several days after 
initial injury. Identifying high-risk individuals with the 
risk of developing AKI quickly after surgery can 
improve the prognosis of patients, and is considered an 
important step in the preventing postoperative AKI [15]. 

In this study, the expression patterns of genes and 
miRNAs were compared between the newly 
transplanted samples and those 24 hours after 
transplantation with weighted co-expression analysis. 
17 genes, including HAS2, MYOF, PLPPR1, QDPR 
and SFXN1, were determined as early diagnostic 
markers for AKI. Their AUC ranged from 0.82-0.96, 
showing a high predictive performance for AKI 
samples. Meanwhile, functional analysis also 
demonstrated that these genes were mainly related to 
transmembrane transport, amino acid metabolism, renal 

 

 
 
Figure 6. Functional analysis of 5 genes in the model. (A) The expression of hsa-mir-29b-2 was correlated with HAS2. (B) The 
expression of hsa-mir-29b-2 was correlated with SFXN1. (C) Unsupervised clustering of five genes in the model. (D) GSEA enrichment 
analysis results of two samples with different expression patterns. 
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absorption and positive regulation of urine volume. 
Studies reported that transmembrane transport and 
amino acid metabolism play important roles in patients 
with acute renal failure [16, 17], indicating that these 
genes may have critical regulatory functions in the 
occurrence and development of AKI. 
 
Biomarkers of kidney injury have the potential of non-
invasive assessment of graft injury, and a variety of 
proteins, for example, neutrophil gelatinase-associated 
lipocalin (NGAL), IL-18, which are released into the 
urine during renal tubule cell injury, have been 
identified for quantitative ischemia/reperfusion injury to 
the kidney, moreover, NGAL and IL-18 are detectable 
by non-invasive methods [18, 19]. The availability of 
biomarkers such as NGAL and il-18 allows noninvasive 
assessments of early graft damage to facilitate clinical 
decision-making and potentially protect long-term graft 
function [19, 20]. In this study, the performance of 
NGAL and il-18 in predicting AKI was analyzed, and 
the AUC reached 0.78 and 0.8, respectively 
(Supplementary Figure 2A). In comparison, the AUC of 
the 17 genes showed a high predictive performance, 
suggesting that NGAL and il-18 may not be the most 
indicative markers in tissue samples. As the prediction 
accuracy of multi-gene model is often higher than the 
use of a single gene, we selected five genes (HAS2, 
MYOF, PLPPR1, QDPR and SFXN1) with the highest 
AUC. The method of support vector machine was used 
to establish a diagnostic model of AKI, surprisingly, 
these five genes showed a significantly high AUC in the 
training set and verification set, reaching an AKI 
prediction accuracy of 100%. To verify whether the 
five-gene signature could predict patients’ risk of 
developing AKI earlier before kidney transplantation, 
we selected samples collected at 0 hour of 
transplantation to predict the risk of AKI 24 hours later. 
It was found that these 5 genes were 100% accurate in 
prediction (Supplementary Figure 2B), showing that 
these five genes may serve as biomarkers for the 
development of AKI after kidney transplantation as well 
as for the development of transplantation drugs to guide 
clinical trials. 
 
In addition, several of these five genes have been 
reported to be associated with kidney diseases, for 
instance, the renal fibrosis and hyaluronic acid (HA) is 
associated with increased cortical synthesis, human 
hyaluronic acid synthase 2 (HAS2) transcription 
induction, and subsequent HAS2-driven HA synthesis 
may adjust the phenotype of renal proximal renal 
tubular epithelial cells (PTC) and result in renal fibrosis 
[21]. The endothelial loss of hyaluronic acid leads to the 
destruction of glomerular endothelial stability, which 
will affect glomerular function and structural integrity 
[22]. MYOF is a prognostic marker in clear cell renal 

cell carcinoma [23]. Myoferlin hyperexpression has 
been determined as an independent risk factor in 
developing a subsequent primary malignant tumor in 
patients with ccRCC [24]. QDPR may be an important 
factor in mediating diabetic nephropathy through 
regulating TGF- TGF 1/ Smad3 signaling and NADPH 
oxidase [25]. Overexpression of QDPR in HEK293T 
cells in human kidney significantly protects against 
oxidative stress [26]. Although PLPPR1 and SFXN1 
genes have not been reported to be associated with 
kidney disease, the current study found that PLPPR1 
and SFXN1 were significantly positively correlated 
with QDPR and negatively correlated with HAS2 and 
MYOF. GSEA analysis showed that a high expression 
of PLPPR1 and SFXN1 may be associated with the 
activation of LYSINE DEGRADATION, INOSITOL 
PHOSPHATE METABOLISM and OXIDATIVE 
DEGRADATION pathways. These results 
demonstrated that the diagnostic model developed based 
on these genes had a clinical application potential and 
could facilitate the diagnosis of clinical patients and 
drug development. 
 
Although bioinformatics analyses were used to identify 
potential candidate genes for AKI in large samples, 
some limitations of this study should be noted. Firstly, 
the samples lacked some clinical follow-up information, 
excluding the possibility of differentiating diagnostic 
biomarkers by taking into account factors such as the 
presence of other health conditions of patients. 
Secondly, the study lacked follow-up data, systematic 
assessment the influence of these genes on the 
prognosis of renal transplant patients was not possible. 
Moreover, the results obtained only by bioinformatics 
analysis were not sufficiently convincing, which 
requires further experimental verification. Therefore, it 
is necessary to conduct further verification and 
experimental research with larger sample size and 
experiments. 
 
CONCLUSIONS 
 
In summary, in this study, we identified 17 AKI-related 
genes and developed a 5-gene signature for the 
diagnosis and prediction of AKI. It has a high AUC in 
both the training set and the validation set, and better 
predictive performance compared with using NGAL 
and IL-18 in AKI detection. 
 
MATERIALS AND METHODS 
 
Data collection 
 
In this study, we screened two sets of gene expression 
data and one set of miRNA expression data from the 
Gene Expression Omnibus (GEO) database 
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Table 1. Sample distribution of each data set. 

GEO Accession  No. of AKI No. of PBx No. of control No. of Nephrectomy 

GSE53771 8 10 18 10 
GSE53769 8 10 18 9 
GSE30718 28 0 11 8 

 
(http://www.ncbi.nlm.nih.gov/geo/). miRNA expression 
data was from the GPL16384 platform ([miRNA-3] 
Affymetrix Multispecies miRNA-3 Array, dataset ID 
GSE53771) [27, 28]. Gene expression profiling data 
were collected from two platforms. The platform for the 
dataset GSE53769 [27, 28] was the GPL16686 platform 
([HuGene-2_0-st] Affymetrix Human Gene 2.0 ST 
Array [transcript (gene) version]), and that for dataset 
GSE30718 was the GPL570 platform ([HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 
2.0 Array). Sample distribution for each dataset was 
shown in Table 1. The GSE53771 and GSE53769 
datasets were derived from preoperative and 
postoperative samples of 18 patients treated with 
immunosuppressive therapy, and postoperative samples 
were follow-up samples with kidney biopsies performed 
within 12 days of transplantation. Specifically, eight 
patients with acute tubular necrosis without rejection 
were defined as AKI, while ten protocol samples with 
biopsies but without pathology were in control group 
(primary graft function). Patients with AKI were 
identified according to the Banff 2012 criteria [29]. AKI 
kidney biopsies were indicated by more than one 
dialysis session during the first week after 
transplantation, with serum sarcosine higher than 4 
mg/dL the first week after surgery. The GSE30718 
dataset was derived from 39 samples of post-transplant 
of kidney, all the patients were treated with 
immunosuppressive therapy, and biopsies were obtained 
one year after transplantation (other clinical therapies 
were administered as symptomatic treatment, detailed 
clinical information was shown in Supplementary Table 
1). The work flow chart was shown in Figure 7. 
 
Data processing 
 
For gene expression data, the probes of the standardized 
chip data downloaded were annotate by the R package 
hgu133plus2.db. The probes that were matched to 
multiple genes were removed, while the median of those 
matched to a gene was regarded as the expression of the 
modified genes. Finally, expression profiles of 8675 
genes and 36 samples were extracted from the GSE53769 
data set, and 47 samples of 20,549 genes were obtained 
from the GSE30718 data set. For miRNA expression 
data, we downloaded the standardized microarray data 
and obtained miRNA expression data of 1239 miRNAs 
and 36 samples from other human species. 

Co-expression network construction 
 
Firstly, mRNA/miRNA data profile of top75% MADs 
was validated for sample and miRNA/ mRNA quality. 
Then, the WGCNA [30] package in R was used to 
construct a scale-free co-expression network for the 
mRNA/miRNAs. First, the Pearson’s correlation 
matrices and average linkage method were performed 
for all pair-wise mRNA/miRNAs. Then, a weighted 
adjacency matrix was constructed using a power 
function Amn = |Cmn|β (Cmn = Pearson’s correlation 
between mRNA/miRNA m and mRNA/miRNA n; Amn 
= adjacency between mRNA/miRNA m and 
mRNA/miRNA n). β was a soft-thresholding parameter 
emphasizing strong correlations between 
mRNA/miRNAs and penalizing weak correlations. 
After choosing the power of β, the adjacency was 
transformed into a topological overlap matrix (TOM) to 
measure the network connectivity of an 
mRNA/miRNA, which was defined as the sum of its 
adjacency with all other mRNA/miRNAs, and the 
corresponding dissimilarity (1-TOM) was calculated. 
To classify mRNA/miRNAs with similar expression 
profiles into mRNA/miRNA modules, average linkage 
hierarchical clustering was conducted for the 
mRNA/miRNAs dendrogram, according to the TOM-
based dissimilarity measured with a minimum size 
(mRNA/miRNA group) of 30. To further analyze the 
module, we calculated the dissimilarity of module 
mRNA/miRNAs to determine a cut line for module 
dendrogram and merged some module. 
 
Gene set enrichment analysis 
 
Gene Set Enrichment Analysis (GSEA) [31] was 
performed by the JAVA program 
(http://software.broadinstitute.org/gsea/downloads.jsp) 
using the MSigDB [32] on C2 Canonical pathways gene 
set collection containing 1320 gene sets. Gene sets with 
an FDR less than 0.01 after performing 1000 
permutations were considered to be significantly 
enriched. 
 
Functional enrichment analyses 
 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis 
was conducted in the R package clusterProfiler [33] to 

http://www.ncbi.nlm.nih.gov/geo/
http://software.broadinstitute.org/gsea/downloads.jsp
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identify over-represented GO terms in three categories 
(biological processes, molecular function and cellular 
component), and KEGG pathway. Here, a p < 0.05 was 
considered to denote statistical significance. 
 
Correlation analysis between module and phenotype, 
and identification of hub gene 
 
To examine the correlation between co-expression 
modules and phenotypes, we defined a 0-1 matrix of 
phenotypes. Specifically, for any phenotype such as 
AKI, a correct detection of AKI from the samples was 
marked as 1, otherwise it is marked as 0. In this way, 
the numeric matrix of each phenotype was established, 
and the correlation between the feature vector of each 
module and the numeric matrix of the phenotype was 
calculated using the Spielman rank correlation 
coefficient, with p < 0.05 indicating a significant 
phenotype in the module. Two methods were used to 
determine hub genes. Firstly, the correlation between 

the expression of each gene and the module feature 
vector was calculated with correlation coefficient was 
greater than 0.8. 
 
Prediction of miRNA target genes 
 
Experimentally verified miRNA target gene databases 
miRecords [34], miRTarBase [35] and starBase [36] 
were applied to identify reliable miRNA target genes. 
 
Construction of diagnostic prediction model and 
evaluation of model performance  
 
Feature genes were used to construct a diagnostic 
prediction model based on SVM [37] classification to 
predict AKI and non-AKI samples. Support vector 
machine (SVM), which is a supervised learning model 
in machine learning algorithm, analyzes data and 
identifies patterns. A support vector mechanism creates 
a hyperplane in a high or infinite dimensional space for 

 

 
 

Figure 7. Work flow chart. 
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classification and regression. Given a set of training 
samples, each mark belongs to two classes. A SVM 
training algorithm establishes a model and assigns new 
instances to one class or another, making it a binary 
linear classification. We built the model in the training 
data set and used the ten-fold cross validation method to 
verify the classification ability of the model. The 
established model was then used to predict the samples 
in the validation data set. The predictive power of the 
model was evaluated using the area under the ROC 
curve (AUC), and the sensitivity and specificity of the 
model to AKI were analyzed. 
 
The model prediction ability in an external data set 
 
GSE30718 served as an independent external validation 
dataset, and we downloaded the normalized data, 
extracted the expression levels of the trait genes and 
proxied the model against the samples to verify the 
accuracy of the model prediction. 
 
Statistical analysis 
 
The R package pROC was used for AUC analysis, and 
the R package ComplexHeatmap was used for heat 
map drawing. All analyses, USES default parameters, 
and data visualization were performed using ggplot2 
in version 3.4.3 of R software, if not specially 
instructed. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 
 

 
 
Supplementary Figure 1. Venn diagrams and dataset validation. (A) The phenotypic related modules were enriched into the 
intersection of the KEGG Pathway in the Venn diagram. (B) The expression distribution of five genes in GSE30718 dataset. (C) Heat map of 
expression of five genes in GSE30718 dataset. 
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Supplementary Figure 2. AUC analysis of NGAL and IL-18. (A) ROC curve predicted by NGAL and IL-18 gene expression against AKI 
samples. (B) ROC curve of 5 gene signatures in the 0-hour sample predicted the 24-hour AKI. 
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Supplementary Table 
 
Please browse Full Text version to see the data of Supplementary Table 1. 
 
Supplementary Table 1. Other clinical therapies in GSE30718 dataset. 

 


