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INTRODUCTION 
 

Glioma is the most common malignant brain tumor  

in adults [1]. It is generally difficult to treat due  

to extensive proliferation, invasion, angiogenesis, 

immunosuppression, and resistance to conventional 

treatments [2, 3]. Compared with low-grade glioma 
(LGG, grade II and III), glioblastoma (GBM, WHO 

grade IV) is more lethal [4]. Even with large surgical 

resection followed by combined radiotherapy and 

temozolomide chemotherapy, the median survival of 

glioblastoma is only 16 months [5]. 

 

In solid tumors, a variety of non-cancer cells, including 

various immune cells, inflammatory cells, vascular cells, 

fibrotic cells, and even adipocytes, together with cancer 

cells constitute the tumor microenvironment (TME) [6]. 
The main tumor-infiltrating immune cells in the tumor 

microenvironment of glioma are tumor-associated 

macrophages (TAMs), including blood-circulating 
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ABSTRACT 
 

Background: Glioma is the most common malignant primary tumor with a poor prognosis. Infiltration of tumor-
associated macrophages (TAMs) is a hallmark of glioma. However, the regulatory mechanism of TAMs and the 
prognostic value of related signature in glioma remain unclear. 
Methods: TAMs were analyzed by EPIC, MCPCOUNTER and XCELL methods in multiple cohorts, including the 
TCGA merged GBMLGG, CGGA mRNAseq-325, and CGGA mRNAseq-693. Weighted correlation network analysis 
(WGCNA) were performed to identify candidate hub genes that might be related to TAMs. The prognostic genes 
were selected by Univariate Cox regression, Kaplan-Meier analysis and the least absolute shrinkage and 
selection operator (LASSO) multivariate Cox regression algorithm, and were used to construct a high efficacy 
prediction model. 
Results: Compared with LGG, TAMs of GBM in the TCGA merged GBMLGG, CGGA mRNAseq-693, and CGGA 
mRNAseq-325 cohorts were increased, and high TAMs levels predicted poorer overall survival for gliomas. 
The prediction model constructed by nine prognostic genes was highly efficient. The TAMs related risk-score 
was an independent risk factor for glioma. Moreover, high risk score was correlated with an increased 
population of TAMs in glioma, as well as the high immune scores, stromal scores and ESTIMATE scores. 
Conclusions: Increased TAMs might be an immune evasion mechanism of glioma. In addition, our findings 
suggested that TAMs-related signature was a valuable prognostic biomarker in glioma and provided therapeutic 
targets for glioma. 
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monocytes and tissue resident microglia, accounting for 

about 30-50% of the infiltrating immune cells in GBM 

[7]. TAMs promote the progression and metastasis of 

cancer in a variety of ways, such as releasing cancer-

promoting growth factors and cytokines, enhancing 

tumor invasion, inhibiting immune cell function, and 

stimulating angiogenesis [8–10]. Similar findings have 

been noticed in gliomas, and TAMs have also been found 

to mediate drug resistance in glioma immunotherapy 

[11]. Exploring the regulatory mechanism of TAMs and 

determining the prognostic value of TAMs related 

signature will be promising for improvement of the 

treatment of gliomas. 

 

In this study, we analyzed the tumor-associated 

macrophages in the glioma by EPIC, MCPCOUNTER 

and XCELL methods, and found that compared with 

LGG, TAMs were increased in GBM in the TCGA 

dataset. The differentially expressed genes (DEGs) 

between LGG and GBM were selected for weighted 

correlation network analysis (WGCNA) to identify 

candidate modules and hub genes that might regulate 

TAM in glioma. Subsequently, the hub genes were 

analyzed by univariate cox regression and Kaplan-Meier. 

The hub genes significantly related to overall survival 

(OS) were extracted to perform the least absolute 

shrinkage and selection operator (LASSO) multivariate 

cox regression algorithm. Finally, nine positive 

prognostic genes (MYL12A, MSN, S100A4, CHI3L1, 

PLAUR, EMP3, CASP4, TIMP1 and CCDC109B) were 

screened out and used to construct a high efficacy 

prediction model. Moreover, through immune landscape 

analysis, we found that the risk score was significantly 

related to tumor microenvironment. In conclusion, we 

revealed the relationship between TAM and malignancy 

of glioma, demonstrated the value of TAM related 

signature in predicting the prognosis of glioma, and 

provided potential targeted therapy for glioma. 

 

MATERIALS AND METHODS 
 

Datasets and samples 

 

The expression data and clinical data of merged 

GBMLGG dataset from The Cancer Genome Atlas 

(TCGA) were downloaded from University of 

California Santa Cruz (UCSC) Xena browser 

(https://xenabrowser.net/datapages/) [12]. The samples 

with missing data on survival and WHO grade  

were excluded in this study, and 674 glioma patients 

we finally obtained in the TCGA dataset. The  

RNA-seq data and clinical data of mRNAseq-693  

and mRNAseq-325 cohorts were downloaded from  

the Chinese Glioma Genome Atlas (CGGA) data 

portal (http://www.cgga.org.cn/) [13] Finally, 656 and  

309 glioma patients were enrolled in this study, 

respectively. In addition, three LGG and three GBM 

samples were collected from patients undergoing 

surgical treatment from November 2019 to December 

2020 in Zhengzhou Central Hospital Affiliated to 

Zhengzhou University. The clinical diagnosis was 

confirmed by immunohistochemical staining in the 

pathology department This study was approved by  

the institutional review board of Zhengzhou Central 

Hospital Affiliated to Zhengzhou University, and 

informed consents were obtained from all patients. 

 

Immune microenvironment analysis 

 

The abundance of tumor-infiltrating macrophage cells in 

glioma were evaluated by using EPIC, MCPCOUNTER 

and XCELL algorithms on the TIMER2 platform 

(http://timer.cistrome.org/) [14]. The ESTIMATE scores, 

Immune scores and Stromal scores of gliomas were 

calculated using the R package “estimate”. 

 

Identification of DEGs and GO enrichment analysis 
 

The differently expressed genes (DEGs) (adjusted p-

value < 0.05 and |log2FC| ≥ 1) were identified in the 

TCGA dataset by using the R package“ limma” [15]. 

Gene enrichment analysis was conducted using the 

KOBAS-i (http://bioinfo.org/kobas) [16]. 

 

Construction of the risk score model 
 

DEGs and clinical traits were incorporated to perform 

Weighted correlation network analysis (WGCNA)  

using R package “WGCNA”, the tumor-infiltrating 

macrophage related hub genes were identified. 

Univariate Cox regression analysis was performed to 

identify the hub genes which significantly related to 

overall survival (OS). After that, the least absolute 

shrinkage and selection operator (LASSO) multivariate 

Cox regression algorithm was performed using the R 

package “glmnet”. to reduce the number of predictors 

and screen for significant predictors [17, 18]. Finally, 

the positive genes were screened out, and the 

coefficients in the risk score signature were constructed 

based on the most suitable penalty parameter λ. The risk 

score formula was as follow: 
 

1

( )
n

i i

i

Risk score Coef Exp
=

=   

 

where Coefi is the coefficient, and Expi is the normalized 

expression of each signature gene. 

 

Immunohistochemical staining 

 

The tissue sections were incubated with anti-CHI3L1 

(Abcam, ab255297, 1:250), anti-MSN (Abcam, 
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ab151542, 1:250) or anti-TIMP1 (Abcam, ab211926, 

1:250) primary antibody overnight at 4° C. After 

washing three times, the sections were incubated with 

horseradish peroxidase-conjugated goat anti-rabbit IgG 

secondary antibody for 20 minutes, followed by 

staining with diaminobenzidine. Finally, the sections 

were counterstained with hematoxylin. 

 

Statistical analysis 

 

One-way ANOVA, Wilcoxon test and t test were used 

to analyze the significance of differences in gene 

expression levels and macrophage infiltration levels. 

Univariate, multivariate, LASSO cox regression and 

Kaplan-Meier analyses were performed to screen 

positive prognostic genes and evaluate the risk signature 

using the R packages “glmnet” and “survival”. Roc 

curve was drawn using the R package “survivalROC.” 

All statistical analyses were performed using GraphPad 

Prism 8, R software and SPSS, and a p value of less 

than 0.05 was considered statistically significant. 

 

Ethics statement 

 

The studies involving human participants were reviewed 

and approved by the medical ethics committee of the 

Zhengzhou Central Hospital Affiliated to Zhengzhou 

University. Informed consents were obtained from all 

individual participants included in the study. 

RESULTS 
 

Analysis of tumor-associated macrophages (TAMs) 

in glioma 
 

With the progress of glioma, tumor cells secrete a large 

number of chemokines to recruit immune cells. The 

increase in the proportion of macrophages in gliomas is 

related to the degree of malignancy [19]. Previous study 

had assessed the accuracy of 7 tools at estimating 

different immune cells from bulk RNA-seq data by 

developing a systematic approach for benchmarking 

such computational methods. Finally, the EPIC, 

MCPCOUNTER and XCELL methods were recommend 

to predict the level of tumor infiltrating macrophages 

[20]. Therefore, we analyzed the RNA-seq data from 

glioma patients in the CGGA mRNAseq-325, CGGA 

mRNAseq-693 and TCGA merged GBMLGG cohorts 

by these three methods to characterize the TAM in 

gliomas (Figure 1 and Supplementary Figure 1). The 

results showed that compared with LGG, the level of 

macrophages in GBM was significantly increased 

(Figure 1A, 1B and Supplementary Figure 1). In 

addition, the level of macrophages was significantly 

correlated with overall survival of gliomas (Figure 1C). 

In different WHO grade, age, MGMT status and IDH 

mutation status group, TAMs also showed significant 

differences. However, there was no difference in gender 

group (Supplementary Figure 2). 

 

 
 

Figure 1. Analysis of tumor infiltrating macrophages (TAM) in glioma. (A) Heatmap was drawn to depict the TAM in glioma from the 
TCGA merged GBMLGG cohort. (B) TAMs were increased in GBM in the TCGA merged GBMLGG, CGGA mRNAseq-693 and CGGA mRNAseq-
325 cohorts, respectively. (C) Kaplan-Meier overall survival curves displayed that increased TAM was related to the poor prognosis and lower 
survival rate of glioma. *, P< 0.05; **, P< 0.01; ***, P< 0.001, ****, P< 0.0001. 
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Identification of differentially expressed genes (DEGs) 

related to TAM 

 
The differentially expressed genes (DEGs) between LGG 

and GBM were identified using R package “limma”. In 

the TCGA GBMLGG cohort, 3868 DEGs (adjusted p-

value < 0.05 and |log2FC| ≥ 1) were screened out, 

including 2116 up-regulated genes and 1752 down-

regulated genes, respectively (Figure 2A, 2B). Thereafter, 

we performed Weighted Correlation Network Analysis 

 

 
 

Figure 2. Weighted correlation network analysis. (A) Scatter plot showed 2116 up-regulated genes and 1752 down-regulated genes. 
(B) Cluster dendrogram demonstrating good separation between LGG and GBM. (C) Sample Dendrogram and soft-thresholding powers.  
(D) Clustering tree and adjacency heatmap of modules. (E) TOM diagram of the relationship between gene clusters and modules in each 
module of WGCNA. (F) Module-trait relationships indicated the light-cyan module was most related to the level of TAM in glioma. 
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(WGCNA) to determine the co-expression modules 

associated with macrophage infiltration (Figure 2). A 

total of 8 modules were identified from the co-expression 

network (Figure 2D, 2E), among which the light-cyan 

module was most related to TAM (Figure 2F). 

 

1372 genes were identified in the light-cyan module. 

GO enrichment analysis showed that these genes were 

significantly enriched in immunology signaling path-

ways such as the cytokine-cytokine receptor pathway, 

chemokine signaling pathway, PD-L1 expression and 

PD-1 checkpoint pathway in cancer (Figure 3A). In 

addition, 16 hub genes (S100A4, PLAUR, MSN, 

CCDC109B, ANXA2P2, TAGLN2, DPYD, EMP3, 

TIMP1, PLBD1, CLIC1, CASP4, S100A11, PDPN, 

CHI3L1 and MYL12A) were identified from the light-

cyan module through WGCNA analysis (Figure 3B, 

3C). 

 

Construction of the risk score signature 

 

As shown by the Univariate Cox regression analysis,  

all the 16 hub genes were significantly associated  

with prognosis in the TCGA dataset (Figure 4A). 

Subsequently, we performed the least absolute shrinkage 

and selection operator (LASSO) Cox regression 

algorithm to analyze the 16 hub genes in the TCGA 

dataset. Nine prognostic-related genes (MYL12A, MSN, 

 

 
 

Figure 3. Identification of differentially expressed genes (DEGs) related to TAM. (A) GO analysis showed the DEGs were 

significantly enriched in Immunology signaling pathways. (B) 16 hub genes were identified in the light-cyan module. (C) The function and 
interaction of hub genes. 
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S100A4, CHI3L1, PLAUR, EMP3, CASP4, TIMP1 and 

CCDC109B) were screened out based on the minimum 

criteria in the TCGA dataset (Figure 4B, 4C). The results 

of Kaplan-Meier analyses displayed that the expression 

of the nine prognostic-related genes was significantly 

correlated with the overall survival of glioma patients in 

the TCGA dataset (Figure 4D). Therefore, these nine 

genes were finally selected to construct the risk score 

signature (Figure 5A, 5D, 5G). Kaplan-Meier survival 

analyses showed that high risk score was related to the 

 

 
 

Figure 4. Screening of the prognostic genes in the TCGA dataset. (A) Univariate Cox regression analysis of 16 hub genes in the TCGA 

dataset. (B) Partial likelihood deviance of different numbers of variables revealed by the LASSO regression model. (C) LASSO coefficient 
profiles of the selected hub genes. (D) Kaplan-Meier curves displayed highly expressed genes screened out by LASSO were significantly 
related to poor prognosis in the TCGA dataset. 
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poor prognosis and lower survival rate of glioma both in 

the CGGA mRNAseq-325, CGGA mRNAseq-693 and 

TCGA merged GBMLGG cohorts (Figure 5B, 5E, 5H). 

In order to assess the sensitivity and specificity of risk 

score in predicting the 1-, 3- and 5-year survival of 

glioma patients, we conducted ROC curve analyses in 

three cohorts and found that the predictive accuracy of 

the risk score was very high (Figure 5C, 5F, 5I). 

 

 
 

Figure 5. Construction of the risk score signature. (A) Risk signature in the TCGA cohort. (B) Kaplan-Meier analysis according to risk 

score in the TCGA cohort. (C) The ROC curves depicting the sensitivity and specificity of risk score in predicting the 1-, 3- and 5-year survival in 
the TCGA cohort. (D) Risk signature in the CGGA mRNAseq-693 cohort. (E) Kaplan-Meier analysis according to risk score in the CGGA 
mRNAseq-693 cohort. (F) The ROC curves depicting the sensitivity and specificity of risk score in predicting the 1-, 3- and 5-year survival in the 
CGGA mRNAseq-693 cohort. (G) Risk signature in the CGGA mRNAseq-325 cohort. (H) Kaplan-Meier analysis according to risk score in the 
CGGA mRNAseq-325 cohort. (I) The ROC curves depicting the sensitivity and specificity of risk score in predicting the 1-, 3- and 5-year survival 
in the CGGA mRNAseq-325 cohort. 
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The relationship between risk score and TAM 

 

To better understand the relationship between risk 

score and TAM, we analyzed the distribution of the 

survival status, age, WHO grade, risk score and TAM 

of glioma patients (Figure 6A). The risk scores of 

gliomas in GBM were significantly higher than the 

corresponding LGG subtype (Figure 6B). In addition, 

the infiltration level of macrophages was increased in 

the high-risk group (Figure 6C). The risk score also 

was closely related to age, IDH mutation status and 

MGMT status (Supplementary Figure 3). In addition to 

the risk score, all nine genes that constructed the risk 

signature were significantly associated with the TAM 

in glioma (Figure 6D). 

 

Immune microenvironment analysis of glioma 

 

After that, we investigated whether the risk score was 

associated with tumor immune microenvironment in the 

TCGA dataset (Figure 7). The results of correlation 

analysis showed that risk scores were positively 

correlated with immune scores, stromal scores and 

ESTIMATE scores both in the CGGA mRNAseq-325, 

CGGA mRNAseq-693 and TCGA merged GBMLGG 

cohorts (Figure 7A–7C). And the immune scores, 

stromal scores and ESTIMATE scores of the high-risk 

group were higher than those of the low-risk group 

(Figure 7D–7F). 

 

TAM related signature is an independent risk factor 

for glioma 

 

Univariate Cox regression analysis was performed to 

investigate whether the risk score was an independent 

prognostic factor. As shown in the Figure 8A, the risk 

score, age, MGMT promoter status, WHO grade and 

IDH status were significantly correlated with prognosis. 

Multivariate Cox regression analysis also revealed that 

the risk score, IDH status, age and WHO grade were 

 

 
 

Figure 6. The relationship between risk score and TAM. (A) Sankey Diagram displayed the distribution of the survival status, age, WHO 
grade, risk score and TAM of glioma patients in the merged GBMLGG cohort. (B) Boxplot showed the risk scores of GBM were higher than 
those of LGG in the cohort of TCGA merged GBMLGG, CGGA mRNAseq-693 and CGGA mRNAseq-325, respectively. (C) Boxplot showed the 
TAM of high-risk group was higher than that of low-risk group in the cohort of TCGA merged GBMLGG, CGGA mRNAseq-693 and CGGA 
mRNAseq-325, respectively. (D) Correlation analysis showed that the risk score and nine prognostic genes were significantly related to TAM 
in the cohort of TCGA merged GBMLGG, CGGA mRNAseq-693 and CGGA mRNAseq-325, respectively. *, P< 0.05; **, P< 0.01; ***, P< 0.001, 
****, P< 0.0001. 
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Figure 7. Immune microenvironment analysis of glioma. (A–C) In the TCGA merged GBMLGG, CGGA mRNAseq-693 and CGGA 

mRNAseq-325 cohorts, the risk score was significantly correlated with the immune scores, stromal scores and ESTIMATE scores, respectively. 
(D–F) Compared with low-risk group, the immune scores, stromal scores and ESTIMATE scores of high-risk group were higher in the TCGA 
merged GBMLGG, CGGA mRNAseq-693 and CGGA mRNAseq-325 cohorts. 
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significantly correlated with prognosis (Figure 8B), 

indicating that the risk score was an independent 

prognostic factor for glioma. We then built a survival 

nomogram prediction model based on independent 

prognostic parameters for the OS of glioma patients 

(Figure 8C). Finally, the calibration curves were  

drawn, and the results displayed excellent agreement 

between observation and prediction both in the CGGA 

mRNAseq-325, CGGA mRNAseq-693 and TCGA 

merged GBMLGG cohorts (Figure 8D). 

 

Validation the expression of the prognostic genes 

 

Immunohistochemical staining were performed to 

validate the expression of the genes that constructed  

the risk signature in glioma. Similar to the expression 

pattern of CGGA mRNAseq-325, CGGA mRNAseq-

693 and TCGA merged GBMLGG cohorts, CHI3L1, 

MSN and TIMP1 were expressed higher in high-grade 

gliomas than in low-grade gliomas (Figure 9). 

 

TIMP1 affects migration and proliferation of glioma 

cells 

 

To fully determine the effect of TIMP1 on glioma cells, 

we knocked down TIMP1 in LN229 cells by transfecting 

specific siRNA (Figure 10A, 10B). Knockdown TIMP1 

significantly inhibited the migration of LN229 cells 

(Figure 10C). In addition, EdU assay showed that TIMP1 

could significantly affect the proliferation of LN229 cells 

(Figure 10D). 

 

DISCUSSION 
 

Glioma is considered to be one of the most devastating 

tumors in adults [21]. Currently, maximal safe surgical 

resection followed by radiotherapy with concurrent 

temozolomide chemotherapy is still the standard 

treatment of GBM [22]. However, the median survival 

of GBM is poor, not exceeding 16 months [5]. In the 

present study, we built a survival nomogram prediction 

model, incorporating grade, age, IDH status, and risk 

score into the model to improve the prediction accuracy 

of the model. 

 

Inflammation in the tumor microenvironment is an 

important manifestation of malignant tumors. Chronic 

inflammation has been proved to be closely related  

with carcinogenesis. The inflammation-enriched tumor 

microenvironment has been shown to be responsible for 

the progression of developing tumors into highly 

malignant neoplasms, including GBM. Macrophages, 

 

 
 

Figure 8. Risk score is an independent prognostic factor. (A) Univariate Cox regression analyses showed the clinical features such as 

the risk score, age, MGMT promoter status, WHO grade and IDH status were significantly correlated with prognosis. (B) Multivariate Cox 
analysis showed the risk score remained associated with the prognosis. (C) Nomogram was used to predict prognosis in patients at 1-, 3-, and 
5-years in the CGGA dataset. (D) Calibration curve for the nomogram predicting 1-, 3-, and 5-years overall survival. 
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as the main inflammatory cells in the tumor micro-

environment, regulate the activity of signaling pathways 

together with glioma cells, and ultimately promote 

cancer progression, tumor cell migration and invasion, 

and immunosuppression [23]. Here, we revealed the 

relationship between TAM and malignancy of glioma, 

demonstrated the value of TAM related signature in 

predicting the prognosis of glioma.  

 

 
 

Figure 9. Expression verification of the prognostic genes. (A–C) Immunohistochemical staining analysis of the protein levels of CHI3L1, 

MSN and TIMP1 between the low-grade and high-grade gliomas. *, P< 0.05; **, P< 0.01; ***, P< 0.001. 
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Based on superior computational methods and multiple 

cohorts, we screened core genes and constructed 

prediction models. The results provided evidence  

for TAMs-related signature as a valuable prognostic 

biomarker in glioma. Nine positive prognostic genes 

(MYL12A, MSN, S100A4, CHI3L1, PLAUR, EMP3, 

CASP4, TIMP1 and CCDC109B) were included  

in the prediction model. CHI3L1 is an abundant 

glycopolymer, which is synthesized and secreted by 

macrophages and various cells. CHI3L1 has been 

shown to be associated in multiple cancers [24]. 

Lately, Chen et al. showed that CHI3L1 promoted 

macrophage-mediated immune suppression by forming 

complexes with galectin 3 or galectin 3-binding 

protein [25]. As a member of the ERM family, MSN 

localized to filopodia and other membranous 

protrusions that connects the actin-based cytoskeleton 

to plasma membranes [26]. In glioblastoma, MSN 

could increase CD44 expression driven by the Wnt/β-

catenin signaling pathway [27]. MYL12A was proved 

to be involved in DNA damage repair and p53-driven 

apoptosis [28]. TIMP1 is member of natural inhibitors 

of the matrix metalloproteinases, which has the effect 

of controlling the polarization of Natural Killer cells 

induced by the tumor-related cytokine TGFβ [29]. 

CCDC109B was involved in the activation of cell 

death pathway. Xu et al. showed that it plays an 

important role in mediating the migration and invasion 

of glioma cells induced by HIF1α [29]. 

 

As mentioned above, in previous studies, the role of 

some prognostic genes in glioma or other cancers have 

been reported. But we uncovered their potential role on 

tumor-infiltrating immune cells, which together with 

cancer cells constitute the tumor microenvironment. Due 

to the limitations of the research on the signaling 

pathways involved in target prognostic genes and their 

realistic role in tumor-associated macrophage infiltration, 

further researches are needed to explore the molecular 

mechanism. 

 

CONCLUSIONS 
 

Overall, we revealed the relationship between TAM 

and malignancy of glioma, demonstrated the value of 

TAM related signature in predicting the prognosis of 

glioma, and provided potential targeted therapy for 

glioma. 

 

 
 

Figure 10. TIMP1 affects migration and proliferation of glioma cells. (A) qRT-PCR and (B) western blot analysis of TIMP1 knockdown 
efficiency in LN229 cells. (C) Representative images and statistical analysis of cell migration assay in control and TIMP1-deficient endothelial 
cells at the indicated times. (D) Representative images and statistical analysis of EdU assay in control and TIMP1-deficient LN229 cells. *, P< 
0.05; **, P< 0.01; ***, P< 0.001; **** P< 0.0001. 



www.aging-us.com 2732 AGING 

AUTHOR CONTRIBUTIONS 
 

Lin-jian Wang: Conceptualization, Methodology, Funding 

acquisition; Yimeng Xue: Data curation, Writing - 

Original Draft; Yongli Lou: Writing - Review and 

Editing. 

 

CONFLICTS OF INTEREST 
 

All authors state that they have no conflicts of interest. 

 

FUNDING 
 

This work was supported by the National Natural 

Science Foundation of China (82101401). 

 

REFERENCES 
 
1. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, 

Lightner DD, Barnholtz-Sloan JS, Villano JL. 
Epidemiologic and molecular prognostic review of 
glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014; 
23:1985–96. 

 https://doi.org/10.1158/1055-9965.EPI-14-0275 
PMID:25053711 

2. Lefranc F, Le Rhun E, Kiss R, Weller M. Glioblastoma 
quo vadis: Will migration and invasiveness reemerge 
as therapeutic targets? Cancer Treat Rev. 2018; 
68:145–54. 

 https://doi.org/10.1016/j.ctrv.2018.06.017 
PMID:30032756 

3. Locarno CV, Simonelli M, Carenza C, Capucetti A, 
Stanzani E, Lorenzi E, Persico P, Della Bella S,  
Passoni L, Mavilio D, Bonecchi R, Locati M, Savino B. 
Role of myeloid cells in the immunosuppressive 
microenvironment in gliomas. Immunobiology. 2020; 
225:151853. 

 https://doi.org/10.1016/j.imbio.2019.10.002 
PMID:31703822 

4. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, 
Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical 
Report: Primary Brain and Other Central Nervous 
System Tumors Diagnosed in the United States in 
2012-2016. Neuro Oncol. 2019; 21:v1–100. 

 https://doi.org/10.1093/neuonc/noz150 
PMID:31675094 

5. Stupp R, Hegi ME, Mason WP, van den Bent MJ, 
Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher 
B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, et al, 
and European Organisation for Research and 
Treatment of Cancer Brain Tumour and Radiation 
Oncology Groups, and National Cancer Institute of 
Canada Clinical Trials Group. Effects of radiotherapy 
with concomitant and adjuvant temozolomide versus 

radiotherapy alone on survival in glioblastoma in a 
randomised phase III study: 5-year analysis of the 
EORTC-NCIC trial. Lancet Oncol. 2009; 10:459–66. 

 https://doi.org/10.1016/S1470-2045(09)70025-7 
PMID:19269895 

6. Wu J, Chen Z, Wickström SL, Gao J, He X, Jing X, Wu J, 
Du Q, Yang M, Chen Y, Zhang D, Yin X, Guo Z, et al. 
Interleukin-33 is a Novel Immunosuppressor that 
Protects Cancer Cells from TIL Killing by a Macrophage-
Mediated Shedding Mechanism. Adv Sci (Weinh). 
2021; 8:e2101029. 

 https://doi.org/10.1002/advs.202101029 
PMID:34486239 

7. Watters JJ, Schartner JM, Badie B. Microglia function in 
brain tumors. J Neurosci Res. 2005; 81:447–55. 

 https://doi.org/10.1002/jnr.20485 PMID:15959903 

8. Sun X, He X, Zhang Y, Hosaka K, Andersson P, Wu J, Wu 
J, Jing X, Du Q, Hui X, Ding B, Guo Z, Hong A, et al. 
Inflammatory cell-derived CXCL3 promotes pancreatic 
cancer metastasis through a novel myofibroblast-
hijacked cancer escape mechanism. Gut. 2022; 
71:129–47. 

 https://doi.org/10.1136/gutjnl-2020-322744 
PMID:33568427 

9. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, 
Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips 
GM, Cline GW, Phillips AJ, Medzhitov R. Functional 
polarization of tumour-associated macrophages by 
tumour-derived lactic acid. Nature. 2014; 513:559–63. 

 https://doi.org/10.1038/nature13490 PMID:25043024 

10. Wynn TA, Chawla A, Pollard JW. Macrophage biology in 
development, homeostasis and disease. Nature. 2013; 
496:445–55. 

 https://doi.org/10.1038/nature12034 PMID:23619691 

11. Zheng Y, Bao J, Zhao Q, Zhou T, Sun X. A Spatio-
Temporal Model of Macrophage-Mediated Drug 
Resistance in Glioma Immunotherapy. Mol Cancer 
Ther. 2018; 17:814–24. 

 https://doi.org/10.1158/1535-7163.MCT-17-0634 
PMID:29440290 

12. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, 
Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, 
Antipin Y, Reva B, Goldberg AP, et al. The cBio cancer 
genomics portal: an open platform for exploring 
multidimensional cancer genomics data. Cancer 
Discov. 2012; 2:401–4. 

 https://doi.org/10.1158/2159-8290.CD-12-0095 
PMID:22588877 

13. Zhao Z, Meng F, Wang W, Wang Z, Zhang C, Jiang T. 
Comprehensive RNA-seq transcriptomic profiling in the 
malignant progression of gliomas. Sci Data. 2017; 
4:170024. 

https://doi.org/10.1158/1055-9965.EPI-14-0275
https://pubmed.ncbi.nlm.nih.gov/25053711
https://doi.org/10.1016/j.ctrv.2018.06.017
https://pubmed.ncbi.nlm.nih.gov/30032756
https://doi.org/10.1016/j.imbio.2019.10.002
https://pubmed.ncbi.nlm.nih.gov/31703822
https://doi.org/10.1093/neuonc/noz150
https://pubmed.ncbi.nlm.nih.gov/31675094
https://doi.org/10.1016/S1470-2045(09)70025-7
https://pubmed.ncbi.nlm.nih.gov/19269895
https://doi.org/10.1002/advs.202101029
https://pubmed.ncbi.nlm.nih.gov/34486239
https://doi.org/10.1002/jnr.20485
https://pubmed.ncbi.nlm.nih.gov/15959903
https://doi.org/10.1136/gutjnl-2020-322744
https://pubmed.ncbi.nlm.nih.gov/33568427
https://doi.org/10.1038/nature13490
https://pubmed.ncbi.nlm.nih.gov/25043024
https://doi.org/10.1038/nature12034
https://pubmed.ncbi.nlm.nih.gov/23619691
https://doi.org/10.1158/1535-7163.MCT-17-0634
https://pubmed.ncbi.nlm.nih.gov/29440290
https://doi.org/10.1158/2159-8290.CD-12-0095
https://pubmed.ncbi.nlm.nih.gov/22588877


www.aging-us.com 2733 AGING 

 https://doi.org/10.1038/sdata.2017.24 
PMID:28291232 

14. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS. 
TIMER2.0 for analysis of tumor-infiltrating immune 
cells. Nucleic Acids Res. 2020; 48:W509–14. 

 https://doi.org/10.1093/nar/gkaa407 PMID:32442275 

15. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, 
Smyth GK. limma powers differential expression 
analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015; 43:e47. 

 https://doi.org/10.1093/nar/gkv007 PMID:25605792 

16. Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, Wu Y, Zhao 
L, Liu J, Guo J, Fang S, Cao W, Yi L, et al. KOBAS-i: 
intelligent prioritization and exploratory visualization 
of biological functions for gene enrichment analysis. 
Nucleic Acids Res. 2021; 49:W317–25. 

 https://doi.org/10.1093/nar/gkab447 PMID:34086934 

17. Sun H, Wang S. Penalized logistic regression for high-
dimensional DNA methylation data with case-control 
studies. Bioinformatics. 2012; 28:1368–75. 

 https://doi.org/10.1093/bioinformatics/bts145 
PMID:22467913 

18. Pak K, Oh SO, Goh TS, Heo HJ, Han ME, Jeong DC, Lee 
CS, Sun H, Kang J, Choi S, Lee S, Kwon EJ, Kang JW, Kim 
YH. A User-Friendly, Web-Based Integrative Tool 
(ESurv) for Survival Analysis: Development and 
Validation Study. J Med Internet Res. 2020; 22:e16084. 

 https://doi.org/10.2196/16084 PMID:32369034 

19. Yi L, Xiao H, Xu M, Ye X, Hu J, Li F, Li M, Luo C, Yu S, 
Bian X, Feng H. Glioma-initiating cells: a predominant 
role in microglia/macrophages tropism to glioma. J 
Neuroimmunol. 2011; 232:75–82. 

 https://doi.org/10.1016/j.jneuroim.2010.10.011 
PMID:21056915 

20. Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach 
J, Fridman WH, List M, Aneichyk T. Comprehensive 
evaluation of transcriptome-based cell-type 
quantification methods for immuno-oncology. 
Bioinformatics. 2019; 35:i436–45. 

 https://doi.org/10.1093/bioinformatics/btz363 
PMID:31510660 

21. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, 
Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. CBTRUS 
Statistical Report: Primary brain and other central 
nervous system tumors diagnosed in the United States 
in 2010-2014. Neuro Oncol. 2017; 19:v1–88. 

 https://doi.org/10.1093/neuonc/nox158 
PMID:29117289 

22. Stupp R, Mason WP, van den Bent MJ, Weller M, 
Fisher B, Taphoorn MJ, Belanger K, Brandes AA, 
Marosi C, Bogdahn U, Curschmann J, Janzer RC, 
Ludwin SK, et al, and European Organisation for 

Research and Treatment of Cancer Brain Tumor  
and Radiotherapy Groups, and National Cancer 
Institute of Canada Clinical Trials Group. Radiotherapy 
plus concomitant and adjuvant temozolomide for 
glioblastoma. N Engl J Med. 2005; 352:987–96. 

 https://doi.org/10.1056/NEJMoa043330 
PMID:15758009 

23. Basheer AS, Abas F, Othman I, Naidu R. Role of 
Inflammatory Mediators, Macrophages, and 
Neutrophils in Glioma Maintenance and Progression: 
Mechanistic Understanding and Potential Therapeutic 
Applications. Cancers (Basel). 2021; 13:4226. 

 https://doi.org/10.3390/cancers13164226 
PMID:34439380 

24. Zhao T, Su Z, Li Y, Zhang X, You Q. Chitinase-3 like-
protein-1 function and its role in diseases. Signal 
Transduct Target Ther. 2020; 5:201. 

 https://doi.org/10.1038/s41392-020-00303-7 
PMID:32929074 

25. Chen A, Jiang Y, Li Z, Wu L, Santiago U, Zou H, Cai C, 
Sharma V, Guan Y, McCarl LH, Ma J, Wu YL, Michel J, et 
al. Chitinase-3-like 1 protein complexes modulate 
macrophage-mediated immune suppression in 
glioblastoma. J Clin Invest. 2021; 131:e147552. 

 https://doi.org/10.1172/JCI147552 PMID:34228644 

26. Derouiche A, Geiger KD. Perspectives for Ezrin and 
Radixin in Astrocytes: Kinases, Functions and 
Pathology. Int J Mol Sci. 2019; 20:3776. 

 https://doi.org/10.3390/ijms20153776 
PMID:31382374 

27. Zhu X, Morales FC, Agarwal NK, Dogruluk T, Gagea M, 
Georgescu MM. Moesin is a glioma progression marker 
that induces proliferation and Wnt/β-catenin pathway 
activation via interaction with CD44. Cancer Res. 2013; 
73:1142–55. 

 https://doi.org/10.1158/0008-5472.CAN-12-1040 
PMID:23221384 

28. Park I, Han C, Jin S, Lee B, Choi H, Kwon JT, Kim D, Kim 
J, Lifirsu E, Park WJ, Park ZY, Kim DH, Cho C. Myosin 
regulatory light chains are required to maintain the 
stability of myosin II and cellular integrity. Biochem J. 
2011; 434:171–80. 

 https://doi.org/10.1042/BJ20101473 PMID:21126233 

29. Albini A, Gallazzi M, Palano MT, Carlini V, Ricotta R, 
Bruno A, Stetler-Stevenson WG, Noonan DM. TIMP1 
and TIMP2 Downregulate TGFβ Induced Decidual-like 
Phenotype in Natural Killer Cells. Cancers (Basel). 2021; 
13:4955. 

 https://doi.org/10.3390/cancers13194955 
PMID:34638439 

  

https://doi.org/10.1038/sdata.2017.24
https://pubmed.ncbi.nlm.nih.gov/28291232
https://doi.org/10.1093/nar/gkaa407
https://pubmed.ncbi.nlm.nih.gov/32442275
https://doi.org/10.1093/nar/gkv007
https://pubmed.ncbi.nlm.nih.gov/25605792
https://doi.org/10.1093/nar/gkab447
https://pubmed.ncbi.nlm.nih.gov/34086934
https://doi.org/10.1093/bioinformatics/bts145
https://pubmed.ncbi.nlm.nih.gov/22467913
https://doi.org/10.2196/16084
https://pubmed.ncbi.nlm.nih.gov/32369034
https://doi.org/10.1016/j.jneuroim.2010.10.011
https://pubmed.ncbi.nlm.nih.gov/21056915
https://doi.org/10.1093/bioinformatics/btz363
https://pubmed.ncbi.nlm.nih.gov/31510660
https://doi.org/10.1093/neuonc/nox158
https://pubmed.ncbi.nlm.nih.gov/29117289
https://doi.org/10.1056/NEJMoa043330
https://pubmed.ncbi.nlm.nih.gov/15758009
https://doi.org/10.3390/cancers13164226
https://pubmed.ncbi.nlm.nih.gov/34439380
https://doi.org/10.1038/s41392-020-00303-7
https://pubmed.ncbi.nlm.nih.gov/32929074
https://doi.org/10.1172/JCI147552
https://pubmed.ncbi.nlm.nih.gov/34228644
https://doi.org/10.3390/ijms20153776
https://pubmed.ncbi.nlm.nih.gov/31382374
https://doi.org/10.1158/0008-5472.CAN-12-1040
https://pubmed.ncbi.nlm.nih.gov/23221384
https://doi.org/10.1042/BJ20101473
https://pubmed.ncbi.nlm.nih.gov/21126233
https://doi.org/10.3390/cancers13194955
https://pubmed.ncbi.nlm.nih.gov/34638439


www.aging-us.com 2734 AGING 
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Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Analysis of TAM in the TCGA dataset. (A, B) The TAM was analyzed by MCPCOUNTER method. (C, D). The 
TAM was analyzed by XCELL method. 
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Supplementary Figure 2. Analysis of TAM in different WHO grade (A), age (B), gender (C), MGMT status (D) and IDH mutation status (E). 

 

 
 

Supplementary Figure 3. The relationship between risk score and different gender (A), age (B), IDH mutation status (C), and MGMT 

status (D). 


